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MIXED REGULARIZATION METHOD FOR IMAGE RESTORATION

IVAN CIMRÁK∗ AND VALDEMAR MELICHER†

Abstract. We present a new mixed regularization method for image recovery. The method
is based on the combination of the bounded variation regularization and the quadratic Hk regu-
larization. We show motivation for two distinctive terms in the energy functional, one for each
regularization. We obtain rigorous results on well-posedness and stability of the underlying mini-
mization problem. The numerical results for several case-studies give significant improvement over
standard single regularizations.
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1. Model problem. In the image restoration, two basic methods are widely
used: The PDE based method and the energy method. We focus on the latter one.
In this approach one constructs an energy functional which is afterwards minimized.
The obtained minimum is then the reconstructed image.

The energy corresponding to a particular problem often consists of two terms: A
fidelity term to the data and a regularization term. The latter one ensures the desired
smoothness of the solution. Regularization of the problem is necessary since the data
is often noisy and in that case the problem becomes an ill-posed inverse problem.

We denote by u the original picture and by f the noisy data. The energy to be
minimized thus typically takes the following form

E =

∫

Ω

‖f − u‖2
2 + αR(u).(1.1)

The first term measures the fidelity to the data and the second term is the regular-
ization term. The parameter α is a real positive weighting factor which controls the
tradeoff between the smoothness and the fidelity.

The choice of the regularization term is crucial for the quality of the solution. For
example in the case of

R(u) = ‖∇u‖2
2,

the noise can be satisfactory removed, but at the same time the solution is smoothed
and belongs to the Sobolev space H1(Ω). This effect called also an oversmoothing
effect occurs whenever the regularization term is chosen to be

R(u) = ‖Lu‖2
2,

where L is a differential operator. We refer to this kind of regularizations as Hk

regularizations.
Real pictures however contain sharp edges. Therefore we need to choose other

regularization which leads to the solution belonging to the class of discontinuous
functions.
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In the pioneering work of Rudin et al. [10], the authors introduced the bounded
variation (BV) regularization in the context of image processing. The BV regulariza-
tion successfully preserves sharp edges in the picture. The regularization term takes
the form

R(u) = J(u),

where J(u) is the BV semi-norm. For detailed definitions of the space BV (Ω) and its
norm and semi-norm see Section 2. For smooth functions, the BV semi-norm can be
expressed as

J(u) =

∫

Ω

|∇u|.

Minimizing of J(u) penalizes functions with large gradients, however it allows for the
jumps as presented in the following example.

Example 1. One of the solutions to the following one dimensional problem on
the interval Ω = (0, 1)

inf
u∈BV (Ω),u(0)=0,u(1)=1

J(u),

is the function

u(s) =

{

0 for 0 ≤ s < b,
1 for b ≤ s ≤ 1,

where b is a real number between 0 and 1.
The BV regularization has drawbacks too. The above example illustrates the so

called staircase effect. Not only the function presented in the example is the solution
but also any “staircase-like” non-decreasing piecewise constant function with value 0
for s = 0 and value 1 for s = 1. In two dimensions, the staircase effect results in flat
regions with constant color. This effect occurs when the regularization term in (1.1)
is chosen to be R(u) = J(u).

To illustrate the oversmoothing and the staircase effect we subsequently applied
both regularizations on the benchmark picture Lenna. Figure 1.1a depicts the original
image and 1.1b shows the version degraded by 5% noise. In Figure 1.1c one can see the
smoothed reconstruction when the H2 regularization is used. In this case L was taken
to be the Laplacian so Lu = ∆u. Here, the noise has almost been eliminated however
the resulting image is blurred. The BV reconstruction in Figure 1.1d nicely preserves
the edges, however the staircase effect is clearly present leading to a non-satisfactory
reconstruction.

Natural solution to eliminate both undesired effects is to introduce a function Φ
and to set the regularization term to be

R(u) =

∫

Ω

Φ(|∇u|).

