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WAVELET TRANSFORM AS POWERFUL TOOL TO ANALYSES OF

ACOUSTIC EMISSION SIGNALS
�

LUBOS PAZDERAy AND JAROSLAV SMUTNYz

Abstract. The discrete wavelet transformation is a relative new tool to analyse discrete time

series. It is similar to the fast Fourier transformation, however, the basically function is not sine and

cosine functions. It decomposes an input vector into approximation (low frequency) and detail (high-

frequency) levels. Wavelet analysis is a promising set of tools and techniques for signal analysing

of seismic shaking, human speech, �nancial data, music and many others types of especially non-

stationary signals.
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1. Introduction. Like the fast Fourier transform (FFT), the discrete wavelet
transformation (DWT) is a fast, linear operation that operates on a data vector whose
length is an integer power of two, transforming it into a numerically di�erent vector
of the same length. Also like the FFT, the wavelet transformation is invertible and in
fact orthogonal - the inverse transformation, when viewed as a big matrix, is simply
the transpose of the transformation. Both FFT and DWT, therefore, can be viewed
as a rotation within function space, from the input space (or time) domain, where the
basis functions are the unit vectors ei , or Dirac delta functions in the continuum limit,
to a di�erent domain. For the Fourier transform, this new domain has basis functions
that are the familiar sinus and cosines. In the wavelet domain, the basis functions
are somewhat more complicated and have the fanciful names "mother functions" and
"wavelets."

2. Theory. Making-up and de�nition mother wavelet begins by calculation of
dilation equation from reason of obtaining scaling equation. Scaling equation is used
for de�nition mother wavelet. Other wavelet functions are de�ned by shifting and
stretching of mother wavelet. De�nition of scaling function and mother wavelet is
given by equations (2.1) and (2.2)

�(x) =
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where �(x) is scaling function,	(x) is mother wavelet, k is order of wavelet, ck are
nonzero coeÆcients de�ned mother wavelet, M is number of nonzero coeÆcients ck.
Corresponding mother wavelet must satisfy the following conditions (2.3) till (2.6):

M�1X
k=0

ck = 2(2.3)
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k=0

(�1)k � km � ck = 0 m = 0; 1; 2; � � � ; M
2
� 1(2.4)
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ck � ck+2m = 0 m = 1; 2; � � � ; M
2
� 1(2.5)

M�1X
k=0

c2k = 2(2.6)

For example, for coeÆcient of frequently used Daubeshies wavelet db4, we can
solve fours coeÆcient
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(2.7)
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3

4
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1�
p
3

4
(2.8)

The equations (2.9) and (2.11) illustrate the wavelet transformation process by
using mother wavelet db4. The discrete wavelet transformation is de�ned by a square
matrix of �lter coeÆcients, transforming an array into a new array of the same length.
It was discovered that the wavelet transformation could be implemented with a specif-
ically designed pair of �nite impulse response (FIR) �lters called quadrature mirror
�lter pair (QMF). Transform matrix is applied to input (f1 till f16) yielding smooth
data (A1 : : : A8) interleaved with detail data (D1 : : : D8). The results are permuted
to separate the smoothed or decimated data, which must be separated (procedure
(2.11)). The detail data is simply stored while the transform matrix is applied to the
smoothed data. Each repetition of the process divides the smooth data in halves. The
process can be terminated at any point, but usually proceeds until there are only two
data points left. This process is often called Malat's pyramidal algorithm.
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3. Experimental Application. This time-frequency transformation was used
for analysis of response at testing structure. The "Impact-Echo" method is known
as non-direct acoustic emission method changed up the quality of specimen. Some
scientists of the world in this time calls this method as the Resonant Inspection. The
specimen in the method is loaded by impulse shock and then the response of testing
structure was collected. In this example there were two piezoelectric sensors each
on one end of a rod. The rod was made from Wolfram Carbide Cobalt and it has
diameter, 5 mm, and length, 60 mm. One sensor transformed electrical impulse width,
5 ms, with period, 8 ms, to mechanical shocks. The other sensor picked up responses.
Because tested samples, as it is known, have their own frequencies. The changes of
these frequencies mark some di�erences of tested samples. It is necessary to know
spectral characteristic of samples without defects to diagnostic of defects. When it
is an interest of ultrasonic area then it is possible to �nd small discontinuities into
samples.

A part of time history of amplitude of the measured original signal with two
generated impulses contains mechanical and electrical noise at test (Fig. 3.1). Note
that scientists assume this noise as white. Its frequency spectrum (Fig. 3.2) computed
by Fourier transformation has main frequency on 80 Hz. This signal was de-noised
(Fig. 3.3) by using discrete wavelet transformation. The db 4 wavelet base was chosen
from a grouf of tested ones as usable. The soft minimaxi thresholding and re-scaling

done using level-dependent estimation of level noise mode was set-up for de-noising the
signal. The de-noised signal (Fig. 3.3) with comparing to the original signal (Fig. 3.1)
is put near to the theoretical signal. The frequency spectrum of de-noised signal
(Fig. 3.3) contents the same frequency components as the original signal spectrum
(Fig. 3.4). That means that this method cut o� only spurious signal.

