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AN EXTENDED-MATRIX PRECONDITIONER FOR
NONSELF-ADJOINT NONSEPARABLE ELLIPTIC EQUATIONS∗

BOGDAN NICOLESCU , CONSTANTIN POPA† , AND ULRICH RÜDE‡

Abstract. In a previous paper we proposed a preconditioning technique that generalizes an idea
by M. Griebel. In this generalization, although all considerations are presented in a very general
algebraic framework, the main idea behind them is to use as preconditioner a rectangular matrix
constructed with the transfer operators between successive discretization levels of the initial problem.
In this way we get an extended linear system, which is no more invertible, but still consistent such
that any of its solutions generates the unique one of the initial system. For an appropriate choice of
the preconditioner, this extended system is mesh-independent well conditioned, thus many classes of
iterative solvers can be successfuly used. We prove this in the present paper for picewise linear finite
element discretization of two types of nonself-adjoint nonseparable elliptic boundary value problems.
Numerical experiments on 1D and 2D versions of the considered problems are also presented for
CGN and Kaczmarz iterations.
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1. Introduction. In this paper we shall refer to the following boundary value
problem (b.v.p., for short): let Ω = (0, 1)d, (usually d = 1, 2, 3), L a second order
operator on Ω and the partial differential equation

{
Lu = f, on Ω
u = g, on ∂Ω

(1)

We shall suppose that a variational formulation is available in the following form: find
u ∈ U(Ω) such that

a(u, v) = 〈f, v〉L2 , ∀v ∈ V (Ω),(2)

where a is bilinear and bounded, f ∈ L2(Ω), 〈·, ·〉L2 , ‖ · ‖L2 are the L2(Ω) scalar prod-
uct and norm and U(Ω), V (Ω) are appropriate Hilbert spaces of real valued functions
defined on Ω.
REMARK 1.1 Concerning the functional a we may suppose that it fits into one of the
following three general cases: coercive, (U(Ω), V (Ω))-coercive or weakly coercive which
cover many important classes of b.v.p. (see e.g. [11], chapter 7); together with an
appropriate choice of the function spaces U(Ω), V (Ω) in each of these cases we have
existence and unicity for the solution of the variational problem (2) (this property will
be supposed for the rest of the paper).

Let k ≥ 2 be a given integer, nk = (2k − 1)d and Bk = {ϕ(k)
1 , . . . , ϕ

(k)
nk } a standard

finite element basis (e.g. picewise d-linear). Then the linear system associated to (2)
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is

Akxk = bk,(3)

where

(Ak)ij = a(ϕ
(k)
j , ϕ

(k)
i ), (bk)i = 〈f, ϕ(k)

i 〉L2 , i, j = 1, . . . , nk.(4)

The matrix Ak is supposed to be invertible, thus the system (3) has a unique solution
xk ∈ IRnk . If the functional a is in addition symmetric and coercive, a multilevel
based preconditioning technique was proposed by M. Griebel in [5] (see also [12] as
well for some connections with domain decomposition methods). This will be briefly
described in Section 2. In more general hypothesis concerning a and based on Griebel’s
idea and some results from [3], we developed in [10] a general algebraic multilevel
preconditioning technique which will be described in Section 3. In Section 4 we first
consider two one dimensional nonself-adjoint b.v.p. for which we make a theoretical
analysis concerning the fulfilment of the previously mentioned assumptions. Then,
numerical experiments on these 1D b.v.p. together with a two dimensional case are
also described.

2. The symmetric case - Griebel’s original approach. Let us suppose that
the variational formulation (2) is made on U(Ω) = V (Ω) = H1

0 (Ω) and the bilinear
functional a from (2) is symmetric, bounded and coercive, i.e.

|a(u, v)| ≤M ‖ u ‖H1‖ v ‖H1 , a(u, u) ≥ µ ‖ u ‖2H1 , ∀u, v ∈ H1
0 (Ω),(5)

where ‖ v ‖2H1=
∑d

i=1 ‖ ∂v
∂xi
‖2L2 + ‖ v ‖2L2 . Then the finite element discretization

matrix Ak from (4) will be symmetric and positive definite (SPD, for short), i.e.

