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MIXED FINITE ELEMENT METHOD FOR NONLINEAR

SECOND-ORDER ELLIPTIC PROBLEMS: RELAXATION SCHEME∗

MARIÁN SLODIČKA†

Abstract. We consider a 2nd order nonlinear elliptic boundary value problem (BVP) in a
bounded domain Ω ⊂ R

N , N = 2, 3 with a Dirichlet boundary condition. The mixed finite element
method in lowest order Raviart-Thomas spaces is used. The exact solution is approximated via linear
relaxation scheme. Error estimates are derived in L2(Ω)-norm.
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1. Introduction. Let Ω ⊂ R
N , N = 2, 3 be a bounded domain with a boundary

∂Ω ∈ C2. We consider the following study case:

−∆u+ α(u) = f in Ω
u = g on ∂Ω,

(1.1)

where the data-functions satisfy

α(0) = 0, 0 ≤ α′(s) ≤ L,

f ∈ L2(Ω),
there exists g̃ ∈ H2(Ω) with the trace g on ∂Ω.

(1.2)

The theory of monotone operators guarantees the existence and uniqueness of
a weak solution u ∈ H1(Ω) to the BVP (1.1). Applying [2, Th. 8.12] we get that
u ∈ H2(Ω).

Many useful physical models at steady state consist of nonlinear partial differ-
ential equations or systems in divergence form. The model problem (1.1) represents
a simplified situation. We have skipped unnecessary coefficients and dependences in
order to focus to the handling of the nonlinearity represented by the function α. This
problem has been attacked by mixed finite element method in [8]. The error estimates

have been derived assuming u ∈ H
5

2
+ε(Ω), 0 < ε � 1 and the function α was twice

differentiable with bounded derivatives through second order. The Raviart-Thomas
space of index k = 0 has been excluded from the analysis because of insufficient ap-
proximation properties. Mixed finite element methods for strongly nonlinear elliptic
problems have been studied in [1, 3, 4, 5, 6, 7, 9] and [10].

The aim of this paper is to derive the error estimates for mixed finite element
method in the lowest order Raviart-Thomas spaces (RT0) using lower regularity as-
sumptions for the function α (cf. (1.2)) and the exact solution (u ∈ H2(Ω)). We
design a linear relaxation scheme (4.3) for the computation of (1.1). We show the
convergence of the approximate solution to the exact one. The estimates are derived
in a few steps. First, we introduce some temporarily BVPs, solutions of which repre-
sent in some sense approximations of u. Let us note, that the standard direct way for
derivation of the error is not possible. We have to get rid of the relaxation parameter
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k and this is possible if and only if the right hand side does not contain any noise de-
pending on h. Otherwise this can accumulate and blows up. The main result is stated
in Theorem 4.3. At the end we present some numerical examples to demonstrate the
efficiency of the proposed numerical scheme. We denote by Th a regular triangulation
of Ω consisting of elements of diameter not greater than h. Boundary elements can
have one curved side. Let us define the following spaces

V = H (div ; Ω) = {u ∈ L2(Ω)N : div u ∈ L2(Ω)}, W = L2(Ω).(1.3)

Further, we introduce the lowest order Raviart-Thomas spaces V h ×Wh (of index
k = 0), the L2-projector Ph : W → Wh and the Raviart-Thomas projection Πh :
V → V h, which have a useful commuting property shown in Figure 1.

V W

V W

h h 0

PhΠh

div

div

Commutative diagram

The following approximation properties hold:

‖q − Πhq‖ ≤ Ch ‖q‖
1
, ‖p− Php‖ ≤ Ch ‖p‖

1
,(1.4)

where ‖·‖ denotes the L2-norm and ‖·‖
1

stands for the norm in H1(Ω). In that follows
C, ε and Cε denote generic positive constants depending only on the data, where ε is
a small one and Cε = C

(

1

ε

)

is a large one.

