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PRESSURE STABILIZED FINITE ELEMENT FORMULATION FOR

DARCY FLOW∗

KAMEL NAFA†

Abstract. Local projection based stabilized finite element methods for the solution of Darcy
flow offer several advantages as compared to mixed Galerkin methods. In particular, the avoidance of
stability conditions between finite element spaces, the efficiency in solving the reduced linear algebraic
system, and the convenience of using equal order continuous approximations for all variables. In this
paper we analyze the pressure gradient method for Darcy flow and investigate its stability and
convergence properties.
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1. Introduction. Numerical methods for Darcy equations are traditionally-
based on a primal single field formulation for the pressure or on the mixed two field
velocity-pressure formulation. It is well known that the choice of the finite element
spaces, for the mixed formulation, is subject to the inf-sup stability condition ([10]).
This has lead to the use of classical mixed Raviart-Thomas and Brezzi-Douglas-Marini
finite elements ([10]). This approach though giving good accuracy for both velocity
and pressure ([19]) has its draw back complexity.

It has been a few years since stabilized finite element methods have been extended
to the Darcy equations (see, [20], [12], [5], and [6]). Despite the fact that such methods
are well established for fluid flow problems based on Stokes-like operator (see, [18],
[16], [27], [7], [3], and [15]). In [20] a term based on the residual of Darcy law is added
to the classical Galerkin formulation making the formulation stable for all combination
of conforming continuous velocity-pressure approximation. Another class of stabilized
methods has been derived using Galerkin methods enriched with bubble functions (see,
[1] and [2]). Alternative stabilization techniques based on a least squares formulation
have been proposed by [5] and [6].

Recently, local projection methods that seem less sensitive to the choice of param-
eters and have better local conservation properties were proposed for Stokes problem
(see, [14], [13], and [4]). The two-level pressure gradient method with a projection
onto a discontinuous finite element space of a lower degree defined on a coarser grid
has been analyzed in [4], [8], [22], [23], and [11]. We note that although the two-level
pressure gradient stabilization method gives a slightly bigger discretisation stencil,
the drawback is not severe because the pressure-gradient unknowns can be eliminated
locally.

In this paper we analyze the pressure gradient stabilization method for the Darcy
equations. As in [25], [26], and [24], the stability of the pressure-gradient method
is proved by constructing an interpolant with additional orthogonality property with
respect to the projection space. As a result, optimal rates of convergence are found
for the velocity and pressure approximations.
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2. Variational formulation. Let Ω be a bounded open region of R
2 with piece-

wise smooth boundary ∂Ω. Darcy’s law for the flow of a viscous fluid in a permeable
medium, and conservation of mass are written as follows

u + ∇p = 0 in Ω

∇.u = f in Ω (2.1)

u.n = 0 on ∂Ω

where, u is the Darcy velocity vector, p is the pressure, and n the outward normal
vector.

Let

V = H0(div, Ω) =
{
v ∈

[
L2(Ω)

]2
: ∇.v ∈ L2(Ω), u.n = 0 on ∂Ω

}

Q = H1(Ω) ∩ L2
0(Ω)

where L2
0(Ω) denotes the set of square integrable functions with null average.

Define the forms

A((u, p); (v, q)) = (u,v) − (p,∇.v)+(q,∇.u)

and (2.2)

F (v, q) = (f,q) ,

for all (v, q) ∈ V × Q, with (., .), as usual, denoting the L2−inner product on the
region Ω.

Then, the weak formulation of (2.1) reads in compact notation as

A((u, p); (v, q)) = F (v, q) , ∀(v,q) ∈ V × Q. (2.3)

A natural norm for the above problem is

‖(u, p)‖D = ‖u‖
2
0,Ω + ‖∇.u‖

2
0,Ω + ‖p‖

2
0,Ω .

Let Vh and Qh be finite dimensional subspaces of V and Q, respectively. Then,
classical Galerkin discrete problem reads

Find (uh, ph) ∈ Vh × Qh such that:

A((uh, ph); (vh,qh)) = F (vh, qh) , ∀(vh,qh) ∈ Vh × Qh. (2.4)

Note that formulation (2.4) is stable and accurate only for velocity and pressure
approximations satisfying the inf-sup condition (see, for example [10]). In particu-
lar, this condition rules out low equal-order C0 approximations of the pressure and
velocity.

3. Pressure gradient stabilization. Let ζh be a shape regular partition of
the region Ω into quadrilateral elements K (see, for example [9]). Denote by hK the
diameter of element K and by h the maximum diameter of the elements K ∈ ζh.
The coarser mesh partition ζ2h of macro-elements M is obtained by grouping sets of
neighbouring four elements of ζh. In order to guarantee stability and converge of the
following method, we assume that for elements K ⊂ M ∈ ζ2h we have hK ∼ hM .
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We then define the equal order continuous finite element spaces

Vh = V ∩ (Qk
h)2 and Qh = Q ∩ Qk

h , (3.1)

where Qk
h denotes the standard continuous isoparametric finite element functions de-

fined by means of a mapping from a reference element. On the reference quadrilateral
the approximation functions are polynomials of degree less than or equal to k in each
variable. We shall also use P k

h to denote the space of polynomials of degree less than
or equal to k over ζh.

