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WELL-BALANCED FINITE VOLUME EVOLUTION GALERKIN

METHODS FOR THE 2D SHALLOW WATER EQUATIONS ON

ADAPTIVE GRIDS ∗

A. BOLLERMANN† , M. LUKÁČOVÁ-MEDVIĎOVÁ‡ , AND S. NOELLE†

Abstract. We extend a well-balanced finite volume evolution Galerkin (FVEG) method to non-
uniform grids. As a model problem, we consider the two-dimensional shallow water equations with
a source term modelling the bottom topography. Our work is based on the well-balanced scheme
proposed in (Lukáčová, Noelle, Kraft, J.Comp.Physics, 221, 2007). We present selected test cases
to demonstrate the capabilities of the scheme.
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1. Introduction. We consider the finite volume evolution Galerkin (FVEG)
schemes of Lukáčová, Morton and Warnecke, cf. [1, 3, 2]. These methods are used
to solve hyperbolic conservation laws by introducing an evolution operator to predict
values for the finite volume update. The evolution operators are based on the theory
of bicharachteristics, allowing to consider all of the infinitely many directions of wave
propagation. These schemes have been proven to be very accurate compared to stan-
dard finite volume schemes, and they also allow an efficient implementation, which
makes them competitive in terms of computational cost.

By now, FVEG schemes are basically always implemented on uniform, cartesian
grids. In contrast, most geophysical phenomena show a very localized behaviour,
i.e. we have small regions with strong interactions in a larger surrounding area with
almost steady solutions. To resolve the interesting structures correctly, we need a
small gridsize, leading to a large number of cells and therefore long computations on
uniform grids. To explore further the potential of the FVEG schemes, in this work
we want to extend them to non-uniform, adaptive grids, allowing fine resolutions in
the area of interest and a minimal cell number in steady regions.

We will apply our schemes to the two-dimensional shallow water equations. The
only source term we take into account is the influence of the ground elevation. The
presence of a source term gives rise to another difficulty: For steady states, we have
to make sure that the numerical flux and the numerical source term cancel each other
exactly, so that no spurious oscillations occur. This property is called well−balancing.
In [2] Lukáčová, Noelle and Kraft proposed a well-balanced variant of FVEG schemes
for the two-dimensional shallow water equations. We will start from this method to
develop an adaptive scheme maintaining the properties from the uniform case.

This work is organized as follows. In Section 2 we give a brief introduction to
the shallow water equations. Section 3 is dedicated to the FVEG scheme derived in
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[2] and our modifications for adaptive grids. Finally, we present selected test cases in
Section 4 and summarize our results in the conclusions in Section 5.

2. The shallow water equations.

2.1. Balance law form. We consider the shallow water system in balance form

∂u

∂t
+ ∇ · F(u) = S(u, ~x).(2.1)

The conserved variables and the flux are given by

u =





h

hu

hv



 , F = [F1 F2] =





hu hv

hu2 + g h2

2 huv

huv hv2 + g h2

2



 ,(2.2)

where h denotes the relative water height, ~u = (u, v)T the flow speed and g the
(constant) gravity acceleration. The source term S(u, ~x) is given by

S(u, ~x) = −gh







0
∂b(~x)
∂x1

∂b(~x)
∂x2






(2.3)

with b(~x) the local bottom height. We also introduce the free surface level, or total
water height, htot with

htot(~x) = h(~x) + b(~x).(2.4)

2.2. Quasi-linear form. For the derivation of the evolution operators, it is
helpful to rewrite (2.1) in primitive variables. The system then takes the form

wt + A1(w)wx1
+ A2(w)wx2

= t(2.5)

with

w =





h

u

v



 , A1 =





u h 0
g u 0
0 0 u



 , A2 =





v 0 h

0 v 0
g 0 v



 , t =





0
−gbx1

−gbx2



 .