The function Φ(s) should locally behave such that it is close to Φ(s) = s on the
places where an edge occurs resulting in the local BV regularization, and it is close
to Φ(s) = s2 on the places where no edge is expected resulting in the local H1

regularization.
There are many choices for Φ, however, they must conform to some hypotheses

to give reasonable results in image recovery. These hypotheses have been formulated
in [3] to satisfy the following principle in image analysis:
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The reconstructed image must be formed by homogeneous
regions, separated by sharp edges.

In [9] the authors defined more similar hypotheses in order to conform to the
more specific principle:

The restored object can be decomposed into three scales–flat,
grey and sharp edges.

Charbonnier, in [7], presents many choices used in image reconstruction as well
as a comparative study. Similar studies have been done in [5, 9].

The above presented Φ-approach has a disadvantage that at one location in the
image, both regularizations are applied simultaneously, of course with different posi-
tive weights. Moreover, the function Φ in [3] is supposed to be of class C2 which means
that Φ does not vary quickly from place to place, and that the weights for both reg-
ularization also vary smoothly. This can be a problem, when you want to distinguish
clearly between the BV regularization and the H2 regularization. We try to eliminate
this drawback and we allow for discontinuous Φ. Further we do not formulate the
problem in terms of Φ but we formulate it in terms of a domain decomposition.

We propose the following two-step procedure.
Algorithm 1.

Step 1 Divide the domain into two non-overlapping regions in such a way that in the
first region denoted by Ω1, the solution is supposed to have discontinuities, and
in the second region denoted by Ω2, the solution is supposed to be smooth.

Step 2 Regularize the problem with two different regularizations. On Ω1 apply the
BV regularization that is capable to preserve the discontinuities, and on Ω2

use the Hk regularization, which does not have the staircase effect.
We will refer to this method as the mixed BV-Hk regularization. The implemen-

tation of the first step of the procedure will be discussed in Section 3. Some theoretical
results concerning the second step will be presented in Section 2.

To motivate the study of this method, we present the results for the same bench-
mark picture Lenna presented before. In Figure 1.2a one can see the division of the
whole domain into two parts, the black one, where the H2 regularization has been
used and the white one, where the BV regularization has been applied. Such a divi-
sion will be referred to as a mask. The resulting image is depicted in Figure 1.2b. One
can see the qualitatively better result when the smoothing and the edge-enhancing
regularizations have been used at right locations.

2. Basic definitions and theoretical considerations. In this section we first
briefly introduce the space BV (Ω). We do not present any details about the classical
Sobolev spaces Hk(Ω), the overview can be found e.g. in [2]. Next we rigorously
define the minimization problem appearing in the second step of the Algorithm 1
with mixed BV-Hk regularization and finally we sketch theoretical results concerning
stability and well-posedness of the minimization problem.

Space of BV functions. Denote by C∞
c (Ω, Rn) the set of functions in C∞(Rn)

with compact support in Ω.
Definition 2.1. By BV (Ω) we denote the subspace of functions u ∈ L1(Ω) such

that the following quantity is finite

J(u) = sup

{
∫

Ω

u(x)∇ · (ξ(x))dx | ξ ∈ C∞
c (Ω, Rn), ‖ξ‖L∞(Ω,Rn) ≤ 1

}

.
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We define the norm ‖u‖BV = ‖u‖L1 + J(u).
We point out that BV (Ω) endowed with the norm ‖u‖BV is a Banach space and

for the cases when Ω ⊂ R
2 we have that BV (Ω) ⊂ L2(Ω) [1]

From [1] we present two important results concerning weak compactness and lower
semi-continuity of elements from the BV theory.

Lemma 2.2. The norm ‖ · ‖BV is weakly lower semi-continuous with respect to
the Lp topology for 1 ≤ p < ∞.

Lemma 2.3. Let S be a BV -bounded set of functions. Then S is relatively
compact in Lp(Ω) for 1 ≤ p < n/(n − 1). S is bounded and thus relatively weakly
compact in Lp(Ω) for p = n/(n − 1) and n ≥ 2.

