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MODELLING OF THE GROUNDWATER FLOW IN FRACTURED
ROCK — A NEW APPROACH. ∗

JIŘ́ı MARYŠKA, OTTO SEVERÝN, MILOSLAV TAUCHMAN AND DAVID TONDR †

Abstract. A new approach to the numerical modelling of groundwater flow in fractured rock
is presented in the paper. Empirical knowledge of hydrogeologists is summarized first. There are
three types of objects important for the groundwater flow in the compact rock massif — small
fractures, which can be replaced by blocks of porous media, large deterministic fractures and lines
of intersection of the large fractures. These objects are by their nature 3D, resp. 2D, resp. 1D. The
paper describes how to set up a numerical model representing all three types of objects. We use
existing models based on the Mixed-Hybrid FEM and we connect them by equations expressing the
mass exchange between various types of elements. Our model uses two types of the connection of
the elements, so-called compatible and incompatible.
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1. Introduction and motivation. Numerical modelling of fluid flow, contam-
inant transport and geochemical reactions in fractured rock attracts an attention of
many scientists for more than forty years. The first numerical models of such pro-
cesses were created in late 60’s of the 20-th century. According to [7], more than
thirty software packages, claimed to solve problem of the fluid flow in fractured rock,
existed in 1994.

Despite these facts, there are many open and unresolved problems in this field of
the research. The reason for such situation lies in the nature of the problem. Lack
of input data, their uncertainty and often low accuracy, high computational costs are
the main difficulties we encounter when we are trying to simulate processes in the
fractured rock. It is usually possible to overcome these difficulties only at a price of
simplifications of the problem.

Our research is motivated by the need of finding the most suitable locality for
a permanent deep repository of the radioactive waste. There are two nuclear power
plants in the Czech Republic, a construction of the repository is planned in the 30’s of
the 21-th century. Nevertheless, the process of selection of the most suitable locality
already began, as well as some other preliminary projects. Two of them are projects
GAČR 102/04/P019 and MŽP VaV 660/2/03 focused on improving and testing ex-
isting numerical models and development of the new models. In this paper, we will
show one of the results of these projects, a new approach for numerical modelling of
groundwater flow which could be used for simulations of the processes in the large
neighborhood of the repository.

2. Principal ideas of the model of fluid flow in fractured rock environ-
ment. The radioactive waste repository will be situated in the compact crystalinic
rock massif. Of course, a good and reliable numerical model of the fluid flow and
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transport in such massif has to reflect its specific properties. The hydrogeologc re-
search has brought following empirical knowledge about the rock environment there
and groundwater flow in them.

• The rock matrix can be considered hydraulically impermeable.
• Even the most compact massifs are disrupted by numerous fractures.
• Most of these fractures are relatively small ones, with the characteristic length

less than one meter.
• The groundwater flow in the small fractures is extremely slow.
• On the other hand, these small fractures have significant water capacity and

play an important role in the transport processes.
• It is almost impossible to obtain exact data about all the small fractures.

They must be treated only in the statistical way.
• The most of the liquid is conducted by relatively small number of large frac-

tures. The spatial position of these fractures is usually known or detectable
by the field measurements.
• The fastest flux of groundwater is observed on intersections of the large frac-

tures. These lines of the intersection behaves like a “pipelines” in the compact
rock massifs.

These facts lead us to conclusion that there are three different types of objects
involved in the conduction of the groundwater through the compact rock: small frac-
tures, large fractures and intersections of the large fractures. Now let us examine
these objects form the point of view of the numerical modelling.

2.1. The small fractures. As said before, usually there is large number of
the small fractures in the massif. However we usually know only the statistical data
(such as distribution of poles) about them. There are two possible approaches to
the modelling of the flow in such environment: stochastic discrete fracture network or
homogenization and replacement with porous media.

The first one is more suitable for small problems (spatial dimension of the domain
up to tens of meter) but for the large problems (such are simulations of the massif with
the repository) we encounter serious problems (mainly of the computational nature)
with using this approach. For more information about this approach see for example
[5].

On the other hand, the second approach works better for the large problems.
Fractured rock disrupted only by numerous small fractures can be relatively well
homogenized and replaced by porous media with equivalent hydraulical properties.
The methods of the homogenization and setting the hydraulical parameters of the
replacing porous media can be found for example in [3] or [9] or [4]

2.2. The large fractures. The situation is almost an opposite of the previous
one. The large fractures are relatively well known and not numerous but causing
strong heterogeneity of the environment. The methods of homogenization leads to
serious errors in this case. However, the discrete fracture networks approach (not
stochastic) works well even for large problems if we consider only the large fractures.