We now define for each angle θ ∈ [0, 2π) the direction ~ξ(θ) := (cos θ, sin θ). As system

(2.1) is hyperbolic, for each direction ~ξ(θ) and fixed w the matrix

A(w) = ~ξ1A1(w) + ~ξ2A2(w)(2.6)

has real eigenvalues. With c =
√

gh denoting the speed of sound they read

λ1 = ~u · ~ξ − c, λ2 = ~u · ~ξ, λ3 = ~u · ~ξ + c.(2.7)

2.3. Lake at rest solution. One obvious solution of (2.1) is the so-called lake
at rest solution, where the water is steady, i.e. ~u = (0, 0)T , and the free surface level
is constant, i.e. htot(~x) = h0. From (2.4) we immediately get

∇h = −∇b(2.8)

and therefore (with (2.1), (2.2), (2.3) and ~u = (0, 0)T )




0

g h2

2
0





x1

+





0
0

g h2

2





x2

= −gh







0
∂b(~x)
∂x1

∂b(~x)
∂x2






.(2.9)

A scheme fulfilling a discrete analogon of (2.9) exactly is called well balanced.
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Fig. 3.1. Quadrature points ~xj for finite volume update

3. FVEG schemes on adaptive grids. Many classical finite volume schemes
are based on the solution of one-dimensional Riemann-problems at cell interfaces. This
leads to a bad resolution of problems where the solution is not aligned with the grid.
In contrast, the finite volume evolution Galerkin methods considered in this work are
based on a truly multidimensional approach to the problem that is introduced by the
evolution operators. The two following sections will describe the finite volume update
(Sec. 3.1) and the evolution operator (Sec. 3.2), both on uniform grids. The changes
we applied for adaptive grids are presented in Section 3.3.

3.1. Discretization and finite volume update. To obtain approximate solu-
tions of (2.1), we divide our computational domain Ω in quadratic cells Ci with side
length or diameter si. The cell interfaces, or edges, are denoted by Ei. We denote by
un

i the approximate cell-averaged solution on cell Ci at time tn, where the initial ap-
proximation is given by u0

i := ui(0) = 1
|Ci|

∫

Ci
u(~x) d~x. On each cell, we now integrate

(2.1) and apply the Gauss theorem, yielding the update

un+1
i = un

i +
1

|Ci|

∫ tn+1

tn

(∫

∂Ci

F(u(~x, t)) · ~n d~xdt +

∫

Ci

S(u(~x)) d~x

)

(3.1)

where ~n is the outward pointing normal at the boundary.
To eventually perform the update (3.1), we have to give an approximation in time

and space for the flux on each edge of the grid. We use the midpoint rule in time, i.e.
the flux on each edge will be evaluated at tn+ 1

2 . To approximate the flux in space, for
each edge we define three quadrature points ~xE

j , j = 1, 2, 3. ~xE
1 and ~xE

3 are the two

endpoints of edge E, and ~xE
2 is the center of the edge. Fig. 3.1 shows the position of

the quadrature points. To simplify notation, we will drop the superscript E, and j

will always denote a local index with respect to an edge. Using Simpson’s rule, we
can then define the approximate flux FE on each edge via

FE :=
3

∑

j=1

αjF(u
n+1/2
j ) · ~n ≈ 1

∆t|E|

∫ tn+1

tn

∫

E

F(u(~x, t)) · ~n d~xdt(3.2)

with α1,3 = 1
6 and α2 = 2

3 and ∆t is the time step. The approximated values

u
n+1/2
j ≈ u(~xj , t

n+1/2) will be predicted by the evolution operators described in
section 3.2.

For the sourceterm, the gradient of the ground elevation in the i-th cell is approx-
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imated by

Si := −g

3
∑

j=1

αj





0
1
2 (ĥr

j + ĥl
j)(b

r
j − bl

j)
1
2 (ĥt

j + ĥb
j)(b

t
j − bb

j)



 ≈ 1

si∆t

∫ tn+1

tn

∫

Ci

S(u) d~x,(3.3)

where ĥj is the first component of u
n+1/2
j , bj = b(~xj) and the superscripts denote the

edges surrounding the cell, namely the right, left, top and bottom edge. So the fully
discrete scheme reads

un+1
i = un

i − ∆t

|Ci|





∑

E,E⊂∂Ci

(|E|FE) + siSi



(3.4)

In [2], it is proven that scheme (3.4) is well-balanced on uniform grids. As every edge
in the sum of (3.4) appears in two different cells with opposed normals, it is also
conservative by design.