2. Nonlocal BVP. As a first step we introduce the following BVP:

−∆wh + α(Phw
h) = f in Ω

wh = g on ∂Ω.
(2.1)

This problem is non-standard. In fact, it is a nonlocal nonlinear BVP due to the
operator Ph and the function α. One can see that (2.1) admits at most one solution.
This follows from the monotonicity of α and the properties of Ph. We prove the
existence of a solution in two steps. First, we consider a linear nonlocal problem and
then we show that the solution to (2.1) can be obtained via a linear relaxation scheme.

2.1. Linear case. Let us consider the following nonlocal BVP:

−∆zh + LPhz
h = f̃ in Ω

zh = g on ∂Ω,
(2.2)

where L is the Lipschitz constant of the function α and f̃ ∈ L2(Ω). The solution zh

to (2.2) will be obtained via a linear relaxation process, which is defined by

−∆zh
k + Lzh

k = f̃ + Lzh
k−1 − LPhz

h
k−1 in Ω

zh
k = g on ∂Ω.

(2.3)

As a starting datum for the iterations we can take any zh
0 ∈ H1(Ω). We recall

that (2.3) is a standard linear BVP with the right-hand side from L2(Ω). The well-
posedness follows from the theory of linear elliptic equations (see [2, Th. 8.30]).

Lemma 2.1. We assume (1.2). Then there exist 0 < q < 1 and h0 > 0 such that
∥

∥∇zh
k −∇zh

∥

∥ ≤ qk
∥

∥∇zh
0 −∇zh

∥

∥ ,
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which holds for any k ∈ N and any h < h0.
Proof. The variational formulations of (2.2) and (2.3) take the form (ϕ ∈ H1

0 (Ω)
and zh = zh

k = g on ∂Ω)

(

∇zh,∇ϕ
)

+ L
(

zh, ϕ
)

=
(

f̃ , ϕ
)

+
(

Lzh − LPhz
h, ϕ

)

(2.4)
(

∇zh
k ,∇ϕ

)

+ L
(

zh
k , ϕ

)

=
(

f̃ , ϕ
)

+
(

Lzh
k−1 − LPhz

h
k−1, ϕ

)

.(2.5)

Subtracting(2.4) from (2.5) and setting ϕ = zh
k − zh we get

∥

∥∇zh
k −∇zh

∥

∥

2
+ L

∥

∥zh
k − zh

∥

∥

2
=

(

L
[

zh
k−1 − zh − Ph(zh

k−1 − zh)
]

, zh
k − zh

)

.

Applying the Cauchy-Schwarz inequality, (1.4), Friedrichs’ and Young’s inequalities
to the right-hand side, we deduce

∥

∥∇zh
k −∇zh

∥

∥

2
+ L

∥

∥zh
k − zh

∥

∥

2 ≤ L
∥

∥zh
k−1 − zh − Ph(zh

k−1 − zh)
∥

∥

∥

∥zh
k − zh

∥

∥

≤ Ch
∥

∥zh
k−1 − zh

∥

∥

1

∥

∥zh
k − zh

∥

∥

≤ Ch
∥

∥∇zh
k−1 −∇zh

∥

∥

∥

∥zh
k − zh

∥

∥

≤ Ch2
∥

∥∇zh
k−1 −∇zh

∥

∥

2
+
L

2

∥

∥zh
k − zh

∥

∥

2
.

Therefore, we can write
∥

∥∇zh
k −∇zh

∥

∥

2
+ L

2

∥

∥zh
k − zh

∥

∥

2 ≤ Ch2
∥

∥∇zh
k−1

−∇zh
∥

∥

2
.

From this we get the recursion formula for any h < h0, any k ∈ N and some 0 < q < 1
∥

∥∇zh
k −∇zh

∥

∥ ≤ q
∥

∥∇zh
k−1 −∇zh

∥

∥ . The desired result is an immediate consequence
of this recursion. �

We recall, that the estimate
∥

∥∇zh
∥

∥ ≤ C can be readily derived from (2.4) for
ϕ = zh − g̃. Moreover, the function zh is unique.