The DFN approach usually represents the fractures as two-dimensional objects
(circular discs, polygons, etc. . . ) placed in 3D space. The transversal dimension of
the fractures is at least hundred times smaller than the other two dimensions, so the
representation as 2D objects causes no significant loss of accuracy of the model. The
transversal dimension of the fracture effects the values of permeability tensor as shown
in [3] or [2]



MODELING OF THE GROUNDWATER FLOW IN FRACTURED ROCK 115

2.3. The intersections of the large fractures. This case is similar to the
previous one. The objects of this type is relatively rare in the rock massif, but
significant for the fluid flow. The velocity of the flow on the intersections of fractures
can be higher in order of magnitude than the velocity in the fractures. Fortunately,
the velocity is still low enough so the assumption of the potential flow governed by
the Darcy’s law holds. For the same reasons as in the previous case we can treat the
intersections as one-dimensional objects placed in 3D space.

As a result of the paragraphs above, we can say that the model of groundwater
flow in the compact rock massifs should incorporate 3D porous blocks, 2D fractures
and 1D lines. We have three different domains in the area of interest, which are
hydraulically connected. This problem is similar to the double-porosity approach used
in the models of transport in porous media, [6]. However, the double-porosity models
use domains of the same dimension, with no potential flow in one of the domains and
with the mass-exchange between the domains driven by diffusive processes. These
three facts make a difference between our problem and the problem of transport in
the double-porosity environment.

3. Approximation of the flow problem in each domain. We will show an
approximation of the flow problem in each of the three domains without communica-
tion with the other ones in this section.

We have three domains Ωi, i is an index denoting the dimension i ∈ {1, 2, 3}.
Ω1 is a set of mutually connected line segments placed in 3D space, Ω2 is a set of
mutually connected polygons placed in 3D space and Ω3 is a simply connected three-
dimensional domain. We can define a potential driven flow in each of these domains.
The governing equations are the linear Darcy’s law and continuity equation.

ui = −Ki · ∇pi on Ωi,(1)

∇ · ui = qi on Ωi,(2)

where ui is the velocity of the flow (u2 has to lie in the particular polygon, u1 has to
have the direction of the particular line), pi is the hydraulic pressure, Ki is the second-
order tensor of hydraulic conductivity (i× i symmetric, positive definite matrix) and
qi is the function expressing the density of sources/sinks of the fluid. We prescribe
three types of the boundary conditions on the ∂Ωi — the Dirichlet’s, the Neumann’s
and the Newton’s:

pi = piD on ∂ΩiD,(3)

ui · ni = uiN on ∂ΩiN ,(4)

ui · ni − σ(pi − piD) = uiN on ∂ΩiW ,(5)

where piD , uiN and σ are given functions.
For the approximation of these three problems we use the Mixed-hybrid FEM

with the lowest-order Raviart-Thomas elements on tetrahedras in Ω3, triangles in Ω2

and line segments in Ω1. More rigorous formulation of the conituous problem and the
derivation of the discretized problem can be found in [10] or [8] for the problem in
Ω3, in [11] for the problem in Ω2 and in [12] for the problem in Ω1.
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Fig. 1. Example of the compatible and incompatible connection of the elements.

The discretization leads to the system of linear equations:

Aiui+ Bipi+ Ciλi = ri1
BTi ui = ri2
CTi ui+ Fiλi = ri3

(6)

where λi are traces of the pressure on the sides of the mesh. We can rewrite this
system of equations in abbreviated form

Sixi = ri,(7)

where xi = [ui,pi, λi]
T , ri = [ri1, ri2, ri3]T and

Si =



Ai Bi Ci
BTi
CTi Fi


 .

4. Connection of the independent problems. We will show how to connect
three independent problems presented in previous section and how to express the mass
exchange between the domains Ω1, Ω2 and Ω3. We can do that on the level of the
discretized problem due to properties of the mixed-hybrid formulation.

First, we join three systems 7 into one large system

Sx = r,(8)

where x = [x3,x2,x1]T , r = [r3, r2, r1]T and

S =



S3

S2

S1




4.1. Compatible and incompatible connection of the elements. We allow
two different kinds of connections of the elements with different dimensions, called
compatible and incompatible. This fact makes our model unique from the most of
other numerical models using the elements of different dimensions. These models
(such FEFLOW) allow only compatible connections.