〈Akz, z〉 > 0, ∀z ∈ IRnk , z 6= 0(6)

(by 〈·, ·〉, ‖ · ‖ we shall denote the euclidean scalar product and norm on some space
IRq). Let

V1 ⊂ V2 ⊂ . . . ⊂ Vk(7)

be a sequence of spaces of picewise d-linear functions associated to a sequence of
uniform, equidistant, nested grids

Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ωk,(8)

nq = (2q− 1)d the dimension of Vq , q = 1, 2, . . . , k and Bq = {ϕ(q)
1 , . . . , ϕ

(q)
nq } the finite

element basis in Vq . Let also B̂k ⊂ Vk and mk be given by

B̂k = B1

⋃
B2

⋃
. . .
⋃
Bk, mk = n1 + n2 + . . .+ nk.(9)

The functions from B̂k are linearly dependent and generate the subspace Vk. Each

function ϕ
(q)
j ∈ Vq ⊂ Vq+1 has a unique representation as an element of Vq+1, of the

form

ϕ
(q)
j =

nq+1∑

i=1

cijϕ
(q+1)
i , j = 1, . . . , nq.(10)
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We then consider the nq+1 × nq matrix Iq+1
q given by

(
Iq+1
q

)
ij

= cij(11)

and, for q = 1, 2, . . . , k − 1 we define the nk × nq matrices Skq by

Skq = Ikk−1I
k−1
k−2 . . . I

q+1
q(12)

and the nk ×mk matrix Sk (in block notation)

Sk =




| | | | 1
| | | | 1

Sk1 | Sk2 | . . . | Skk−1 |
| | | | 1
| | | | 1



,(13)

in which the last block is the nk×nk unit matrix. We then consider the preconditioned
version of (3)

Âkx̂k = b̂k,(14)

where

Âk = StkAkSk, b̂k = Stkbk.(15)

It results that the mk ×mk matrix Âk is symmetric and positive semidefinite. More-
over, because the matrix Sk is full row rank, it can be proved that for any solution
x̂k ∈ IRmk of (14), Skx̂k ∈ IRnk is the unique solution of (3) (see [5], [10]). If for
a square matrix B we shall denote by σ∗(B) the set of all its nonzero eigenvalues,
in [5] (see also the references therein) Griebel proved that, the generalized spectral
condition number of Âk, defined by

cond(Âk) =

√
max{λ, λ ∈ σ∗(ÂtkÂk)}
min{λ, λ ∈ σ∗(ÂtkÂk)}

(16)

is mesh-independently bounded, i.e. Sk from (13) is an efficient preconditioner. More-
over, the matrix

Gk = SkS
t
k(17)

is spectrally equivalent with the inverse of the standard discretized Laplacian ∆k (e.g.
the 5-point stencil for d = 2), i.e. there exist constants α1, α2 independent on the
mesh size such that (see e.g. [3])

α1 ≤
〈Gkx, x〉
〈∆−1

k x, x〉 ≤ α2, ∀x ∈ IRnk .(18)

3. The nonsymmetric case - a general algebraic approach. We start from
(3), considered as an arbitrary algebraic system of equations and define the matrices

Mk =
1

2
(Ak +Atk), Rk =

1

2
(Ak −Atk).(19)
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We suppose that the symmetric part of Ak, Mk is SPD and observe that Rk satisfies

Rtk = −Rk.(20)

Let mk ≥ nk, Sk an arbitrary full row rank nk×mk matrix and Gk defined as in (17).
We introduce the following assumptions.
Assumption 1. The matrix Gk is spectrally equivalent with M−1

k (see e.g. (18)).
Assumption 2. It exists a constant β ≥ 0, independent on nk and mk such that

ρ(GkRk) ≤ β.(21)

We then define the matrix Âk and vector b̂k as in (15). The following general result
was proved in [10].

Theorem 3.1. In the above hypothesis and under the Assumptions 1 and 2 we
have

cond(Âk) ≤ α2 + β

α1
,(22)

i.e. the preconditioned matrix Âk has a mesh independent generalized spectral condi-
tion number.
In what follows we shall prove two useful theoretical results related to the previous
assumptions. These results will be used in the next section in the construction of the
mesh independent preconditioner for two classes of convection-diffusion problems. In
order to simplify the presentation and because the results are general we shall cancel
the index k.