3.2. Evolution operators. We restrict ourselves to the presentation of the
main ideas, as the development of the evolution operators is not the focus of this
paper. As mentioned before, we need the evolution operator to predict point values
of the solution at the quadrature points of our finite volume scheme. We will make
use of the fact that the solution can be described by a superposition of different waves.
We start by fixing one of the quadrature points P = (~x, tn+1/2). To derive a solution,
we start at this point and look back in time where the waves determing the solution
come from. To simplify things, we linearize (2.5) by plugging in a suitable mean value
w̄ around P ′ = (~x, t), leading to

wt + A1(w̄)wx1
+ A2(w̄)wx2

= t.(3.5)

The crucial point in this procedure is to identify the curves where the waves
propagate and to find a representation of the solution along them. We therefore
perform a one-dimensional characteristic decomposition of the system (3.5) for each

direction ~ξ(θ). This gives us three directions of wave propagation which correspond
to the eigenvalues (2.7). We follow this directions starting from P going backwards
in time. The bicharacteristic curves are illustrated on the left side of Fig. 3.2, thanks
to the linearization they are straight lines. Along these curves, the characteristic
decomposition also delivers a representation of the solution. We can now integrate
the solution from tn till tn+1/2 along these curves, giving a representation of the
solution at the point P .

To respect the multidimensional behaviour of the solution, we average the point
values at P over all angles θ ∈ [0, 2π). This also leads to a welcome simplification
of the representation formula. The combination of all the bicharacteristics results in
the so-called bicharacteristic cone depicted on the right side of Fig. 3.2. The integral
representation of the solution on this cone is the core of all evolution operators used
in the FVEG schemes.

The resulting exact integral representation is very complex and not suitable for
the use in computations. In previous work, Lukáčová et.al. derived several approx-
imations of the evolution operator (see [2] and the references therein). Here we will
work with the approximative operators given in equations (3.25) and (3.26) in [2].
These operators allow to compute an approximation of the integrals along the cone
based only on the data given at the sonic circle, which is the intersection of the cone
with the ~x-plane at time tn.
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Fig. 3.2. Bicharacteristic decompostion. Left: Bicharacteristic curves for a fixed direction ~ξ.
Right: Bicharacteristic cone.

Ci si

Fig. 3.3. Example of a structured, non-uniform grid

3.3. Modifications on adaptive grids. The grids we consider in this work are
not uniform, but we limit ourselves to structured, cartesian meshes, see Fig. 3.3 for
an example. To distinguish cells of different sizes, we introduce the level of refinement
l, where a higher level stands for a finer grid. For the transfer of the FVEG schemes
to adaptive grids, we have to check how the use of a non-uniform grid changes the
evaluation of both the evolution operator and the finite volume update.

Concerning the evolution operator, the transfer is straightforward. To evaluate
the operators, one has to identify the cells containing the sonic circle of each quadra-
ture point, and the length of the arc in each cell. Fig. 3.4 shows the most common
situations. Only at hanging nodes a new situation occurs, but this is obviously a
combination of the known ones and can be easily implemented.

For the finite volume update, Fig. 3.5 depicts the necessary changes in (3.4).
First, we perform the flux evaluation (3.2) on all edges of the finest local grid level.
On cells at the interface between two grid levels, we then compute the flux across the
coarse edges as sum of the fluxes across the finer edges, i.e. in (3.4) we use

|El|FEl =
∑

El+1⊂El

|El+1|FEl+1 .(3.6)

However, when we introduce a non-flat bottom topography, the scheme is not
well-balanced anymore in cells at the interface between two grid levels. The reason is
evident from the left picture in Fig. 3.6: While we use five points altogether for the
flux update, the source term in the coarse cell uses only three quadrature points at
each edge.