Additionally, we define the pressure-gradient finite element space by

Y2h = Y 2
2h = ⊕

M∈ζ2h

(Qk−1
2h (M))2. (3.2)

where Y2h = Qk−1,disc
2h (respectively P k,disc

2h ) denote the finite element spaces of dis-
continuous functions across elements of ζ2h.

Define the local projection operator πM : L2(M) → Qk−1
2h (M) by

(w − πMw, φ)M = 0, ∀φ ∈ Qk−1
2h (M) (3.3)

which generates the global projection πh : L2(Ω) → Y2h defined by

(πhw) pM= πM (w pM ), ∀M ∈ ζ2h , ∀w ∈ L2(Ω). (3.4)

The fluctuation operator κh : L2(Ω) → L2(Ω) is given by

κh = id − πh (3.5)

where, id denotes the identity operator on L2(Ω). For simplicity, we shall use the
same notation id, πM , πh, and κh for vector-valued functions. Thus, κh∇p is to be
inderstood as acting on each component of ∇p seperately.

Now, we are ready to introduce the stabilizing term

S(ph; qh) =
∑

K∈ζh

αK (κh∇ph,∇qh)K =
∑

K∈ζh

αK (κh∇ph, κh∇qh)K (3.6)

where αK are element parameters that depend on the local mesh size.
Thus, our stabilized discrete problem reads as:

Find (uh, ph) ∈ Vh × Qh such that:

Ah((uh, ph); (vh,qh)) = F (vh, qh) , ∀(vh, qh) ∈ Vh × Qh. (3.7)

with

Ah((uh, ph); (vh,qh)) = A((uh, ph); (vh,qh)) + S(ph; qh) (3.8)

In order to investigate the properties of the bilinear form Ah((uh, ph); (vh,qh)) on
the product space Vh × Qh, we introduce the mesh dependent norm

‖(vh,qh)‖
2
Dh

= ‖vh‖
2
0,Ω + ‖∇.vh‖

2
+ ‖qh‖

2
0,Ω + S(qh; qh). (3.9)
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3.1. Stability. The main idea in the analysis of local projection methods is the
construction of an interpolation operator jh : H1(Ω) → Y2h with jhv ∈ H1

0 (Ω) for all
v ∈ H1

0 (Ω), satisfying the usual approximation property

‖v − jhv‖0,K + hK |v − jhv|1,K ≤ Chs
K ‖v‖s,w(K) , ∀v ∈ Hs(w(K)), 1 6 s 6 k + 1

(3.10)
where w(K) denotes a certain local neighbourhood of K.
With the additional orthogonal property

(v − jhv, φh) = 0 , ∀φh ∈ Y2h, ∀v ∈ H1(Ω), (3.11)

Lemma 3.1. Let ih : H1(Ω) → Vh be an interpolation operator such that ihv ∈
H1

0 (Ω) for all v ∈ H1
0 (Ω) with the error estimate

‖v − ihv‖0,K +hK |v − ihv|1,K ≤ Chs
K ‖v‖s,w(K) , ∀v ∈ Hs(Ω), 1 6 s 6 k+1 (3.12)

Further, assume that the local inf-sup condition

inf
qh∈Y2h(K)

sup
vh∈Vh(K)

(vh, qh)K

‖vh‖0,K ‖qh‖0,K

> β1 (3.13)

holds for all K ∈ ζ2h, with a positive constant β1independent of the mesh size. Then,
there exists an interpolation operator jh : H1(Ω) → Y2h with the properties (3.10) and
(3.11).

Proof. For the construction of the interpolation operator jh we refer to Theorem
2.2 in ([21]).

Remark 3.2. Note that condition (3.13) can be checked using Stenberg’s tech-

nique on macro-elements M ∈ ζ2h which are equivalent to a reference element M̂.
The inf − sup condition holds if the the null space NM is such that

NM =
{
qh ∈ Y2h(M) : (vh, qh)M = 0, ∀vh ∈ Vh(M) ∩ H1

0 (M)
}

= {0} . (3.14)

Note also that the fluctuation operator κh satisfies the approximation property

‖κhq‖0,M ≤ Chl
M |q|l,M , ∀q ∈ H l(M), ∀M ∈ ζ2h, 0 6 l 6 k. (3.15)

Since, The L2- local projection πM : L2(M) → Y2h(M) becomes the identity for
the space Qk−1(M) ⊂ H l(M), and the kernel of κh contains P k−1(M) ⊂ Qk−1(M).
Then, the Bramble-Hilbert Lemma gives the approximation properties stated in as-
sumption (3.15).