Proposition 3.2. Let H be a Hilbert space with the scalar product 〈·, ·〉H ,
a : H × H −→ IR bilinear, bounded and coercive (see (5)) and for a given n ≥ 2,
{ϕ1, . . . , ϕn} ⊂ H a linearly independent system. If A,B are the SPD matrices de-
fined by

(A)ij =
1

2
(a(ϕj , ϕi) + a(ϕi, ϕj)) , (B)ij = 〈ϕj , ϕi〉H , ∀i, j = 1, . . . , n,(23)

then A and B are spectrally equivalent.
Proof. Let B = CCt, with C invertible be a decomposition of B, Â = C−1AC−t

and x = (x1, . . . , xn)t ∈ IRn an arbitrary fixed vector. From (23) and the definition
of Â we successively obtain

〈ÂCtx,Ctx〉 = 〈Ax, x〉 = a(ux, ux),(24)

with ux =
∑n

i=1 xiϕi and, by also using (5)

µ ‖ ux ‖2H ≤ 〈ÂCtx,Ctx〉 ≤ M ‖ ux ‖2H .(25)

Because ‖ ux ‖2H= 〈Bx, x〉 =‖ Ctx ‖2, from (25), for z = Ctx we get

µ ‖ z ‖2 ≤ 〈Âz, z〉 ≤ M ‖ z ‖2,

thus

µ ≤ λmin(C−1AC−t) ≤ λmax(C−1AC−t) ≤M,(26)
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relation which is equivalent with the spectral equivalence of the matrices A and B,
independently on the decomposition B = CCt (see e.g. [13]).

Proposition 3.3. Let G, T be two n×n SPD spectrally equivalent matrices and
R as in (20). The following are equivalent:
(i) it exists a constant β > 0, independent on n such that

ρ(TR) ≤ β;(27)

(ii) it exists a constant γ > 0, independent on n such that

ρ(GR) ≤ γ.(28)

Proof. It suffices to prove only one implication. For this, let β > 0 be such that
(27) holds and

G = CCt, T = ΓΓt(29)

two arbitrary decompositions. From (20) it results that the matrix C tRC is normal,
thus we successively have

ρ(GR) = ρ(CtRC) = max
x6=0

〈CtRCx, x〉
〈x, x〉 = max

y=Cx6=0

〈Ry, y〉
〈G−1y, y〉 .(30)

But, because G and T are spectrally equivalent, so will be G−1 and T−1 (see e.g.
[13]), thus there exist constants α1, α2 > 0, independent on n such that

α1 ≤
〈G−1z, z〉
〈T−1z, z〉 ≤ α2, ∀z ∈ IRn.(31)

Then, from (30), (31), (27) and because the matrix ΓtRΓ is normal we successively
get

ρ(GR) = max
y 6=0

〈Ry, y〉
〈G−1y, y〉 = max

y 6=0

〈Ry, y〉
〈T−1y, y〉

〈T−1y, y〉
〈G−1y, y〉 ≤

1

α1
max
y 6=0

〈Ry, y〉
〈T−1y, y〉 =(32)

1

α1
max

z=Γ−1y 6=0

〈RΓz,Γz〉
〈z, z〉 =

1

α1
ρ(ΓtRΓ) =

1

α1
ρ(TR) ≤ β

α1
,

i.e. exactly the inequality (28) with γ = β
α1

and the proof is complete.