We reestablish the well-balancing property by the following modification. In cells
with a situation like in the left picture of Fig. 3.6 we temporarily add two additional
quadrature points like shown in the right picture of Fig. 3.6 and interpolate h and b

linearly from the neighboring points. We then apply (3.3) separately for the upper
and lower half of the cell. Provided that the bottom height in the middle quadrature
point of each edge is the mean bottom height of its neighboring points, the resulting
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Fig. 3.4. Typical intersections of the sonic circle with grid cells. Left: Corner node. Center:
Node at interface between two cells. Right: Hanging node.
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1
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Fig. 3.5. Interface between two refinement levels l and l + 1. Left: Single edge for left cell.
Right: Two edges for right cells.

scheme is again well-balanced for the lake at rest situation. The last assumption is
easy to fulfill as the evolution operators in (3.25) and (3.26) from [2] give no rigorous
restriction to the choice of b(P ).

Finally, to preserve the well-balanced behavior even when adapting the grid, we
have to pay some attention to the mapping of values between two grids. First, the
mapping has to be conservative. As a second point, we have to ensure that a constant
free surface is kept between two grids. In the case of a refined cell, i.e. cell C0 on the
old grid is replaced by four child cells C̄1, . . . , C̄4 on the new grid, we set

h(C̄k) = htot(C0) − b(C̄k), k = 1, . . . , 4.(3.7)

This definition demands

b(C) =
1

4

4
∑

k=1

b(C̄k),(3.8)

so that we use this as a recursive definition for the bottom height on each cell. The
recursion stops when the level of refined cells reaches the maximal grid level, where
we set b(C) = b(~xC), with ~xC the center of the cell. For the other variables we set

hu(C̄k) = h(C̄k)u(C0), k = 1, . . . , 4,(3.9)

hv(C̄k) = h(C̄k)v(C0), k = 1, . . . , 4,(3.10)

which keeps the velocity constant on a refined cell. In the case of a coarsened cell,
we just average the values on the old grid to get the values on the new grid. That is
consistent with (3.7) – (3.10).

4. Numerical results. We will perform two test cases to demonstrate the be-
haviour of our adaptive schemes and compare them to the uniform case. The actual
scheme used in the computation is the second order scheme from [2] called EG5. We
aim to investigate the general properties of our schemes here and will concentrate
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Fig. 3.6. Quadrature points on interface between two refinement levels l and l + 1. Left: Solid
points used at coarse and fine level, blank points only used at fine level. Right: Modification for
well-balanced source term computation

Fig. 4.1. Circular dam break. Left: Water height contour lines of initial solution. Right: Initial
grid for the adaptive scheme.

on efficiency in future work. For the adaptation, we chose a simple, residual based
strategy. For each cell C, we define the local cell residual R as

R(C) =

∥

∥

∥

∥

∫

∂Ci

F(u) · ~n dx +

∫

Ci

S(u) dx

∥

∥

∥

∥

1

.

The average residual R̄ is given as

R̄ =
1

n

n
∑

i=1

R(Ci)

with n the number of cells in the grid. We then refine a cell if R(C) > 1.5R̄ and
coarsen the cell if R(C) < 1

5 R̄. Our numerical experiments show that the accuracy
of the results strongly depends on these choices. The investigation of better error
indicators is part of our ongoing work.

4.1. 2D circular dam break. To compare the behaviour of the uniform and
adaptive methods, we consider a two-dimensional dam break problem. The circular
dam separates two basins with water heights h1 = 10 and h2 = 5, see Fig. 4.1. The
computational domain is Ω = [0, 100]2, the radius of the dam is 60. We assume that
at t = 0 the whole dam breaks down and compute the flow of water until t = 3.