Remark 3.3. The justification that the pair Vh/Y2h = Qk
h/Qk−1,disc

2h , for k >

1, satisfy (3.13) follows from (3.14) using the one-to-one property of the mapping

FM : M̂ → M combined with a positive bilinear function corresponding to the central
node of M̂ (see, [21] and [17]). Further, using the same argument we can show that

Vh/Y2h = Qk
h/P k−1,disc

2h gives also a stable approximation.
Assume that for elements K ⊂ M ∈ ζ2h we have hK ∼ hM . Then, the following

theorem guaranties stability and converge of the method. The proof given below is
found in [24].
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Theorem 3.4. Let properties (3.10), (3.11), and (3.15) hold and the parameters
αK be such that αK = Ch2

K for each element K ∈ ζh.Then, the bilinear form of the
pressure-gradient stabilized method satisfies

sup
(wh,rh)∈Vh×Qh

(wh,rh)6=0

Ah((vh, qh) ; (wh,rh))

‖(wh,rh)‖
≥ β ‖(vh,qh)‖

Dh

for some positive constant β independent of the mesh parameter h.

Proof. Let (vh,qh) ∈ Vh×Qh, and consider φ ∈ H1(Ω) ∩ L2
0(Ω) solution of the

problem ∆φ = qh in Ω with ∇φ.n = 0 on ∂Ω. Let vqh
= ∇φ, then

∇.vqh
= qh and ‖vqh

‖1,Ω 6 ‖qh‖0,Ω (3.16)

Let (wh,rh) = (vh − δvqh
,qh + δ∇.vqh

) , then

Ah((vh, qh) ; (wh,rh)) = Ah((vh, qh) ; (vh − δvqh
,qh)) + δAh((vh − δvqh

,∇.vqh
))

= Ah((vh, qh) ; (vh,qh)) + δAh((vh, qh) ; (−vqh
, qh))

+ δAh((vh, qh) ; (vh,∇.vh)) + δ2Ah((vh, qh) ; (−vqh
,∇.vh))

(3.17)

Using (3.16) It follows that

Ah((vh, qh) ; (wh,rh)) = ‖vh‖
2
0,Ω +

∑

K∈ζh

‖κh∇qh‖
2
0,K + δ[−(vh,vqh

) + ‖qh‖
2
0,Ω

+(qh,∇.vh) +
∑

K∈ζh

‖κh∇qh‖
2
0,K ] + δ[(vh,vh) − (qh,∇.vh)

+ ‖∇.vh‖
2
0,Ω + S(qh,∇.vh)] + δ2[−(vh,vqh

) + ‖qh‖
2
0,Ω

+ ‖∇.vh‖
2
0,Ω + S(qh,∇.vh)].

i.e.

Ah((vh, qh) ; (wh, rh)) = (1 + δ) ‖vh‖
2
0,Ω + (1 + δ)

∑

K∈ζh

‖κh∇qh‖
2
0,K + δ(1 + δ) ‖qh‖

2
0,Ω

+δ(1 + δ) ‖∇.vh‖
2
0,Ω − δ(1 + δ)(vh,vqh

) + δ(1 + δ)S(qh,∇.vh)

(3.18)

The sixth term of (3.18) is estimated by taking αK = Ch2
K and using the continuity
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of κh and the inverse inequality.

|S(qh,∇.vh)| 6




∑

K∈ζh

αK ‖κh∇qh‖
2
0,K





1
2




∑

K∈ζh

αK ‖κh∇(∇.vh)‖
2
0,K





1
2

6




∑

K∈ζh

αK ‖κh∇qh‖
2
0,K





1
2




∑

K∈ζh

αKC2
1h−2

K ‖κh(∇.vh)‖2
0,K





1
2

6 C1C
1
2




∑

K∈ζh

αK ‖κh∇qh‖
2
0,K





1
2

‖κh(∇.vh)‖0,Ω

6 C1C2C
1
2 ‖∇.vh‖0,Ω




∑

K∈ζh

αK ‖κh∇qh‖
2
0,K





1
2

where C1 is the inverse inequality constant and C2 the continuity constant of κh.
i.e.

|S(qh,∇.vh)| 6 C3 ‖∇.vh‖0,Ω




∑

K∈ζh

αK ‖κh∇qh‖
2
0,K





1
2

(3.19)

Thus, using Young’s inequality we obtain

−(vh,vqh
) > −

1

2ε1
‖vh‖

2
0,Ω −

ε1

2
‖vqh

‖0,Ω = −
1

2ε1
‖vh‖

2
0,Ω −

ε1

2
‖vqh

‖0,Ω

and

S(qh,∇.vh) > − |S(qh,∇.vh)| > −C3(
1

2ε2
‖∇.vh‖

2
0,Ω +

ε1

2

∑

K∈ζh

αK ‖κh∇qh‖
2
0,K .