2.2. Nonlinear case. We consider the linear relaxation scheme (k ∈ N):

−∆wh
k + LPhw

h
k = f + LPhw

h
k−1 − α(Phw

h
k−1) in Ω

wh
k = g on ∂Ω.

(2.6)

As a starting datum for the iterations we can take any wh
0 ∈ H1(Ω). The well-

posedness of (2.6) follows from Section 2.1.
We show that wh

k will approach wh in the space H1(Ω) as k → ∞.
Lemma 2.2. We assume (1.2). Then there exist C > 0 and δ > 0 such that

∥

∥∇wh
k −∇wh

∥

∥

2
+

∥

∥Phw
h
k − Phw

h
∥

∥

2 ≤ C

(

L

L+ δ

)k
∥

∥Phw
h
0 − Phw

h
∥

∥

2
,

which holds for any k ∈ N.
Proof. The variational formulations of (2.1) and (2.6) take the form (ϕ ∈ H1

0 (Ω)
and wh = wh

k = g on ∂Ω)

(

∇wh,∇ϕ
)

+
(

α(Phw
h), ϕ

)

= (f, ϕ)(2.7)
(

∇wh
k ,∇ϕ

)

+ L
(

Phw
h
k , ϕ

)

= (f, ϕ) +
(

LPhw
h
k−1 − α(Phw

h
k−1), ϕ

)

.(2.8)

Now, we introduce the function β : R → R defined by β(s) := Ls − α(s). One can
easily see that

L ≥ β′(s) = L− α′(s) ≥ 0.(2.9)
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Subtracting (2.7) from (2.8) and setting ϕ = wh
k − wh we have

∥

∥∇wh
k −∇wh

∥

∥

2

+L
∥

∥Phw
h
k − Phw

h
∥

∥

2
=

(

β(Phw
h
k−1

) − β(Phw
h), wh

k − wh
)

= (β(Phw
h
k−1

)−β(Phw
h),

Phw
h
k − Phw

h). We apply the Cauchy-Schwarz inequality, (2.9) and Young’s in-

equality to the right-hand side, and deduce
∥

∥∇wh
k −∇wh

∥

∥

2
+ L

∥

∥Phw
h
k − Phw

h
∥

∥

2 ≤
∥

∥β(Phw
h
k−1) − β(Phw

h)
∥

∥

∥

∥Phw
h
k − Phw

h
∥

∥ ≤ L
∥

∥Phw
h
k−1 − Phw

h
∥

∥

∥

∥Phw
h
k − Phw

h
∥

∥ ≤
L
2

(

∥

∥Phw
h
k−1

− Phw
h
∥

∥

2
+

∥

∥Phw
h
k − Phw

h
∥

∥

2
)

. Hence, we can write

∥

∥∇wh
k −∇wh

∥

∥

2
+
L

2

∥

∥Phw
h
k − Phw

h
∥

∥

2 ≤ L

2

∥

∥Phw
h
k−1 − Phw

h
∥

∥

2
.(2.10)

There exists a positive constant δ such that

‖∇z‖ ≥ C ‖z‖ ≥
√
δ ‖Phz‖ ,(2.11)

which holds for any z ∈ H1(Ω). Thus, the relation (2.10) can be rewritten as

1

2

∥

∥∇wh
k −∇wh

∥

∥

2
+
L+ δ

2

∥

∥Phw
h
k − Phw

h
∥

∥

2 ≤ L

2

∥

∥Phw
h
k−1 − Phw

h
∥

∥

2
.(2.12)

From this we successively deduce

∥

∥Phw
h
k − Phw

h
∥

∥

2 ≤ L

L+ δ

∥

∥Phw
h
k−1 − Phw

h
∥

∥

2 ≤ . . . ≤
(

L

L+ δ

)k
∥

∥Phw
h
0 − Phw

h
∥

∥

2
.

