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PARALLEL TRIANGULAR MESH REDUCTION

MARTIN FRANC1, VÁCLAV SKALA2

Abstract. The visualization of large and complex models is required frequently. This is
followed by number of operations which must be done before visualization itself, whether it is an
analysis of input data or a model simplification. One of the techniques that enhance the
computational power is parallel computation. It can be seen that multiprocessor computers are
more often available even for ordinary users. Together with Microsoft Windows expansion we
have easy and comfortable tools for multiprocessor (multithread) programming as well. We
present an original efficient and stable algorithm for triangle mesh simplification in parallel
environment. We use a method based on our original super independent set of vertices to avoid
critical sections. Programs have been verified on MS Windows platform using standard Borland
Delphi classes for multithread programming.

Keywords: data visualization, triangular mesh reduction, algorithm complexity, computer
graphics, parallel programming.

1. Introduction. Simplification of large complex models is a common task in
visualization. The simplification of models finds its use in virtual reality, whenever
the object is in large distance from the observer or when details of the model are
irrelevant or we just need rough view for fast manipulation. We show that the
efficiency of our algorithm is independent on a chosen simplification technique.
Our algorithm works with a super independent set of vertices [1] for vertex
elimination to avoid critical sections in program code, which normally decrease the
speed of computation. As a programming tool we use standard Borland Delphi
tools together with a TThread class, which encapsulates attributes and methods
given by MS Windows for multithread programming.

In section 2 of this paper we describe the simplification in general and
techniques we use in our algorithm. Section 3 introduces tools for multithread
programming under MS Windows. This section is followed by section number 4,
where we discus general problems of shared memory and explain super
independent set term. In section 5 we present our algorithm and section 6 shows
achieved results.

2. Popular techniques. Decimation methods are simplification algorithms that
start with a polygonization (typically a triangulation) and successively simplify it
until the desired level of approximation is achieved. Most of decimation algorithms
fall into one of the three categories, discussed below, according to their decimation
technique.
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VERTEX DECIMATION METHODS
One of the most used method is vertex decimation, an iterative simplification

algorithm originally proposed by Schoreder [2]. In each step of decimation process,
a vertex is selected for removal. All the facets adjacent to that vertex are removed
from the model and the resulting hole is retriangulated. Each vertex is evaluated by
its importance in the mesh. The vertex with low importance is eliminated. In
general, there are plenty of techniques simplifying triangular meshes by vertex
elimination. The difference among them is the way of the vertex importance
evaluation and kind of retriangulation. Since the retriangulation requires a
projection of the local surface onto a plane, these algorithms are generally limited
to manifold surfaces. Vertex decimation methods preserve the mesh topology as
well as a subset of original vertices.

EDGE DECIMATION
Other subset of decimation techniques is pointed to the elimination of the whole

edge. When an edge is contracted, a single vertex replaces its endpoint. Triangles,
which degenerate to an edge, are removed. Hoppe [6] appear to have to be the first
who used edge contraction as the fundamental mechanism accomplishing surface
simplification. It is necessary to evaluate the importance of edges before the
contraction. One of the best-known technique [3] uses quadric error metrics for the
edge (vertex pairs) evaluation. The edges are contracted according to their
importance – the less important edges first, similarly to the case of vertex removal.
Unless the topology is explicitly preserved, edge contraction algorithms may
implicitly alter the topology by closing holes in the surface.

PATCH (TRIANGLE) DECIMATION METHODS
Techniques, which eliminate either one triangle or any larger area, belong to the

last group. These methods delete several adjacent triangles and retriangulate their
boundary. In case of one triangle, this one is deleted together with three edges and
the neighbourhood is retriangulated. The evaluation of the reduced elements
requires more complex algorithms, in these methods.