In Figs. 3.5 and 3.6 there are shown the response signals from above described
experiment. Each of �gures contains signal and its decomposition into �ve approxi-
mated (to the left) and �ve detailed (to the right) levels. The wavelet decomposition
by Daubeschies 4 was applied. The original recorded signal is shown in Fig. 3.5 and
de-noising of this signal is in Fig. 3.6. The advantages of this transformation are
evident already on the �rst decomposition level (as approximation so details).
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Fig. 3.1. The recorded signal at testing.

Fig. 3.2. The frequency spectrum of original signal.

It is useful to note that selected response is noised as electrical as mechanical
noise. The wavelet transformation is one of good tool to de-noise these signals. Its
advantage in this example is that based function is not sinusoidal. This transformation
eliminates only noise amplitudes.

As mother wavelet it was chosen Doubechies 4 because its parameters are better
than other tested wavelet base (see Tab. 3.1). We note as a noise signal in this table
there was cut a part of signal from 2 ms to 8 ms. To obtain the root-mean-square
(RMS) value, use norm(A)/sqrt(n). Note that norm(A), where A is an n-element
vector, is the length of A.
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Fig. 3.3. The de-noised signal by Discrete Wavelet Transformation.

Fig. 3.4. The frequency spectrum of the de-noised signal.

4. Conclusion. Discrete wavelet transformation provides a new approach for
studying discrete time series. The following examples describe just a small sample
of what researchers can do with wavelets. In substance, the potential applications of
discrete wavelet transformation can be divided into six �elds:

� detection of long-term evolution
� detection of self-similarity
� identifying pure frequencies
� de-noising signals
� compressing signals
� suppressing signals
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Fig. 3.5. Decomposition of the original signal to 5th level by db4

Fig. 3.6. Decomposition of the de-noised signal to 5th level by db4

They are some advantages wavelet transformation compared to traditional Fourier
methods in analysing physical situations where the signal contains discontinuities and
sharp spikes.

In this case the tested measured signal - composed from the periodical ensued re-
sponses on shock and the noise signals - was de-noised by application discrete wavelet
transformation. Because the basic function of wavelet (mother wavelet) is not har-
monic function as Fourier transform has, the frequency spectrum was not too modi�ed.
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Table 3.1

Test of some mother Wavelet to the signal de-noising.

Mother RMSnoise to RMSnoise RMSsignal RMSsignal to RMSsignal to

wavelet RMSnoisenone �10�5
�10�4

RMSsignalnone RMSnoise

none 1 39.4531 6.4830 1 1.6432

dB1 0.2137 8.4311 5.1767E 0.7985 6.1400

dB2 0.2132 8.4114 5.0840 0.7842 6.0442

dB3 0.2120 8.3640 5.0477 0.7786 6.0350

dB4 0.2014 7.9458 5.0561 0.7799 6.3632

dB5 0.2118 8.3561 5.0814 0.7838 6.0810

dB6 0.2143 8.4548 5.1054 0.7875 6.0384

dB7 0.2082 8.2141 5.1281 0.7910 6.2430

dB8 0.2106 8.3088 5.1475 0.7940 6.1952

dB9 0.2067 8.1549 5.1605 0.7960 6.3280

sym1 0.2132 8.4114 5.0840 0.7842 6.0442

sym2 0.2120 8.3640 5.0477 0.7786 6.0350

sym3 0.2037 8.0366 5.0561 0.7799 6.2914

sym4 0.2064 8.1431 5.1118 0.7885 6.2775

sym5 0.2086 8.2299 5.1157 0.7891 6.2160

coif1 0.2072 8.1747 5.0470 0.7785 6.1740

coif2 0.2075 8.1865 5.1177 0.7894 6.2514

coif3 0.2105 8.3049 5.1611 0.7961 6.2146

coif4 0.2131 8.4074 5.1870 0.8001 6.1696

coif5 0.2135 8.4232 5.2007 0.8022 6.1742

bior1.1 0.2132 8.4114 5.0840 0.7842 6.0442

bior2.2 0.2265 8.9361 5.0075 0.7724 5.6036

bior3.3 0.2698 10.6442 4.9349 0.7612 4.6361

bior4.4 0.2052 8.0958 5.1086 0.788 6.3102

bior5.5 0.2054 8.1036 5.1559 0.7953 6.3625

Acoustic emission signals are not from group of harmonic signals. Therefore the basis
of the wavelet transform is near to presume signal than the basis of Fourier transform.

Note that Fourier transform is not suitable for analysis of non-stationary signal
as burst type of acoustic emission ones is.
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