These two lemmas are key tools in the study of well-posedness and stability of
underlying minimization problems.

Minimization problem, well-posedness, stability. Consider a domain Ω
that is split into two non-overlapping subdomains Ω1, Ω2 so that Ω = Ω1 ∪ Ω2. The
first subdomain should cover the discontinuities of the solution, the second subdomain
represents the part, where our solution is expected to be smooth. At this point we do
not exploit how this domain decomposition can be achieved. This topic is answered
in Section 3.

Further take U1 = BV (Ω1), U2 = Hk(Ω2) where k is the desired order of expected
regularity of the solution. We construct U by

U = {u ∈ L2(Ω) : u|
Ω1

∈ U1, u|Ω2
∈ U2}.(2.1)

We introduce two projectors being the restrictions on Ω1 and on Ω2 defined by P1 :
U → U1, P1u = u|

Ω1
and P2 : U → U2, P2u = u|

Ω2
. Using the above notations we

can write that

U = U1 ⊕ U2.

Next to the strong topologies on U1 and U2 generated by the norms, we introduce
weaker topologies. By τ1 we thus denote the topology generated by the weak norm
on L2(Ω1) and by τ2 we denote the topology generated by the weak norm on Hk(Ω2).
Further we denote by τU the topology that is naturally generated by τ1 and τ2 on the
direct sum U , so that a sequence uk → u with respect to τU , when Piuk → Piu with
respect to τUi

topology for i = 1, 2.
We rigorously define our minimization problem for mixed BV-Hk regularization.

Consider regularized least-square solution defined by

min
u∈U

{‖u − f‖2
2 + α1‖P1u‖BV (Ω1) + α2‖P2u‖Hk(Ω2)}.(2.2)

In other words we seek a function u that fits the data f and moreover its restriction
on Ω1 belongs to BV (Ω1) and its restriction on Ω2 belongs to Hk(Ω2).

Notice that we do not impose any continuity properties of the solution on the
boundary between Ω1 and Ω2. This is also not necessary, since the BV regularization
allows for the discontinuities. So if there was such a continuity assumption on the
boundary, the solution would be anyway allowed to be discontinuous in the very close
neighbourhood of this boundary.

The case when Ω2 = ∅ was studied by Acar in [1]. He studied more general
setting when the fidelity term was extended by a linear operator to ‖Au − f‖2

2. It is
possible to extend his results to our case however we use the framework introduced by
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Hofmann et al. in [8]. They study a minimization problem in the setting of general
Banach spaces

min
u∈D

{‖F (u) − f‖r
V + αR(u)}(2.3)

where F : D(F ) ⊆ U → V is the (in general nonlinear) forward operator mapping
between Banach spaces U and V and where they have 1 ≤ r < ∞ for the exponent
in (2.3). R is a convex and proper stabilizing functional with the domain

D(R) := {u ∈ U : R(u) 6= +∞},

and D = D(F ) ∩ D(R).
Their results can be extended for the case when R consists of a sum of several

stabilizing functionals Ri and the Banach space U can be decomposed into a direct
sum of their domains. The detailed description of this extension will be published
elsewhere and frequently uses Lemmas 2.2 and 2.3. The consequence of such an
extension is that the theoretical results concerning the well-posedness and stability
are valid also for the case of several stabilizing functionals.

In our case, F = I, r = 2, U = V = L2(Ω),D = U1 ⊕ U2 and

R(u) = α1‖P1u‖BV (Ω1) + α2‖P2u‖Hk(Ω2).

Theoretical results from [8] adapted for our setting are formulated in the following
theorem.

Theorem 2.4.

(well-posedness) Assume that α1 and α2 are positive and that f ∈ L2(Ω). Then there
exists a minimizer of (2.2).

(stability) The minimizers of (2.2) are stable with respect to the data f. That means
that if {fk} is a sequence converging to f in L2(Ω) with respect to the norm
topology, then every sequence {uk} satisfying

uk = arg min
u∈U

{‖u − fk‖
2
2 + α1‖P1u‖BV (Ω1) + α2‖P2u‖Hk(Ω2)}(2.4)

has a subsequence, which converges with respect to the τU topology, and the
limit of each τU convergent subsequence is a minimizer of (2.3).

