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THE BOUNDARY ELEMENT METHOD APPLIED TO THE DETERMINATION
OF THE GLOBAL QUASIGEOID
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     Abstract. The main task of geodesy is the determination of the size and shape and the gravity
field of the Earth from terrestrial observations and also from satellite measurements in the last
decades. The determination of the exterior gravity field of the Earth is usually formulated in terms of
a boundary value problem (BVP) for the Laplace equation. Thanks to satellite geodesy (especially to
the Global Positioning System (GPS)) it is possible to determine the geocentric position on the
Earth’s surface that represents the boundary surface for the geodetic BVP considered. The
combination of gravimetric and satellite measurements on the Earth’s surface allows to formulate
Neumann’s boundary condition that corresponds to gravity disturbances that are known on the Earth’s
surface in this case. This paper discusses an application of the boundary element method (BEM) to
the numerical solution of the geodetic BVP with the boundary conditions of the Neumann type that
originates in the global quasigeoid modelling. The result of the numerical solution of the global
quasigeoid determination is presented.

1. Introduction.  As is well known the fundamental differential equation that is
satisfied by the disturbing potential T outside the Earth (neglecting the atmosphere)
is the Laplace equation

∆T(x) = 0 ,  x∈R3- Ω,          (1)

where Ω is a domain representing the body of the Earth. The disturbing potential is
defined as the difference between the actual and the normal gravity potential

T(x) = W(x) - U(x) ,   x∈R3,          (2)

where W is the actual and U the normal gravity potential. The normal gravity
potential is generated by a normal body. To keep its average difference from the
actual gravity potential as small as possible the normal body is defined as a
geocentric equipotential ellipsoid of rotation that is completely determined by four
parameters derived from the actual Earth:

• semimajor axis a
• geometrical flattening f
• geocentric gravitational constant GM
• spin angular velocity ω
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The normal potential Uo on the ellipsoidal surface is equal to the actual potential
Wo on the geoid that approximates the mean sea level (Geodetic Reference System
GRS-80). The same angular velocity of rotation ω generates also the same
centrifugal potential for  both bodies, the Earth and the equipotential ellipsoid.
Therefore disturbing potential (2) is only the difference of gravitational
components

T(x) = Vg(x) - Ug(x) ,   x∈R3,          (3)

where Vg is the actual and Ug the normal gravitational potential, and the potential
equation (1) is valid.

In general the boundary conditions (BC) associated with the geodetic BVP has
usually the form of the so-called fundamental equation of physical geodesy (see
[7])
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T(x) = ∆g(x) , x∈Γ,           (4)

where γ is the normal gravity, ∂τ is a partial derivative with respect to the
isozenithal, ∆g is the gravity anomaly and Γ is a boundary of the domain. In
Stokes‘s concept the gravity anomalies and BC are defined on the geoid. In
Molodenskij‘s concept the surface gravity anomalies and BC are defined on the
telluroid. In both definitions the boundary surfaces are not Earth’s surface, only its
approximations.

Thanks to satellite measurements it is possible to determine geocentric position
on the Earth’s surface and we can define BC of the Neumann type in form of the
gravity disturbances. Applying the gradient operator to (2) and neglecting the
deflection of vertical (spatial angle smaller than 1’  in mountains and 20”  in
lowlands (see [10])), we have

grad T(x) ≅ g(x) – γ(x) = δg(x), x∈Γ,        (5)

where g and γ are the vectors of  actual and normal gravity and δg is the gravity
disturbance defined on the actual Earth’s surface Γ. We can formulate the geodetic
BVP

∆T(x) = 0 ,  x∈ R3- Ω ,         (6a)

〈 ∇ T(x) , ne(x)〉 = 〈 δg(x) , ne(x)〉 ,  x∈Γ,         (6b)

T(x) → 0  for  x → ∞ .        (6c)

where ne is the ellipsoidal normal and 〈  , 〉 represents the scalar product of vectors.
Equations (6) represent the exterior oblique derivative BVP for the Laplace
equation with Neumann’s BC. The boundary surface Γ is the Earth’s surface. The
normal to the Earth’s surface Γ doesn’ t coincide with the ellipsoidal normal ne.
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We use boundary element method (BEM) for numerical solution of our problem
because it is suitable for the exterior BVP. BEM is based on the weak formulation
(see [2,9]) of the differential equation (6a) and on the discretization of the
boundary surface by a triangulation. As a result we obtain an approximate solution
of the formulated geodetic BVP.

2. The BEM application. The BEM variational formulation of our BVP for the
Laplace equation is expressed in terms of a boundary integral equation for an
unknown function u representing the disturbing potential T (see [1])