4. Numerical experiments.

4.1. 1 D convection-diffusion problems. We have first considered the prob-
lem (see [3])

{
−(ux)x + cux + (cu)x + eu = f, x ∈ (0, 1)
u(0) = u(1) = 0

(33)

with c(x) = γx, e(x) = 1
1+x , x ∈ (0, 1) and f such that uex(x) = x− x2, x ∈ (0, 1) is

its unique exact solution. For (33) we have a variational formulation of the type (2)
with Ω = (0, 1) and the bilinear functional a given by

a(u, v) =

∫ 1

0

u′v′dx + 2

∫ 1

0

cu′vdx +

∫ 1

0

(c′ + e)uvdx.(34)
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The above bilinear functional a is bounded and (H1(0, 1), H0(0, 1))-coercive (see [11]).
For the discretization of (33)-(34) we considered the approach from Section 2. On the
finest level nk ≥ 4, h = 1/nk, xi = ih ∈ (0, 1), i = 1, . . . , nk− 1 we considered picewise

linear basic functions ϕ
(k)
1 , . . . , ϕ

(k)
nk . The coefficients of the corresponding matrix Ak

and the right hand side bk from (4) were approximated with Simpson’s rule with 2
nodes on each interval [xi, xi+1], i = 0, . . . , nk − 1. In this way we got the following
expressions

(Ak)ii = 2 +
h2

6

(
1

(i− 1
2 )h+ 1

+
4

ih+ 1
+

1

(i+ 1
2 )h+ 1

)
,(35)

(Ak)i,i−1 = −1− γh2(i− 1

2
) +

h2

(6i− 3)h+ 6
,

(Ak)i,i+1 = −1 + γh2(i+
1

2
) +

h2

(6i+ 3)h+ 6
,

(bk)i =
h2

3

(
f

((
i− 1

2

)
h

)
+ f(ih) + f

((
i+

1

2

)
h

))
.

The matrices Sk, Gk were constructed as in (12)-(13) and (17), respectively with I q+1
q

from (11) as the standard multilevel interpolation operator, i.e. in stencil notation
(see e.g. [2]),

[
Iq+1
q

]
h

=

[
1

2
1

1

2

]

h

(36)

Let ∆k be the standard three diagonal discrete Laplacian, i.e. (∆k)ii = 2, (∆k)i,i−1 =
−1, (∆k)i,i+1 = −1. It is well-known that

(∆)k)ij =

∫ 1

0

(ϕ
(k)
j )′ (ϕ

(k)
i )′dx = 〈ϕ(k)

j , ϕ
(k)
i 〉H1

0
.(37)

Verification of Assumption 1. Griebel proved that (see [5] and references therein)
the matrix Gk is spectrally equivalent with ∆−1

k . Moreover, the symmetric part of
a from (34), as(u, v) = 1

2 (a(u, v) + a(v, u)) satisfies the hypothesis from Proposition

3.2 (for H = H1
0 (0, 1)) and (Mk)ij = 1

2 ((Ak)ij + (Atk)ij) = as(ϕ
(k)
j , ϕ

(k)
i ). Thus,

according to this result Mk will be spectrally equivalent with ∆k. It then results that
(see e.g. [13]) Gk is spectrally equivalent with M−1

k .
Verification of Assumption 2. From (19) and (35) it results that in our case the
skew-symmetric part of Ak, Rk given by

(Rk)ii = 0, (Rk)i,i−1 = −γh2(i− 1

2
), (Rk)ii = γh2(i+

1

2
)(38)

conicides with the matrix R̃ from [3]. In this paper, the authors proved that it exists
a constant β > 0, independent on nk or the spectrum of Ak such that

ρ(∆−1
k R̃) = ρ(∆−1

k Rk) ≤ β.(39)
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As ∆−1
k is spectrally equivalent with Gk, by directly applying Proposition 3.3 we

obtain ρ(GkRk) ≤ γ, for some γ depending on β and the spectral equivalence constants
for ∆−1

k and Gk, but not on nk. Thus, according to Theorem 3.1 the extended matrix

Âk from (15) is mesh independent well conditioned. This is also confirmed by the tests
from Table 1. There, for different values of γ and nk we solved the preconditioned
system (14)-(15) with the CGN algorithm (CG for normal equation; see [4], [1]) and
Kaczmarz’s projection method (see e.g. [1]) and the stopping test (see e.g. [3])

‖ residual ‖≤ 10−6.(40)

REMARK 4.1 In the papers [5] and [6] the authors used as iterative solver the Gauss-
Seidel method; this is no more possible in our case because the system (14) is no
more symmetric; this is the reason for which we have used the Kaczmarz’s projection
algorithm, which for consistent systems as (14) is convergent and equivalent with the

Gauss-Seidel iteration applied to ÂkÂ
t
kŷk = b̂k, with x̂k = Âtkŷk (see e.g. [1]).