The difference between this connections is shown in the figure 1.
The compatible connection requires the element of lower dimension placed exactly

on the side or the edge of the element of higher dimension. This connection seems to be
natural way of connecting the elements in the FEM models, but it causes very serious
problems with the mesh generation for the problems with complex geometry of the
domain. Unfortunately, the fractured rock massifs fall to this category of problems.
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Fig. 2. An unsuitable connection of the 1D and 2D elements — h1 � h2

Fig. 3. Fluxes and pressures for the compatible connection of 1D and 2D element. (The
elements are drawn separated and shifted in the direction of the dotted line)

This is the reason for allowing the other kind of the elements’ connections —
so called incompatible. In this case, there is no requirement on the spatial position
of the communicating elements, the only requirement is on their sizes. We should
use approximately the same discretization parameter hi for all three meshes to avoid
situation shown in figure 2.

4.2. Mass exchange in the compatible connection between two ele-
ments. We will start the derivation of the equations for the mass exchange for the
most simple case — compatible connection between two elements. The derivation will
be shown on the case of 1D and 2D element, the case of the connection of 2D and 3D
element is completely analogous.1

The situation is drawn in figure 3.
First let us examine the original state. The marked side of the triangular ele-

ment is considered as an external side of the 2D mesh. We assume the homegenous
Neumann’s boundary condition on this side

uC = 0(9)

This equation can be found as one line of the block CT2 of the matrix S2 and right-
hand side r23. For the 1D element, there is a mass balance equation written in the
form

−u1,1 − u1,2 = 0,(10)

1We do not allow direct compatible connection of 1D and 3D elements. If we need to incorporate
the connection of this kind to our problem, we can do this indirectly by 2D element connecting both
these elements or by setting the connection as incompatible.
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Fig. 4. Setting up a compatible connection between 1D and 2D element in the matrix S.

which can be found in block BT1 of the matrix S1 and the vector r12.
Now we express the exchange of the mass between the elements. We consider the

flux uC between 2D and 1D element is proportional to the pressure gradient between
the elements

uC = σC(λ2 − p1),(11)

λ2 is the pressure on the side of the 2D element, p1 is the pressure in the center of the
1D element and σC is the coefficient of proportionality. The mass balance equation
for the 1D element can be written as

uC − u1,1 − u1,2 = 0.(12)

We can rewrite the equations 11 and 12 as

uC − σCλ2 + σCp1 = 0,(13)

σCλ2 − u1,1 − u1,2 − σCp1 = 0.(14)

If we compare 9 with 13 and 10 with 14, we notice, that it is sufficient to add or
subtract coefficient σC to four elements of the matrix and we make the desired con-
nection between the system S1x1 = r1 and S2x2 = r2. The changes in the matrix S
are shown in figure 4.

4.3. Compatible connection of more than two elements. Now we will
generalize the situation to the case of several elements of higher dimension connected
with one element of lower dimension. Again, we will discuss this type of connection
on 1D and 2D elements, the other type is analogous.

We have to emphasize that the sides of the triangular elements connected with
the linear elements must be considered as external sides of the 2D mesh. There is
no direct hydraulical connection between these triangular elements, such connection
is possible only indirectly through the linear element. Therefore there is no principal
difference between this case and the case discussed above. We take each of the trian-
gular elements and we apply the procedure of setting up the connection between this
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Fig. 5. Fluxes and pressures for the incompatible connection of 1D and 2D element.

particular triangular element and the linear element. Let there are n 2D elements with
pressures λ2j , j ∈ {1, . . . , n} on sides connected with the 1D element with pressure
p1 and fluxes through its ends u1,1 and u1,2. The coefficients of the proportionality
are σCj . We got n equations of the form

uCj − σCjλ2j + σCjp1 = 0,(15)

where uCj is the flux from the j-th triangular element to the linear one. For the linear
element there is the mass balance equation

n∑

j=1

σCjλ2j − u1,1 − u1,2 − p1

n∑

j=1

σCj = 0.(16)

We can incorporate the equations 15 and 16 to the system of linear equations 8 by
the same process as it was shown above.

After adding values for all compatible connections (of both kinds — 1D with 2D
and 2D with 3D elements) to the system 8, the matrix S changes its structure to this
form:

SC =




A3 B3 C3

BT3
CT3 FC3 ET3

A2 B2 C2

E3 BT2 D2

CT2 FC2 ET2
A1 B1 C1

E2 BT1 D1

CT1 FC1




(17)

where FCi are modified blocks Fi and Ei are blocks created by the connecting of the
elements.

4.4. The mass exchange in the case of the incompatible connection
of the elements. In this section we will derive the equations describing the mass
exchange between the elements of different dimensions connected incompatibly. As
in the previous section, we will show the derivation on the example of 1D and 2D
elements, the procedure is the same for the other two cases (1D with 3D and 2D with
3D).