OUR APPROACH – FRAMEWORK OF OUR ALGORITHM
Each of the above mentioned approaches have their advantages and

disadvantages [8]. We have tried to extract the advantages of all approaches as will
be presented in the following part. We started with vertex decimation methods and
used the Schroeder’s approach because of its simplicity and generality in meaning
of vertex importance evaluation, and combine it with edge contraction. The
methodology of vertex decimation is in fact closely related to the edge contraction
approach (discussed above). Instead the vertex elimination and arising hole
retriangulation, one of adjacent edge can be contracted as well. Removing a vertex
by edge contraction is generally more robust than projection of  neighbourhood
onto a plane a retriangulation. In this case, we do not need to worry about finding a
plane onto which the neighbourhood can be projected without overlap.
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Firstly, each vertex in a mesh is evaluated according to its importance. Then the
one with the lowest importance is marked and the most suitable edge for the
contraction is searched in its neighbourhood. As the most suitable edge for
contraction we take the one, which goes out of the eliminated vertex, that does not
cause the mesh to fold over itself, and is best preserving the original surface
according to our criterion. As the criterion we use either the contraction of the
shortest edge, or the criterion of minimal retriangulated area. To prove the method
independence of our algorithm, we have tested some more heuristic based on
vertex decimation, besides Schroeder’s method. These heuristics are described in
[5] in detail and their comparison can be found in section 5 of this paper.

Since the contraction can potentially introduce undesirable inconsistencies or
degeneracies into the mesh, we must apply some consistency checks to a proposed
contraction. If one of the checks fails, we discard the contraction and use another
edges if any still remains.

3. Multithread programming . We developed the algorithm for the Windows
NT platform, using Borland Delphi. There are quite easy and efficient tools for
multithread programming.

A thread is an operation system object, where program code is run. For every
application at least one (primary) thread is created. Each thread can create other
new threads, during its run. These threads share the same address area and can
perform either the same or different action. After the primary thread is finished
(together with all its threads), the application is terminated and the process is
erased from the system. Threads allow all program routines to run all at once. If
there in one CPU only, threads alternate (so called preemptive multitasking),
otherwise they run concurrently.

Threads can be used to improve application performance by managing input
from several communication devices, or distinguishing among tasks of varying
priority.  For example, a high priority thread handles time critical tasks, and a low
priority thread performs other tasks. In Borland Delphi, there is a standard class
named TThread, which encapsulates all attributes and methods for multithread
programming that MS Windows allows.

4. Super independent set.

INDEPENDENT SET
A basic idea, which has been used in theoretical work [4] recently, is that

decimation by deleting an independent set of vertices (no two of which are joined
by an edge) can be run efficiently in parallel. The vertex removals are independent
and they leave one hole per one deleted vertex, which can be retriangulated
independently. This decreases the program complexity and run time significantly.
Since deletion and retriangulation is related to the degree of vertices being removed
(in the worst case with O (d2) time complexity, where d is the vertex degree),
Kirkpatrick[4] has advocated deleting low degree vertices (d < 10) and proved that
this still allows large independent sets (>1/6 of all vertices). However, this
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approach ignores the preservation of the model shape. Therefore we use a
technique [5] when we assign an importance value to each vertex, then select an
independent set to delete by greedily choosing vertices of low importance relative
to their neighbours.

It is natural to use a greedy strategy to construct an independent set from an
assignment of importance values. It means to go through all the vertices in order of
their importance and take a vertex if none of its neighbours have been taken. It
means that only those vertices that do not share an edge with the each other can be
in the independent set.

INDEPENDENT SET – WITHOUT NEED OF CRITICAL SECTIONS
We have developed and use a super independent set, where every two triangles

including two independent vertices can not share an edge, see Figure 1.

FIG. 1: Vertices v1, v2, v3 are independent to each other, but only the vertices v1 and v3 are super
independent.

If we remove one vertex from the independent set, the removal change the
properties of the vertex neighbours. That affects neighbourhood of other vertices in
the set. Even vertex neighbours are independent in this super independent set, so
vertices are completely independent and the parallelization can be done without
critical sections in program code. Due to the data structures used we can create the
independent set in O (n) time, where n is the number of vertices.

