
 
 
 
Proceedings of ALGORITMY 2009 
pp.382-391 

 -382 - 

 
 

EFFICIENT HASH FUNCTION FOR DUPLICATE 
ELIMINATION IN DICTIONARIES 

 
VACLAV SKALA† , JAN HRADEK 

 
Abstract. Fast elimination of duplicate data is needed in many areas, especiall y in the textual data 
context. A solution to this problem was recently found for geometrical data using a hash function 
to speed up the process. The usage of the hash function is extremely eff icient when incremental 
elimination is required especially for processing large data sets.  In this paper a new construction 
of the hash function is presented, giving short clusters with few colli sions only. The proposed 
hash function is not a perfect hash function nevertheless it gives similar properties to it. The hash 
function used takes advantage of the relatively large amount of available memory on modern 
computers, and works well  with large data sets.  
 Experiments have proved that different approaches should be used for different types of 
languages, because the structures of Slavonic and Anglo-Saxon languages are different. 
Therefore, tests were made with a Czech dictionary having 2.5 milli on words and an English 
dictionary having 130 thousands words. Algorithm was also tested for a few other languages. 
Experimental results are presented in this paper as well . 
 
Keywords.  Hash function, hash table, duplicate elimination, data structure, dictionary  
 
AMS subject classification.  65Y20, 68P05, 68P10, 68P20 
 
 1. Notation 
 
M  - the number of items in the original data set with duplicates, 
N  - the number of items in the final data set after the duplicate elimination, 
I   - the number of items in a cluster (also stated as the length of a cluster),  
Ia, Im - the average cluster length, resp the maximal cluster length, 
CI  - the number of clusters of length I,  
Q - the value of the absolute criterion,  
Q' - the value of the relative criterion, 
h(x), HS - the hash function value, resp. the hash table length, 
c - the multiplication coeff icient of the proposed hash function, 
q  - the hash function coeff icient of the proposed hash function, 
x - the processed string from dictionary, 
xi - an alphabetical value (A=0, B=1, … ) of the character in the string x at the 

position i, 
Lx Lmax - the length of the string x, resp. maximal length, 
n - the number of characters in the given alphabet, 
f - the load factor of the hash function, 
α , β , γ  - the coeff icient of the recent hash function. 

                                                           
† Department of Computer Science and Engineering, Faculty of Applied Sciences, University of 
West Bohemia, Plzen, Czech Republic (http://herakles.zcu.cz/~skala) 



EFFICIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES  
 

 
 

383

 2. Introduction. Many problems require fast elimination of duplicate data. 
Resolving this problem can be very diff icult, especiall y as the size of the data set 
increases. The solution also depends on how the data set is to be processed, e.g. if it is 
to be processed incrementall y or in a batch. Several approaches can be taken to solve 
this problem. Some strategies that can be used are presented in TABLE 1. 
 
The key advantages of hash function use are: 
•  very low expected complexity (O(1) expected ) for a query if the item is already 

stored in the hash data structure,  
•  it is easy to implement. 
 

TABLE 1 
Complexity of various approaches to duplicate elimination 

 
 Batch processing 

complexity (for all  
items) 

Insert one item with 
duplicate elimination 

Sort and duplicate elimination O(M lgM) O(N) 
Using a tree including balancing O(M lgM) O(lgN) without balancing 
Hash function use (expected)  O(M*Ia) O(Ia) 
Hash function use (the worst case) O(N2) O(N) 
 
There are two approaches to the hash function design: 
 
1. The perfect hash function design is applicable to the final data sets that are not 

expected to change, and its computation is of O(M) expected complexity for the 
given data set [9]. The perfect hash function gives a unique index for each item from 
the data set. The minimal perfect hash function is the perfect hash function for which 
the hash table has no holes, i.e. the size of the hash table is equal to the number of 
items. This hash function can be made for a static list only and it is usuall y referred 
to as the dictionary problem [1]. 

2. The hash function design is based on experience with recently designed hash 
functions. Such an approach must be used in the case where the hash table is build 
incrementall y. However some problems will  occur: 
•  To design a hash function properly, the fundamental requirement is that the 

number of colli sions must be as small  as possible. Colli sion occurs when 
different items are transformed to the same index to the hash table.  

•  There can be a problem with memory requirements as the size of the hash table 
rises, particularly as the functionalit y of the hash function depends on the hash 
table length. 

 
The hash function has been used effectively in several geometrical applications [2], for 
the duplicate elimination among geometric entities. The experiments with geometric 
applications made recently [10], [11] raised a question whether a similar approach can 
be taken for string-based problems as well , especiall y for large data sets and for batch 
and incremental processing as well . 