The situation is shown in the figure 5. The flux uI between elements is propor-
tional to the pressure gradient. We can express it like

uI = σI (p2 − p1),(18)
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Fig. 6. Setting up an incompatible connection between 1D and 2D element in the matrix SC .

where p2 is the pressure in the center of the triangular element and p1 is the pressure
in the center of the linear element. The coefficient σI has to reflect the size of the
intersection of the elements and the distance of their centers. We write the mass
balance equation for the triangular element

−u2,1 − u2,2 − u2,3 − uI = 0,(19)

where u2,1, u2,2, u2,3 are fluxes through the sides of the triangle. For the linear
element, the mass balance equation is

−u1,1 − u1,2 + uI = 0,(20)

where u1,1, u1,2 are fluxes through the ends of the linear element. If we substitute 18
to 19 and 20 we obtain:

−u2,1 − u2,2 − u2,3 − σIp2 + σIp1 = 0,(21)

−u1,1 − u1,2 + σIp2 − σIp1 = 0.(22)

As the original mass balance equations were

−u2,1 − u2,2 − u2,3 = 0,

−u1,1 − u1,2 = 0,

it can be seen that the incompatible connection of the elements can be realized by
adding/subtracting the value σI to elements of the matrix SC shown in the figure 6.

This procedure can be repeated for each pair of the elements connected by the
incompatible connection. The changes happen in the blocks Di of the matrix 17, we
call the changed block DIi and there are new blocs Gij

4.5. Some remarks concerning the connection of the particular models.
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Fig. 7. Example of the testing problem — drillhole and two large fractures, incompatible con-
nection of 1D and 2D elements.

4.5.1. Rearrangement of the resulting matrix. The matrices produced by
the MH-FEM models have some special properties. The most important of them is
the positive definitnes of the block A. The specialized solvers of linear equations use
this property of the matrix to make the process of solving more effective. Therefore
it is wise to keep this property in our new model too. This goal is easy to achieve by
a rearrangement of the state matrix, vector of solution and the vector of unknowns.

4.5.2. The domain Ω. In previous text we have considered the domain Ω as

Ω = Ω1 ∪ Ω2 ∪ Ω3,

providing that at least two of the three sets Ω1 ∩Ω2, Ω1 ∩Ω3, Ω2 ∩Ω3 are non-empty.
This was a natural presumption for the purposes of the derivation of the model. If
we have model constructed by the above described procedure, we can weaken the
requirement on Ω: It is sufficient to presume the Ω to be a simply connected set in
the Euclidean space E3.

Ω = Γ1 ∪ Γ2 ∪ Γ3,(23)

where Γ1 is a set of line segments placed in the three-dimensional space, Γ2 is a set
of polygons placed in the three-dimensional space, Γ3 is a set of three-dimensional
domains.

4.5.3. The boundary conditions. The original requirement on boundary con-
dition was the existence of the three non-empty parts of the boundary ∂ΩiD . We can
weaken this requirement by the same way as we did for the domain Ω. Now it is
sufficient to require only the existence of a non-empty part of the boundary ∂ΩD of
Ω, with prescribed the boundary condition of the Dirichlet’s type.

An example of testing problem is shown in figure 7. This testing problems sim-
ulates a drillhole (represented by 1D elements) crossing two large fractures (2D rect-
angular domains). There is a packer in the drillhole, placed between the intersection
points of the drillhole with the fractures.

5. Implementation and example of results produced by the model. We
have implemented this approach in the programming language C. The resulting pro-
gram is a subject of the testing at the time of writing of this paper. The first results of
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the testing shows, that the hydraulic communication and the mass exchange between
elements of various dimensions works well and the behavior of the groundwater calcu-
lated by our program has properties of behavior of the groundwater in real fractured
rock massifs.

6. Conclusion. We have introduced a one way how to set up a numerical model
of the groundwater flow in the fractured rock environment. Our approach uses the
mixed-hybrid FEM on three hydraulically connected domains.

There are some open problems and unanswered questions concerning this ap-
proach:

• Although the results of the tests seem to be quite positive, we still know noth-
ing about behavior of our model in large, real-world hydrogeological problems.
• We have to define an algorithm for prescribing the values of the coefficients σC

and σI . This algorithm will be based on our experiences gained by calculation
of the real-world problems. These two coefficients will be good parameters
for the calibraration of the models.
• Still there is no rigorous theoretical background for the new model. We have

proved the existence, uniqueness of the solution and the estimation of the
error for all three models we used for the construction of the new one. These
proofs for the new model are goals of the theoretical works in next months.
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