3. Numerical implementation. The implementation of the second step from
Algorithm 1 brings no novelty or difficulty. Once we have obtained well-posedness
and stability, we can work with gradient based methods to obtain the minimum of
the energy functional. More precisely, we apply the conjugate gradients (CG) method.

In the H2 part of the minimization, the computation of the gradient of E is
straightforward since the energy functional is quadratic. The BV regularization term
however is not differentiable. We therefore replace the |∇u| term with its differentiable
approximation (|∇u|2 + ǫ)1/2 for some small positive ǫ. There are also methods where
no such regularization is necessary for example the method of Chambolle [6].

More interesting task is the implementation of the first step from Algorithm 1.
We need to find out how to choose the mask. The mask is represented by an array of
the same size as the noisy image has. This array contains only zeros and ones. For the
purpose we described in the first section, we need to detect the edges in the image.
Image detection approaches include among others the first order methods when the
edge is located at the places where the norm of the first derivatives has a peak which
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exceeds a given threshold. Second order methods detect the edges as the zero points
of the second derivatives.

We use the first approach, however we first need to pre-process the image. We
suppose that the image is noisy and therefore there is no way to use first order
methods, since the noisy image can be highly oscillating.

We therefore apply the BV regularization to the whole image since we know that
this kind of regularization preserves the edges in the picture. For the purposes of the
edge detection it is not a disadvantage when the reconstructed image contains flat
regions where smooth solution is expected.

From this first iteration we can extract the edges and define the mask and after-
wards we can continue and use the mixed BV-H2 regularization.

We can rewrite the Algorithm 1 in more details.

Algorithm 2. Start from the noisy data f .

Step 1 (a) On the noisy data f apply the BV regularization. To do this, set
Ω2 = ∅. Then replace the non-differentiable term |∇u| with its differen-
tiable approximation (|∇u|2+ǫ)1/2. Afterwards, using the CG algorithm,
obtain the solution of the minimization problem (2.2) denoted by uBV .

(b) Get the mask um. On the (already regularized) uBV apply the first
order method to determine the edges and the mask.

* Start with Ω1 = ∅
* For every point x decide if gradient exceeds the threshold ttr. If it is

so than add this point to Ω1.
* To obtain the mask, put also all neighbouring points of x to Ω1,

reason for this is described below.
Step 2 (a) Construct the energy functional. According to the mask um, split

the domain Ω so we have Ω2 6= ∅.
(b) Get the BV-H2 regularized solution umix. Using the CG algorithm

minimize the energy functional (2.2) and obtain umix.

One can repeat the steps 1b, 2a, 2b several times so that the mask in step 1b
will be obtained from umix instead of from um. In such a way, better results can be
obtained.

From 1D experiments we have the following observation:

Once the location of an edge falls out of the BV region in
the mask, the edge is lost.

This observation is somehow clear. Imagine that the location of an edge is not
detected correctly and falls into the region where the H2 regularization is used. That
means that this edge is immediately blurred and thus lost. Therefore it is necessary
to determine the mask carefully such that all edges are included. Following this
recommendation we extended Step 1b and Ω1 includes not only the points on the
edges but also their neighbouring points.

To determine the edges correctly we need to set the right threshold value ttr
in Step 1b. This can be done iteratively. We begin with some low value and thus
the resulting mask will show same patterns as the noise does. Quantitatively, the
mask and noise will have the same variance and mean. Increasing this threshold we
eventually come to the value when the variances of the mask and the noise will not
coincide any more. In other words, we need to find the value of the threshold, when
the mask will not be a random picture any more.
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In the energy functional, two weighting factors occur. To determine the correct
values of α1 and α2, one can apply the generalized L-curve method [4]. Having these
determined, one can apply the results from Theorem 2.4 to obtain the existence of
the minimizers of (2.2) for specific values of α1, α2.