V. SKALA AND J.HRÁDEK 384

 3. Previous work. The perfect hash function cannot be used for cases when the 
data sets are built  incrementall y. In these cases a hash function design is based on 
experience. Nevertheless this approach is not reliable as there is no always-optimal hash 
function and final results might be quite strange.  
 The recommendation for the hash function h(x) is usuall y of the form [6]: 
 
(1)  ( )( ) * * * ...index h x y z HSα β γ= = + + +x mod  

where:  
α , β , γ    - are the coeff icients - mostly prime numbers are taken, 
x, y, z  - are the values that form a string, 
index  - is the evaluated index to the hash table, see FIG. 1. 

When this hash function is used it is important to anticipate colli sions, and to prepare 
effective solutions for these cases. If parameters α , β , γ   are not selected properly long 
clusters might be produced, causing unwieldy sequential searches. Re-hashing, overflow 
areas and chaining can be used to solve colli sions effectively, see [3], [4]. In our 
approach the chaining technique in a separate memory is used, see FIG. 1. If the hash 
function is well  designed, and the maximal cluster length is close to one, then a query if 
the item is already stored has expected O(1) complexity and duplicate elimination is 
therefore of O(M) expected complexity for the whole data set. 
 

 
index = h(x) 

Hash table 

Chains 
Strings x 

x index 

 
 

FIG. 1. The data structures used 
 
Properties of hash function. The most important hash function properties are:   

•  to keep the cluster lengths as low as possible, 
•  to cope well  with large data sets, 
•  to keep the hash function simple to speed up evaluation, 
•  to use all  cells of the hash table as much as possible, i.e. to minimize the number 

of empty cells. 
To be able to compare different hash functions it is necessary to introduce some general 
criteria. Let us assume that there are already N items stored in the data structure and I is 
the cluster length. Three basic situations can occur when a new item, i.e. a string, is 
inserted to the structure: 

1. The item is not stored in the data structure and the appropriate cluster is empty. 
The item is inserted to this cluster.  The cost of this operation for all  such items 
can be expressed as  

 (2) 01 =Q  



EFFICIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES  
 

 
 

385

2. The item is not stored in the data structure so the whole cluster is to be 
searched and the item is to be inserted to an appropriate cluster.  The cost of 
this operation for all  such items can be expressed as (because the cluster of the 
length I must be searched for all  items in this cluster I-times, value I is powered 
by two) 

 (3) ∑
=

=
mI

I
ICIQ

1

2
2   

3. The item is stored already in the data structure so the corresponding cluster is 
to be searched and the item is not inserted to the appropriate cluster.  Because 
only half of the cluster is to be searched on average, the cost of this operation 
for all  such items can be expressed as 

 (4) ∑
=

=
mI

I
ICIQ

1

2
3 2

1
 

 It is necessary to point out that the cost of the hash function evaluation has not been 
considered, as it is the same for all  cases. The cost of item insertion to a cluster was 
omitted1. The final criterion can be expressed as  

(5)  ∑
=

=++=
mI

I
ICIQQQQ

1

2
321  

2
3  

Empty clusters are not considered by this criterion because the hash table length HS 
depends on the number of items stored.  It can be seen that the criterion Q depends on 
the number of items. We used a relative criterion Q’  to evaluate properties of hash 
functions for different data sets with different sizes defined as  

(6)  
N

Q
Q ='  

 Several experiments with coeff icients α , β , γ   for the hash function defined by 
Equation 1 were made recently. These coeff icients were taken as decimal numbers and 
hash function behavior was tested for large data sets with very good results being 
obtained for geometrical applications [8], [10]-[12]. These results encouraged us to 
apply the hash functions to large dictionaries. For these purposes of this paper two 
dictionaries, Czech and English, were used [5]. The proposed approach was also 
experimentall y proved on French, German, Hebrew and Russian dictionaries as well . 
 
 4. Proposed solution. There were several significant results from the previous 
experiments with large geometrical data sets. The most important assumptions of our 
approach have been: 

•  large available memory for applications is considered, 
•  the load factor f (will  be defined later in this paper) should be smaller than or 

equal to 0.5, 
•  the hash function value should be in the interval of < 0; 232-1 > before the 

modulo operation is used to get a better spread for all  considered items, 
•  the expected number of items to be stored is in the range  < 105; 107 > or higher, 

                                                           
1 The item is always placed at the beginning of the cluster 



V. SKALA AND J.HRÁDEK 386

•  hash functions used for strings must be different from hash function used in 
geometrical applications, because strings can have various length, i.e. 
non-constant dimensionalit y, and characters are taken from a discrete value set2, 

•  non-uniform distribution of characters in dictionaries will  not    be considered in 
order to obtain reasonable generalit y and simplicity.  