Using the last inequality and (2.12) we conclude the proof. �

The estimate
∥

∥∇wh
∥

∥ ≤ C can be easily derived from (2.7) for ϕ = wh − g̃.

This estimate and (2.11) imply
∥

∥Phw
h
∥

∥ ≤ C. Moreover, the function wh is uniquely
determined due to the monotonicity of α.

2.3. Error
∥

∥∇wh −∇u
∥

∥. The variational formulation to the BVP (1.1) reads
as (ϕ ∈ H1

0 (Ω) and u = g on ∂Ω)

(∇u,∇ϕ) + (α(u), ϕ) = (f, ϕ) .(2.13)

The following lemma derives the estimate for the error
∥

∥∇wh −∇u
∥

∥.
Lemma 2.3. We assume (1.2). Then there exists C > 0 and such that

∥

∥∇wh −∇u
∥

∥ ≤ Ch

holds for any 0 < h ≤ h0.

Proof. We subtract (2.13) from (2.7), we set ϕ = wh−u and we get
∥

∥∇wh −∇u
∥

∥

2
+

(

α(wh) − α(u), wh − u
)

=
(

α(wh) − α(Phw
h), wh − u

)

. The second term on the left is
nonnegative due to the monotonicity of the function α. Applying the Cauchy-Schwarz
inequality to the right-hand side, followed by Young’s and Friedrichs’ inequalities and
(1.4), we deduce

∥

∥∇wh −∇u
∥

∥

2 ≤
∥

∥α(wh) − α(Phw
h)

∥

∥

∥

∥wh − u
∥

∥

≤ C
∥

∥wh − Phw
h
∥

∥

∥

∥wh − u
∥

∥ ≤ ε
∥

∥wh − u
∥

∥

2
+ Cε

∥

∥wh − Phw
h
∥

∥

2

≤ ε
∥

∥∇wh −∇u
∥

∥

2
+ Cεh

2
∥

∥wh
∥

∥

1
≤ ε

∥

∥∇wh −∇u
∥

∥

2
+ Cεh

2.

Choosing a sufficiently small positive ε we get
∥

∥∇wh −∇u
∥

∥

2 ≤ Ch2. Recall, that we
have shown the existence of wh for h ≤ h0. �
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3. Auxiliary problem. As the next step, we introduce the following sequence
of nonlinear nonlocal BPVs (k ∈ N):

−∆vh
k + α(Phv

h
k ) +

1

k
vh

k = f in Ω

vh
k = g on ∂Ω.

(3.1)

The starting datum is any vh
0 ∈ H1(Ω). The problem (3.1) for a given k is well-posed,

as we have seen in Section 2.2. The variational formulation of (3.1) has the form
(ϕ ∈ H1

0 (Ω) and vh
k = g on ∂Ω, k ∈ N)

(

∇vh
k ,∇ϕ

)

+
(

α(Phv
h
k ), ϕ

)

+
1

k

(

vh
k , ϕ

)

= (f, ϕ) .(3.2)

The following a priori estimates
∥

∥∇vh
k

∥

∥ ≤ C, ∀k ∈ N(3.3)

can be readily obtained from (3.2) by setting ϕ = vh
k − g̃.

Next lemma derives the error estimate for vh
k − wh in the Sobolev space H1(Ω).

Lemma 3.1. We assume (1.2). Then there exists C > 0 such that
∥

∥∇vh
k −∇wh

∥

∥ ≤ Ck−1

holds for any 0 < h ≤ h0.
Proof. We subtract (2.7) from (3.2), set ϕ = wh − vh

k and get
∥

∥∇wh −∇vh
k

∥

∥

2
+

(

α(Phw
h) − α(Phv

h
k ), wh − vh

k

)

= k−1
(

vh
k , v

h
k − wh

)

.