5. Parallel Algorithm. Our new parallel algorithm can be described as:

1. Divide the set of vertices into N parts; N is equal to the number of free
processors.
• Get the number of processors.
• Divide the set of vertices into N parts of the same number of vertices.

2. Run N threads to evaluate vertex importance according to its topology.
Each thread makes a computation on its own set of vertices.
• Determine a vertex topology.
• For simple, boundary or interior edge vertices, compute their

importance. The importance for any other type of vertex is set to any
high value.



PARALLEL TRIANGULAR MESH REDUCTION              361

3. After all threads finish their task, sort (Quick Sort algorithm) all the
vertices according to their importance in increasing order.

4. Find a super independent set of vertices. For each vertex do:
• If the vertex is marked as unused in the independent set (initially all

vertices are marked as unused), check its neighbours. If all the
neighbours are unused, put the vertex into the independent set and
mark the vertex and all its neighbour vertices as used.

• Used vertices and their neighbours are skipped.
5. Divide the independent set of vertices into N parts.
6. Run N threads for decimation. Each thread makes the decimation on its

own set of vertices.
• For each eliminated vertex, find the optimal edge for contraction that

includes it.
• Test the consistency of the mesh if this edge is contracted (removed).
• If the consistency test is OK, remove the vertex and retriangulate the

arising hole, otherwise find another short edge and go to the previous
point.

7. Repeat steps 1– 6 until the required degree of the mesh reduction is
reached.

6. Experimental results. In this section we present results of our
experiments that compare an acceleration and efficiency obtained with different
data sets, using different number of processors (threads).
We use 6 different data sets for the experiments, see Table 1.

Model name No. of triangles No. of vertices

Horse 96,966 48,485

Bone 137,072 60,537

Bell 426,572 213,373

Hand 654,666 327,323

Dragon 871,414 437,645

Happyb 1,087,716 543,652

TABLE 1: Data sets used.

Table 2 shows time comparison achieved by reducing the models using 1 to 8 –
processor computer (DELL Power Edge 8450 – 8xPentium III, cache 2MB,
550MHz, 2GB RAM, running on the Windows 2000).
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Time [sec] obtained with different number of
processors (threads) used

Model
name

1 2 3 4 5 6 7 8
Horse 8.9 6.3 5.5 4.9 4.7 4.5 4.4 4.3
Bone 13.5 9.4 8.2 7.6 7.0 6.8 6.6 6.4
Bell 62.7 48.1 42.4 39.4 37.8 36.9 35.4 34.6
Hand 69.2 51.5 44.8 41.0 39.7 38.4 37.5 36.7
Dragon 93.6 69.5 61.5 57.6 54.3 52.6 51.3 50.6
Happyb 118.3 89.1 78.1 73.2 69.3 67.8 65.9 64.5

TABLE 2: Obtained time (in seconds) for 90% reduction on 1 to 8 processors active.

We investigated the acceleration and the efficiency for different size of data sets
according to the number of processors used.

ACCELERATION COMPARISON
The acceleration a is computed from total times (sequential and parallel parts of

the algorithm together) using expression

,
1time

time
a N=           (1)

where N=1..8 is a number of processors used and timeN is the time obtained if N
processors (threads) are used.

Figure 2 shows the acceleration of individual sequential and parallel part of the
algorithm for the Happyb model. Total time means run time of the whole
algorithm, Imp. eval. is time for importance evaluation, Qsort is sorting time, Iset is
time for selecting the super independent set and Decim is time of the decimation
part.

EFFICIENCY COMPARISON
The efficiency e is defined as follows:

,
1timeN

time
e N

∗
=         (2)

where N=1..8 is a number of processors used and timeN  is the computational time
if N processors are used.

AMDAHL‘S LAW
The experiments proved that the method is stable according to the number of

processors used and all the results meet the Amdahl’s law (3) perfectly.
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where p is potentially parallel code and N is the number of processors used.
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FIG. 2: The acceleration of individual sequential and parallel part of the algorithm for the Happyb
model.