2πα u(x)  + ∫
Γ

u(y) q*(x, y) dy  = ∫
Γ

q(y) u*(x, y) dy , x∈Γ,          (7)

where α=1 for 2D and α=2 for 3D cases. The function q is the normal derivative of
u and represents the gravity disturbances. Let us note that in a current
implementation we consider the normal derivative to the Earth’s surface instead of
the oblique derivative given in (6b). The kernel function u* is the fundamental
solution of the Laplace equation, q* is its normal derivative:

u*(x, y) = (4π⋅l(x, y)) -1 , x, y ∈Γ,                     (8)

where l is the distance. The boundary given by the Earth’s surface is approximated
by the triangulation of the topography. The vertices of the triangles represent nodes
in which input boundary data are generated (the gravity disturbance δg and the
node position in form of the ellipsoidal coordinates B, L, H). Assuming elements
with constant basis functions we discretize the boundary integral equation (7) for
the node i in the following form

ci ui  + ∑
=

N

j 1

{ ∫
Γj

(4π)-1⋅l ij -2dΓ } uj  = ∑
=

N

j 1

{ ∫
Γj

(4π⋅l ij) -1dΓ} qj , i = 1, …, N,

         (9)

where N is the number of nodes and Γj is the area of element j. The function ci

depends on the shape of the boundary surface. There is the interior angle in the
node i delimited by neighbouring elements for 2D cases, analogously for 3D cases
(see [1]). Computing integrals in (9) approximately using
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 , for i ≠ j ,      (10a)
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+ ci , for i = j ,      (10b)
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where Aj is the area of element j and wk are weights (see [1]), we get a system of
linear equations

M ⋅ u  =   f ,         (11)

where

f  = G ⋅ q .         (12)

Solving the system (11) we obtain values of the disturbing potential in the nodes
on the Earth’s surface. Using Bruns’s formula we can transform disturbing
potential in the nodes to the height anomalies, respectively to the quasigeoidal
heights above the ellipsoid (see [7]). However there is a problem of unknown sea
level heights. Thanks to a small value of gravity gradients we can overcome this
problem in an iterative way writing symbolically

 ( ) ( )i
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−
=+

,

),,(
,1  ,                    (13)

where ζ is the quasigeoidal height above ellipsoid, T is the disturbing potential on
the Earth’s surface and γ is the normal gravity on the “ iterative”  telluroid. The
normal gravity is computed by means of formulas of GRS-80. In the first iteration
all the quasigeoidal heights are equal to zero. To obtain convergence it is
sufficiently to use two or three iterations.

3. Numerical experiments. An application of BEM to the linearized
Molodenskij’ s problem in 2D case has been given in [3]. This paper discusses a 3D
BEM application to the BVP defined by (6). In our experiment we use the Earth
geopotential model EGM96 to generate gravity disturbances in the nodes. The
ellipsoidal coordinates determine the node positions. The ellipsoidal heights are
combinations of sea level heights from terrain model and geoidal heights from
EGM96. The geopotential model is formulated as the spherical harmonics series
expansion of the geopotential with Stokes’s geopotential coefficients (see [10]).
Low frequency components are accurately obtained by satellite measurements
while higher ones from gravimetry and altimetry. The definition of Earth
geopotential models with known Stokes’s geopotential coefficients allow to
compute several geodetic quantities, e.g. disturbing potential, geoidal heights,
gravity anomalies, gravity disturbances, etc. In our experiment we use program
F477B (see [8]) for computing gravity disturbances and geoidal heights in the
nodes.
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                              a.)               b.)
FIG.1

The triangulation of the topography is based on a subdivision of the triangular
faces of a “12-hedron”  (fig.1a). Each of the 12 faces is subdivided into 4 congruent
subtriangles by halving the sides (fig.1b). This process is repeated until required
level.

In our experiment the Earth’s surface is approximated by 1946 nodes and 3888
triangles. The computations have been done on PC with 250 MB internal memory
using the software Mathematica 3.0. The results of the formulated BEM
application compared with EGM96 are in the appendix (the profiles along the
parallels of latitude).

4. Perspectives for physical geodesy. The results of the BEM application to
the geodetic BVP show the evident correlation and agreement with geopotential
model EGM96. Increasing number of nodes and local grid refinement, e.g. in areas
of interest, as well as input of real measured data, we can achieve a more precise
solution of the global quasigeoid and also its local determination. The main
consequence of the new BC definition in form of the gravity disturbance is a
simplification of the necessary geodetic measurements. That means the
combination of GPS and gravimetry without economical demanding levelling. This
contribution is evident in mountainous areas.
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Appendix:

The BEM application to the geodetic BVP with boundary conditions of the Neumann
type. The BEM quasigeoid (1946 nodes) is compared with the Earth geopotential model
EGM96 (the profiles along the parallels).



                                                BEM  APPLIED  TO THE GLOBAL QUASIGEOID                                         307

-200
-150
-100
-50

0
50

100

10o 

20o -200
-150
-100
-50

0
50

100

BEM Quasigeoid (1946 nodes)

Earth Geopotencial Model (EGM96)

L
A
T
I
T
U
D
E

[m]

-200
-150
-100

-50
0

50
100

30o 

-200
-150
-100

-50
0

50
100

40o 

-200
-150
-100
-50

0
50

100

50o 

Nothern Hemisphere

-150
-100
-50

0
50

100
150

60o 



308               R. U�V�W�X	Y�Z[�\ ]�^�]�_�`�a ]	V	[�b�^�`�_�`�c�d e�Y�f

-30o -200
-150
-100

-50
0

50
100

-20o 

-10o -200
-150
-100

-50
0

50
100

BEM Quasigeoid (1946 nodes)

Earth Geopotencial Model (EGM96)

L
A
T
I
T
U
D
E

[m]

-200
-150
-100

-50
0

50
100

(equator)
0o

-100

-50

0

50

100

-40o 

-100

-50

0

50

100

-50o 

Southern hemisphere

-200
-150
-100

-50
0

50
100