We omit the second term on the left (it is nonnegative) and deduce using the Cauchy-
Schwarz, Friedrichs’ and Young’s inequalities
∥

∥∇wh −∇vh
k

∥

∥

2 ≤ 1

k

∥

∥vh
k

∥

∥

∥

∥vh
k − wh

∥

∥ ≤ C

k

∥

∥∇wh −∇vh
k

∥

∥ ≤ Cε

k2
+ ε

∥

∥∇wh −∇vh
k

∥

∥

2
.

Choosing a sufficiently small positive ε, we conclude the proof. �

The following lemma derives the estimate for vh
k − vh

k−1 in H1(Ω).
Lemma 3.2. We assume (1.2). Then there exists C > 0 and such that

∥

∥∇vh
k −∇vh

k−1

∥

∥ ≤ Ck−2

holds for any 0 < h ≤ h0.
Proof. We subtract (3.2) for k = k− 1 from (3.2). We set ϕ = vh

k − vh
k−1

and get

∥

∥∇vh
k −∇vh

k−1

∥

∥

2
+

(

α(Phv
h
k ) − α(Phv

h
k−1), v

h
k − vh

k−1

)

+
1

k

∥

∥vh
k − vh

k−1

∥

∥

2

=

(

1

k − 1
− 1

k

)

(

vh
k−1, v

h
k − vh

k−1

)

.

We omit the second and the third terms on the left (they are nonnegative) and we
deduce in a standard way applying the Cauchy-Schwarz, Friedrichs’ and Young’s
inequalities

∥

∥∇wh −∇vh
k

∥

∥

2 ≤ C

k2

∥

∥vh
k−1

∥

∥

∥

∥vh
k − vh

k−1

∥

∥

≤ C

k2

∥

∥∇vh
k −∇vh

k−1

∥

∥ ≤ Cε

k4
+ ε

∥

∥∇vh
k −∇vh

k−1

∥

∥

2
.

Choosing a sufficiently small positive ε, we conclude the proof. �
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4. Linear relaxation scheme for mixed finite elements. In Section 3 we
have seen that the BVP (3.1) admits a unique weak solution vh

k ∈ H1(Ω). Applying
the standard theory of elliptic equations [2, Theorem 8.12] we conclude that vh

k ∈
H2(Ω). Moreover, the uniform estimate

∥

∥vh
k

∥

∥ ≤ C, which holds for any k ∈ N, yields

∥

∥vh
k

∥

∥

2
≤ C,(4.1)

where ‖·‖
2

denotes the norm in H2(Ω).
Therefore, qh

k = −∇vh
k and vh

k solve the following problem:

(

qh
k ,φ

)

−
(

vh
k , div φ

)

= − (g,φ · ν)∂Ω
∀φ ∈ V

(

div qh
k , ψ

)

+
(

α(Phv
h
k ), ψ

)

+
1

k

(

vh
k , ψ

)

= (f, ψ) ∀ψ ∈ W.
(4.2)

Now, we are in a position to introduce the mixed formulation of the linear relax-
ation approximation scheme to the BVP (1.1) for φh ∈ V h ad ψh ∈ Wh

(

qk,h,φh

)

− (uk,h, div φh) = − (g,φh · ν)∂Ω
(4.3)

(

div qk,h, ψh

)

+ (L+ k−1) (uk,h, ψh) = (f, ψh) + (Luk−1,h − α(uk−1,h), ψh) .

The starting datum is any function u0,h ∈ L2(Ω). The problem (4.3) represents a
standard linear mixed formulation, which, for a given k ∈ N, admits a unique solution
(qk,h, uk,h) ∈ V h×Wh. The following lemma plays an important role in the derivation

of an error estimate for uk,h − Phv
h
k . The proof proceeds exactly in the same way as

in [11, Lemma 4.1], thus we skip it.
Lemma 4.1 (algebraic). Let a and b 6= 1 be positive real numbers. Assume that

{yk}∞k=0 is a sequence of nonnegative real numbers obeying the following recursion
formula

yk ≤ ak−2 +

(

1 − b

k + b

)

yk−1, k ∈ N.