The second 1D b.v.p. that we have analysed was the heat convective transfer equation,
without internal sources and nonhomogeneous Dirichlet boundary conditions

{
−u′′(x) + 2αu′(x) + u(x) = 0, x ∈ (0, 1)
u(0) = 0, u(1) = 1

(41)

For (41) we have a variational formulation of the type (2) with Ω = (0, 1) and the
bilinear functional a given by (see [11])

a(u, v) =

∫ 1

0

u′v′dx + 2α

∫ 1

0

u′vdx +

∫ 1

0

uvdx.(42)

The bilinear functional a from (42) is bounded and (H1(0, 1), H0(0, 1))-coercive (see
[11]). By using the same discretization as for (33) we obtained the associated linear
system, with Ak, bk given by

(Ak)ii = 2 + 2
h2

3
, (Ak)i,i−1 = −1 +

h2

6
− αh, (Ak)i,i+1 = −1 +

h2

6
+ αh,(43)

(bk)1 = . . . = (bk)nk−2 = 0, (bk)nk−1 = 1− h2

6
− αh.

Verification of Assumption 1. We follow exactly the same procedure as before for
the problem (33).
Verification of Assumption 2. In this case we obtain

(Rk)ii = 0, (Rk)i,i−1 = −αh, (Rk)i,i+1 = αh.(44)

Then we follow exactly the way in [3], pp. 49-50 and obtain the inequality

〈Rkx, x〉
〈∆kx, x〉

≤ ε, ∀x ∈ IRnk ,(45)

for some ε independent on nk. Now, if ∆k = CCt is a decomposition of ∆k, then the
matrix C−1RkC

−t is normal (see (20)), thus we successively have (by also using (45))

ρ(∆−1
k Rk) = ρ(C−1RkC

−t) = max
x6=0

〈C−1RkC
−tx, x〉

〈x, x〉 =
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max
y=C−tx6=0

〈Rky, y〉
〈∆ky, y〉

≤ ε.(46)

From (46), the fact that Gk and ∆−1
k are spectrally equivalent and by again applying

Proposition 3.3 we get (21) for some β > 0 independent on nk . The results of the
numerical experiments for different values of α and nk and the same stopping rule
(40) are presented in Table 2.

4.2. A 2 D convection-diffusion problem. We considered the two dimen-
sional problem (see [3])

{
−(cux)x − (buy)y + duy + (du)y + gu = f, in Ω = (0, 1)× (0, 1)
u = 0 on Fr(Ω)

(47)

with c(x, y) = e−xy, b(x, y) = exy, d(x, y) = γ(x + y), g(x, y) = 1
1+x+y , where γ ∈

(0,∞) and the right hand side f such that u(x, y) = xy(1 − x)(1 − y) is the exact
solution. For (47) we have a variational formulation of the type (2) with the bilinear
functional a given by

a(u, v) =

∫

Ω

(cuxvx + buyuy)dxdy +

∫

Ω

d(uyv − uvy)dxdy +

∫

Ω

guvdxdy(48)

The functional a is bounded and (H1(Ω), H1(Ω))-coercive. For the discretization
of (47)-(48) we considered a regular triangulation obtained by dividing the domain
into squares with sides h = 1

nk
and then dividing these into two triangles. The

corresponing basis functions are linear on each triangle surrounding a node (see [9],
figures 12-14). The corresponding two dimensional integrals over the triangles T are
evaluated numerically using 3-point Gauss formulae

∫

T

F =
h2

6
(F (P1) + F (P2) + F (P3))(49)

where P1, P2, P3 are the midpoints of the triangles edges. The resulting matrix Ak is
non-symmetric 7-diagonal. For the construction of the matrix Sk (see (11)-(13)) we
used the standard linear multilevel interpolation operators associated to the above
described multilevel discretization (see e.g. [2], [7], [8]), i.e. in stencil notation

[
Iq+1
q

]
h

=




0 1
2

1
2

1
2 1 1

2
1
2

1
2 0



h

(50)

The preconditioned system is again solved using CGN and Kaczmarz algorithms with
the same (40) stopping rule. The results are presented in Table 3. We observe the
same good behaviour of the preconditioning, as in the one dimensional cases from the
previous section.