4. Experiments. We present two case-studies. One with an artificial image and
one with a real-world image. The value of the constant ǫ was chosen to be 10−6.

It is crucial to detect the edges correctly. In Figures 3.1e and 3.2e we see the
resulting masks for two different noise levels of 5% and 20%. In the first case, the
noise was low enough to determine all edges correctly. We started from low value of
the threshold ttr which gave noisy mask. Increasing the value of ttr the mask became
clean and with clear contours of edges. In the case with 20% noise, increasing ttr does
not significantly improved the mask. Accordingly, the mixed BV-H2 reconstruction
for 20% noise still keeps the undesired artifacts. In Figures 3.1 and 3.2 we see the
influence of the noise on the resulting image.

We were not satisfied with the result depicted in Figure 3.2. The reason for such
a bad reconstruction was in the bad detection of the edges. Edges were detected from
the BV regularized image and clearly, the BV regularization can not handle such high
noise. So we tried first to annihilate the noise by the H2 regularization before it was
processed by BV. As an input for the BV regularization in Step 1a of Algorithm 2
we took the H2 regularized image instead of the noisy data f . Result can be seen
in Figure 3.3a where the mask is clearly better than in Figure 3.2e. Similarly, the
resulting image in Figure 3.3b is of higher quality.

Next case-study in Figure 4.1 shows the reconstruction of a noisy real image. We
again see that the mask represents the edges in the image well and also the mixed
BV-H2 reconstruction is better than single BV or H2 reconstruction. To see the
differences clearly, please check the electronic version of this paper because of the
possibly poor quality of the printed reproduction.
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(a) Original (b) With noise

(c) H2 (d) BV

Fig. 1.1. Image reconstruction of the classical benchmark picture Lenna. (a) The original pic-
ture. (b) Added 5 % white noise. (c) Reconstruction using the H2 regularization. The L2 difference
of the normalized H2 reconstruction from the normalized original is 0.03954. (d) Reconstruction
using the BV regularization. The L2 difference of the normalized BV reconstruction from the nor-
malized original is 0.02415.

(a) Mask (b) Mixed

Fig. 1.2. Image reconstruction with the mixed BV-H2 regularization. (a) The decomposition of
the domain into two regions: black part corresponds to smooth domains, white color indicates the re-
gions with high jumps. (b) Reconstructed image. The L2 difference of the normalized reconstruction
from the normalized original is 0.02231.
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(a) Original (b) With noise (c) H2

(d) BV (e) Mask (f) Mixed

Fig. 3.1. Artificial test image with 5% noise. The detection of the edges was satisfactory and
the resulting BV-H2 reconstruction is good. The L2 difference of the normalized H2 reconstruction
from the normalized original is 0.03707. For the BV reconstruction it is 0.01667 and for the mixed
reconstruction it reduces to 0.01052.

(a) Original (b) With noise (c) H2

(d) BV (e) Mask (f) Mixed

Fig. 3.2. Artificial test image with a high level of noise of 20%. The reconstruction already
suffers from the bad detection of the edges. The L2 difference of the normalized H2 reconstruction
from the normalized original is 0.10318. For the BV reconstruction it is 0.04306 and for the mixed
reconstruction it reduces to 0.02612

(a) Mask (b) Mixed

Fig. 3.3. Artificial test image with a high level of noise of 20%. Noisy data f was first
processed by the H2 regularization resulting in partly annihilation of the noise. Afterwards the BV
regularization has reconstructed the edges and from the result, the mask has been obtained. The L2

difference of this reconstruction from the normalized original is 0.02153.
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(a) Original (b) With noise

(c) H2 (d) BV

(e) Mask (f) Mixed

Fig. 4.1. Real picture taken in Greece. Level of the noise is 3%. The L2 difference of the
normalized H2 reconstruction from the normalized original is 0.05521. For the BV reconstruction
it is 0.02713 and for the mixed reconstruction it reduces to 0.01719.