Then there exists a constant C = C(y0, a, b) > 0 such that yk ≤ Ck−min{b,1}, k ∈ N.

Our next step is to determine the error for qk,h − Πhqh
k and uk,h − Phv

h
k . We

subtract (4.2) from (4.3) and get the mixed variational formulation for the error:

(

qk,h − qh
k ,φh

)

−
(

uk,h − vh
k , div φh

)

= 0

(

div (qk,h − qh
k), ψh

)

+

(

L+
1

k

)

(

uk,h − vh
k , ψh

)

(4.4)

= (Luk−1,h − α(uk−1,h), ψh) −
(

LPhv
h
k − α(Phv

h
k ), ψh

)

,

which holds for any (φh, ψh) ∈ V h ×Wh.
This variational identity is used in the proof of the following lemma.
Lemma 4.2. We assume (1.2). Then there exists C > 0 such that

∥

∥uk,h − Phv
h
k

∥

∥ +
∥

∥qk,h − Πhqh
k

∥

∥ ≤ Ck−min{1, 1

L
}

holds for any k ∈ N.
Proof. We start from (4.4). We set φh = qk,h − Πhqh

k , ψh = uk,h − Phv
h
k and we

sum both equations. We successively deduce

∥

∥qk,h − Πhqh
k

∥

∥

2
+ (L+ k−1)

∥

∥uk,h − Phv
h
k

∥

∥

2
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=
(

β(uk−1,h) − β(Phv
h
k ), uk,h − Phv

h
k

)

(4.5)

≤
∥

∥β(uk−1,h) − β(Phv
h
k )

∥

∥

∥

∥uk,h − Phv
h
k

∥

∥ ≤ L
∥

∥uk−1,h − Phv
h
k

∥

∥

∥

∥uk,h − Phv
h
k

∥

∥ .

We omit the first term on the left for a while. Using the triangle inequality and
Lemma 3.2 we have

(L+ k−1)
∥

∥uk,h − Phv
h
k

∥

∥ ≤ L
∥

∥uk−1,h − Phv
h
k

∥

∥

≤ L
∥

∥uk−1,h − Phv
h
k−1

∥

∥ + L
∥

∥Phv
h
k−1 − Phv

h
k

∥

∥

≤ L
∥

∥uk−1,h − Phv
h
k−1

∥

∥ + C
∥

∥vh
k−1 − vh

k

∥

∥ ≤ L
∥

∥uk−1,h − Phv
h
k−1

∥

∥ +
C

k2
.

This can be rewritten into the following recursion formula

∥

∥uk,h − Phv
h
k

∥

∥ ≤
(

1 −
1

L

k + 1

L

)

∥

∥uk−1,h − Phv
h
k−1

∥

∥ +
C

k2
.

An application of Lemma 4.1 implies
∥

∥uk,h − Phv
h
k

∥

∥ ≤ Ck−min{1, 1

L
}, ∀k ∈ N. The

rest of the proof follows from (4.5). �

Now, we are in a position to state the main result of this paper.

Theorem 4.3. Suppose (1.2). Then there exist h0 > 0, C > 0 such that

‖uk,h − u‖ +
∥

∥qk,h + ∇u
∥

∥ ≤ C
(

h+ k−min{1, 1

L
}
)

holds for any k ∈ N.

Proof. The desired result follows from the triangle inequality, (1.4) and Lemmas
2.3, 3.1, 4.2. In fact, we can write

‖uk,h − u‖ ≤
∥

∥uk,h − Phv
h
k

∥

∥ +
∥

∥Phv
h
k − vh

k

∥

∥ +
∥

∥vh
k − wh

∥

∥ +
∥

∥wh − u
∥

∥

≤ C
(

k−min{1, 1

L
} + h

∥

∥vh
k

∥

∥

1
+ k−1 + h

)

≤ C
(

h+ k−min{1, 1

L
}
)

.