4.3. Computational aspects and final comments. 1. We described in this
paper a preconditioning technique based on the construction of an extended system
matrix. In practice, the system (14)-(15) is not efectively formed but, because the
preconditioner Sk from (13) is constructed with the multigrid interpolation operators,
for operations of the form Âkz requested by an iterative solver (e.g. CGN or Kacz-
marz), the computational effort per iteration step will be of order O(nk) (see e.g. [8]).
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Moreover, if the generalized spectral condition number of Âk is mesh independent,
we expect a small number of iterations (comparing with the dimension nk) which
allow us to conclude that a final O(nk) computational work will be needed. This is
an advantage with respect to classical preconditioning techniques based on Cholesky
decomposition of the discrete Laplacian or the finite element basis Gram matrix, for
which the usual order is O(n2

k) (see e.g. [3], [14]).
2. The results in Tables 1, 3 and 2 are comparable with those in [3] and [14], re-

spectively. But, in those papers the preconditioning is made with the Cholesky factors
of the discrete Laplacian or finite element basis functions Gram matrix, respectively.

3. The results in Table 1 show a good behaviour for both CGN and Kaczmarz
iterations. In Table 2 the values of the Péclet number (Pe=2αh for our problem (41))
are also indicated. We can see a good ”equilibration” between this constant (which
controles the numerical stability of the discretization, see e.g. [7]) and the behaviour
of the two iterative solvers. For the two dimensional problem (47) the behaviour of
our solvers is not so good (see Table 3). In this case Assumption 1 still holds, but
we don’t know if this is true also for Assumption 2. One possible way for overcoming
this difficulty would be to consider other choices for the Iq+1

q operators in (50) (see
also comment 4 from below).

4. In the numerical experiments from the above sections we used the classical
interpolation operators (36) or (50). But, our approach based on the assumptions 1
and 2 is quite general, thus other (possible better) choices for the interpolation oper-
ators in the preconditioner (13) can be considered, such that the spectral equivalence
requested in Assumption 1 is fulfilled (work is in progress in this direction).
Acknowledgements. We would like to thank to the anonymous referee for his help-
ful comments which much improved the first version of the paper.
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Table 1
Problem (33)

γ nk cond(Ak) cond(Âk) Nr. iter CGN Nr. iter Kaczmarz
0 16 95 8 13 18

32 380 15 20 23
64 1520 30 38 28
128 6083 60 64 34

5 16 71 3 14 15
32 282 7 23 21
64 1146 14 39 27
128 4585 28 70 32

50 16 20 3 13 19
32 63 3 21 19
64 241 3 29 20
128 1002 7 44 25

100 16 22 6 15 35
32 51 5 25 26
64 144 4 32 24
128 576 5 42 24

Table 2
Problem (41)

α nk Pe cond(Ak) cond(Âk) Nr. iter CGN Nr. iter Kaczmarz
0 16 0 93 8 14 21

32 0 376 15 25 28
64 0 1506 30 44 36
128 0 6028 60 80 44

10 16 1.25 29 1.3 13 17
32 0.625 115 2.5 19 22
64 0.31 458 5 32 28
128 0.15 1834 10 57 36

50 16 6.25 11 4 14 50
32 3.12 26 2.2 15 38
64 1.56 102 1.2 15 34
128 0.78 407 2 19 40

100 16 12.5 12 8 14 89
32 6.25 22 4.4 26 67
64 3.12 53 2.2 17 51
128 1.56 206 1.2 16 44

Table 3
Problem (47)

γ nk cond(Ak) cond(Âk) Nr. iter CGN Nr. iter Kaczmarz
0 8 25.7 6 34 60

16 115 11 56 106
32 522 20 83 149

5 8 15 5 31 50
16 65.8 9.5 54 91
32 317 18 79 163

50 8 6 8.8 49 58
16 16 15 105 76
32 51 23 187 141

100 8 7 14 65 99
16 16 23 157 133
32 43 51 171 135