(3.20)

Hence substituting (3.20) into (3.18) we obtain

Ah((vh, qh) ; (wh,rh)) > (1 + δ)(1 −
δ

2ε1
) ‖vh‖

2
0,Ω + δ(1 + δ)[(1 −

ε1

2
) ‖qh‖

2
0,Ω +

(1 −
C3

2ε2
) ‖∇.vh‖

2
0,Ω] + (1 + δ)(1 −

C3ε2δ

2
)

∑

K∈ζh

αK ‖κh∇qh‖
2
0,K .

Where, ε1 < 2, ε2 > C3

2 , and 0 < δ < min{2ε1,
2

C3ε2
}.

Thus, for (vh, qh) ∈ Vh × Qh we have found (wh,rh) = (vh − δvqh
,qh + δ∇.vh)

∈ Vh × Qh such that

Ah((vh, qh) ; (wh,rh)) > C4 ‖(vh, qh)‖
2
Dh

. (3.21)

Where, C4 = (1 + δ)min
{

1 − δ
2ε1

, δ(1 − ε1

2 ), δ(1 − C3

2ε2
), 1 − C3ε2δ

2

}
.
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The norm of (wh, rh) = (vh − δvqh
,qh + δ∇.vh) is estimated by:

‖(wh, rh)‖
2
Dh

6

(
‖vh‖0,Ω + δ ‖vqh

‖0,Ω

)2

+
(
‖qh‖0,Ω + δ ‖∇.vh‖0,Ω

)2

+
(
‖∇.vh‖0,Ω + δ ‖∇.vqh

‖0,Ω

)2

+
∑

K∈ζh

αK(‖κh∇qh‖0,K

+ δ ‖κh∇(∇.vh)‖)2

Hence, Young’s inequality with the continuity of κh and the inverse inequality as used
in (3.18) give

‖(wh, rh)‖
2
Dh

6 (1 + δ) ‖vh‖
2
0,Ω + δ(1 + δ) ‖vqh

‖
2
0,Ω + (1 + δ) ‖qh‖

2
0,Ω

+δ(1 + δ) ‖∇.vh‖
2
0,Ω + (1 + δ) ‖∇.vh‖

2
0,Ω + δ(1 + δ) ‖∇.vqh

‖
2
0,Ω

+(1 + δ)
∑

K∈ζh

αK ‖κh∇qh‖
2
0,K + δ(1 + δ)C2

3 ‖∇.vh‖
2
0,Ω . (3.22)

It follows that

‖(wh, rh)‖
2

6 C5 ‖(vh, qh)‖
2

(3.23)

where C5 = (1 + δ)(1 + δ + δC2
3 ).

Thus, (3.21) and (3.23) yield the required stability result

sup
(wh,rh) ∈Vh×Qh

(wh,,rh)6=0

Ah((vh, qh) ; (wh, rh))

‖(wh, rh)‖
Dh

≥ β ‖(vh, qh)‖Dh
. (3.24)

Note that the above theorem guaranties unique solvability of the stabilized dis-
crete problem (3.7). However, unlike the residual-based stabilization schemes ([18],
[16]), here, we do not have Galerkin orthogonality. As a consequence a consistency
estimate is given by the following lemma (see, [17], [25], and [26]).

Lemma 3.5. Assume that the fluctuation operator κh satisfies assumption A1. Let
(u, p) ∈ V× (Q∩H l+1(Ω)) be the solution of the Darcy problem (2.3) and (uh, ph) ∈
Vh ×Qh the solution of the stabilized problem (3.7). Then, the consistency error can
be estimated by:

A((u− uh, p − ph) ; (vh,qh)) 6 C




∑

K∈ζh

αKh2l
K |p|2l,K





1
2

for all (vh, qh) ∈ Vh×Qh.

3.2. Error Analysis. As a consequence of the above stability and consistency
results we obtain the following error estimate (see, [24]).

Theorem 3.6. Assume that the solution (u, p) of (2.4) belongs to V∩(Hs+1(Ω))2

× (Q ∩ H l+1(Ω)), 1 ≤ s, l ≤ k. Then, the following error estimate holds

‖u− uh‖0,Ω + ‖∇.(u − uh)‖0,Ω + ‖p − ph‖0,Ω ≤ C(hs+1 ‖u‖s+1,Ω + hl+1 ‖p‖l+1,Ω).

Where, C is a positive constant independent of h.
Remark 3.7. We note that because of the stability of the Qk

h − P k,disc
2h approx-

imation ([10]) the stability of (3.7) and the above error estimates hold also for such
approximation.
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