The value of potentially parallel code is independent from the number of
processors used, see Table 3, and for the large model Happyb the value p = 0.51
was reached for the whole algorithm.

Number of processors (threads) used

1 2 3 4 5 6 7 8

e 1 0.66 0.5 0.4 0.34 0.29 0.25 0.22

a 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83

ateor 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83

p X 0.49 0.51 0.50 0.51 0.51 0.51 0.52

TABLE 3: The experimental results and theoretical calculations according to Amdahl’s law;
computed for the happyb model.
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Figure 3 shows the amount of potentially parallel code according to the number of
triangles, for different number of processors used.
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FIG. 3: The amount of the parallel code for the whole algorithm (a) – the potentially parallel code
according to Amdahl’s law is  approx. 51%, the amount of the parallel code for the decimation part
(b).
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TIME COMPARISON
The work itself was inspired by recent work in this field, especially by Seidel

[7]. Unfortunately the results are not comparable directly due to the different
platforms. To make the results roughly comparable at least, we use the official
benchmarks presented by SPEC as shows table 4, where η presents the superiority
of DELL computer against the SGI. Table 5 presents our results according to
results obtained recently [7] taking the ratio η into the consideration. Our algorithm
is 2.72 times faster according to the table 5.

Benchmark test / machine SGI R10000 DELL 410 Precision η
(DELL/SGI)

SPECfp95 8.77 13.1 1.49

SPECint95 10.1 17.6 1.74
TABLE 4: Benchmark test presented by Standard Performance Evaluation Corporation

Time [sec] of 99.15% reduction ratioModel

name SGI R10000 [7] DELL 8450 [1 thread] µ  (SGI/DELL) η µ / η

Dragon 584.9 123.3 4.74 1.74 2.72

TABLE 5: Rough comparison

INDEPENDENCE ON DECIMATION METHOD
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FIG. 4: The acceleration of partial parts of the algorithm for several vertex importance evaluation
heuristics. Criterion of minimal area retriangulation on the left side, the shortest edge contraction

criterion on the right side of the graph.
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As we have already mentioned, we use some more vertex decimation heuristics
to test the independence of our algorithm. In Figure 4, there is a graph of the
acceleration comparison according to partial parts of algorithm (computation) for 7
heuristics. On the left side, there is a graph of decimation according to the criterion
of minimal area after the retriangulation, on the right there is a graph of decimation
according to the shortest edge contraction criterion, see chapter 2.2. The heuristics
are intimately described in [5]. They are based on the same principle, except the
method of their vertex importance evaluation. The following methods have been
used: Schroeder‘s method, Average Normals, Height difference, Absolute Binary,
Scape Order, Random (any of previous five) and Edge Switching.

It is obvious that the algorithm is independent of the heuristic used in meaning
of the efficiency and the acceleration.

PROGRAM OUTPUT
Figure 5 shows examples of original and reduced models.

FIG. 5: The Happyb model (courtesy GaTech) at different resolutions; the original model 1.087.716
triangles (a), reduced to 105.588 triangles (b), 52.586 triangles (c), 13.100 triangles (d).

Conclusion. We have described the new original algorithm for triangular mesh
simplification with its parallel modification. The algorithm combines vertex
decimation method with the edge contraction to simplify object models in a short
time. We have used the super independent set of vertices to improve the
parallelization. It enables us to make fast parallel algorithm without use of any
synchronization technique such as critical sections, so the system overhead is
minimal. Our experiment proved that we reached high effectivity of parallelization
p = 0.87 (if the overhead cost by the TThread class is included) or p = 0.97 (if the
overhead cost by the TThread class is not included) for parallelized parts. This also
proved that high level constructions and object oriented programming can be used
at the application level with high effeciency guarantee. The proposed method
proved its stability according to the number of processors and the size of the data
set used.
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