For fluxes we proceed analogously and get

∥

∥qk,h + ∇u
∥

∥ ≤
∥

∥qk,h − Πhqh
k

∥

∥ +
∥

∥Πhqh
k + ∇vh

k

∥

∥ +
∥

∥∇wh −∇vh
k

∥

∥ +
∥

∥∇u−∇wh
∥

∥

≤ C
(

k−min{1, 1

L
} + h

∥

∥vh
k

∥

∥

2
+ k−1 + h

)

≤ C
(

h+ k−min{1, 1

L
}
)

.

We recall that qh
k = −∇vh

k . �

Just proved Theorem 4.3 shows that the proposed linear relaxation scheme (4.3),
for mixed finite element method in lowest order Raviart-Thomas spaces, is of order
O (h). This result is valid for u ∈ H2(Ω) and any monotonically increasing and
Lipschitz continuous function α, which appears in the problem setting (1.1). In this
sense, we have improved the results from up to now known results (e.g., [8]).
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5. Numerical experiment. The aim of this section is to demonstrate the ro-
bustness and efficiency of the proposed linear relaxation scheme (4.3).

Let Ω be the unit square in R
2. Consider a nonlinear function α given by

α(s) =

{ √
20s+ 1 for s > 0

1 elsewhere ,

which is clearly Lipschitz continuous and monotonically increasing. We want to find
a solution to the following nonlinear Dirichlet BVP

−∆u+ α(u) = f in Ω
u = g on ∂Ω.

The data functions f and g are defined in such a way that the exact solution to this
BVP is u(x, y) = x3 − y2 + x + sin(πx) sin(πy). The solution u has been chosen in
such a way that the range of u contains the point 0, at which the derivative α′ is not
continuous.

Let us introduce a random function ran whose range is uniformly distributed over
(−1, 1). We present two computations. In the first case, we choose u0,h relatively
close (up to 30% error) to the exact solution, i.e., u0,h(x) = u(x)(1 + 0.3 ran(x)).
In the second event we begin with u0,h, which is far away from the solution u, i.e.,
u0,h(x) = 1000 ran(x). Let us note that the random function ran has been evaluated
once per a given triangle. We have used the linearization scheme (4.3) with L = 10
for computations. We have chosen a fixed uniform mesh consisting of 5000 triangles
corresponding to ∆x = ∆y = 0.02, and we have computed 25 iterations. The results
are depicted in Figures 5.1-5.3. The last Figure 5.4 shows logarithm of the error for
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Fig. 5.1. Logarithms of L2(Ω)-errors for uk,h versus iterations
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Fig. 5.2. Logarithms of relative L2(Ω)-errors for uk,h versus iterations

uk,h in the space L∞ (Ω).

5.1. Conclusion. All graphs in Figures 5.1-5.3 are similar. The rapidly decreas-
ing part at the beginning is followed by a more or less constant section. This is due
to the fact that the linearization error was larger than the discretization one at the
beginning of the iteration process, but later the opposite is true.
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Fig. 5.3. Logarithms of L2(Ω)-errors for qk,h versus iterations

5 10 15 20 25
iteration

-3.5

-3.45

-3.4

-3.35

-3.3

-3.25

-3.2

lo
g

m
ax

.e
rr

or

5 10 15 20 25
iteration

-3

-2

-1

0

1

2

lo
g

m
ax

.e
rr

or

u0,h was close to u u0,h was far from u

Fig. 5.4. Logarithms of L∞ (Ω)-errors for uk,h versus iterations

The linearization scheme (4.3) is robust and the approximations converge towards
the exact solutions independently of the fact, where the iteration process has started.
Moreover, the numerical schemes is efficient. In particular, we needed 10−13 iterations
to get the best possible error for the given discretization, although u0,h was really
badly chosen. In the instance of a good starting point u0,h, it is enough to do 3 − 5
iterations to achieve the discretization error.
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