Tables 4.1 and 4.2 show CPU times and errors on different uniform and adaptive
grids. The initial resolution of the adaptive grids is 2500 cells, in the computations
we allow up to three levels of refinement. The results are visualized in Fig. 4.2. On
the left side, we show the water level of the two solutions with finest grids. The
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Fig. 4.2. Solution of the dam break problem. Left: Water height level at line x1 = x2. Right:
Error vs. CPU time

# cells CPU time ‖h̃ − h‖L1 ‖h̃u − hu‖L1

2500 0.4s 1.86665E-04 1.00903E-03
10000 4.2s 1.00602E-04 5.48497E-04
40000 34.9s 5.20116E-05 2.85568E-04

Table 4.1

CPU times and error on uniform grids

two solutions are very close to each other and approximate very well the reference
solution. Looking at the relation between accuracy and computational cost, the right
side of Fig. 4.2 shows that the adaptive scheme has a slight advantage over the uniform
method.

4.2. Two-dimensional quasi-stationary problem. We want to demonstrate
the well-balancing property by a classical test case where we compute a small pertur-
bation of the lake at rest over a smooth bottom topography. The computational do-
main is Ω = [0, 2]×[0, 1] and we apply periodic boundary conditions in the x2-direction
and far field boundary conditions in the x1-direction. The bottom topography is given
by

b(x1, x2) = 0.8e−5(x1−0.9)2−50(y−0.5)2

and the initial values are given by

h0(~x) =

{

1.01 − b(~x) if 0.05 < x1 < 0.15
1.0 − b(~x) otherwise

~u0(~x) = (0, 0)T .

We performed this test case on a uniform grid with 400 × 200 cells and on an
adaptive grid with an initial resolution of 50 × 25 cells and up to three levels of
refinement. In Fig. 4.3 we present contour lines of both solutions at times t = 0.12,
t = 0.24, t = 0.36 and t = 0.48. The initial adaptive grid has 3725 cells, the number
of cells for the presented times are 5585, 6080, 6806 and 9863. We clearly see that
both solutions are very close to each other. The results compare very well to those
published in literature, see e.g. [4, 5] and the references therein.
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# cells
lmax CPU time ‖h̃ − h‖L1 ‖h̃u − hu‖L1

start end

2818 3865 1 1.9s 1.15072E-04 6.26842E-04
3463 7384 2 8.2s 6.73611E-05 3.75620E-04
4951 18346 3 44.8s 4.26710E-05 2.38546E-04

Table 4.2

CPU times and error on adaptive grids with different levels of refinement

Fig. 4.3. Two-dimensional quasi-stationary problem, 30 contour lines of free surface between
0.992 and 1.0115. From top to bottom: t = 0.12, t = 0.24, t = 0.36, t = 0.48. Left: Uniform
solution. Right: Adaptive solution.

In Fig. 4.4 the solution is displayed along the line x2 = 0.5. The solution is
perfectly flat in regions not yet reached by the wave, so we have a numerical verification
of the well-balancing. However, we can see that the solution on the adaptive grid
has lost some features of the uniform solution, see e.g. the region around x1 = 1.2
at t = 0.48. This coincides with a relatively coarse mesh resolution in this region
(not shown), so that these problems can probably be cured by a more sophisticated
refinement strategy. Nevertheless, the results on the adaptive grid are very promising,
taking into account that we compute with much fewer cells (< 15%).

5. Conclusions. We have shown that the FVEG schemes from [2] can be used on
adaptive grids without losing any of the positive properties, especially the accuracy
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Fig. 4.4. Two-dimensional quasi-stationary problem, free surface over x1 at x2 = 0.5. From
top to bottom: t = 0.12, t = 0.24, t = 0.36, t = 0.48. Left: uniform solution. Right: adaptive
solution.

and the well-balancing. As this paper is the first step towards FVEG schemes on
adaptive grids, the gain in CPU time is relatively small. We expect this to significantly
improve by the use of more sophisticated error indicators in the refinement strategy.
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