 
Hash table size. The size of the hash table depends on the number of items to be stored 
in the data structure and also on the load factor f. The load factor f is a ratio of the 
number of items (strings) stored and the total length of the hash table. The 
recommended value for the load factor is 0.5 [7]. The hash table size is determined as  

(7)  









=
)

1
(log2

2
N

fHS  
 
If the number of unique elements N in the data set is unknown, it is possible to use M, 
i.e. the number of elements with duplicates, or to take some estimation. The relationship 
between hash table size and the number of elements has been widely studied 
[2], [10]-[12]. 
 
Hash function. A hash function for strings must be designed with a different strategy as 
strings consist of different number of characters represented by discrete values and the 
number of characters in an alphabet is limited, i.e. the dimension varies and the range of 
values is fixed. On the other hand a simple function is needed in spite of the fact that the 
string length is not constant. Considering this fact a simple polynomial function has 
been selected, generall y defined as: 

(8)  ( )
1

0

xL
i

i
i

h x c xq HS
−

=

 
=  
 
∑ mod  

The form of this hash function is based on an idea that all  possible strings should be 
transformed into different indices in the hash table. It is well  known that using the 
modulo operation (mod) improves the spread of items over the hash table. If the length 
of the hash table is the power of two the modulo operation can be implemented using 
binary and operation. Because of the various length of strings we need to make this sum 
convergent and therefore q values must be taken from the interval of (0; 1). Because of 
that it is possible to compute the maximal value of h (x) in Equation 8: 

(9)  ( ) ( ){ } max
max max

1x

L
h x h x

q∀
= =

−
 

 
Also the constant c must be determined as well . The purpose of this constant is to obtain 
the maximal range of logical indices that are transformed to the actual size of the hash 
table HS using the modulo operation. It means that the value of the hash function h(x) is 
mapped to the interval <0; 232-1>  if a 32 bits representation for integer is used. The 
constant c is computed as: 

                                                           
2 In geometrical applications the dimensionality is usuall y constant and values are from an 
“unlimited”  value set (a set of possible values in FLOAT / DOUBLE representation) 



EFFICIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES  
 

 
 

387

(10)  
( )

( )
( ) ( )32 32

max max

2 1 2 1 1 q
c

h x L

− − −
= =  

 
If the hash table size HS is the power of 2 then the mod function can be replaced with 
binary and operation that is faster. 

(11)  ( ) ( )
1

0

1
xL

i
i

i

h x c xq HS
−

=

 
= − 
 
∑ and  

This function works well  for the Engli sh dictionary but for the Czech dictionary the 
results were not so good, because of the different structure of the language. The Czech 
language uses prefix and suff ix connected with the kernel of the word as all  Slavonic 
languages do. Because the suff ix varies more (the characters and also its length) in 
Slavonic languages than the prefix and the root, it is better to process strings from the 
end. 
 Therefore the hash function for the Czech language is actuall y computed similarly 
but starting from the end to the beginning of the string. The computing complexity of 
this hash function is O(Lx). 
 
5. Experiments. Both hash functions were tested using Czech and Engli sh ISPELL 
dictionaries [5]. The data sets for both languages were taken from the ispell package 
for spell  checking. The Czech dictionary contains approx. 2.5 * 106 words and the 
English dictionary contains approx. 1.3 * 105 words. Several experiments were made 
including slight modifications for the Czech language.  

 

C z ech  dictionary (end)

1

10

100

1000

10000

0 0,2 0,4 0,6 0,8 1

C oef f icients q

Re
la

ti
ve

 c
ri
te

ri
o
n
 Q
'

 
FIG. 2. Relative criterion for Czech dictionary 

(Ia : min. 1.15, Im : min. 6) 
 



V. SKALA AND J.HRÁDEK 388

E nglish  dictionary (start)

1

10

100

1000

10000

0 0,2 0,4 0,6 0,8 1

C oef f icients q

Re
la

ti
ve

 c
ri
te

ri
o
n
 Q
'

 
FIG. 3. Relative criterion for English dictionary 

(Ia : min 1.13, Im : min 4) 
 
The properties of the hash function are very poor at the interval (0; 0.3). This behavior 
is caused by the non-uniform frequency of characters in words. The “perfect”  
overlapping of some words causes the peaks for the multipliers of 0.125. For example: 
the strings “ab” , ”aac”, “aaae”, … will  have exactly the same value.   
 To improve the properties of the hash function and reduce overlapping the 
coeff icient q should be an irrational number. However it is not possible to store an 
irrational number on the computer in the usual way. Thus in the actual implementation 
the irrational coeff icient q is approximated using the closest available number on 
a computer with 64 bit double type. In this instance 17 decimal places were used for the 
representation of q. The experiments were repeated again for “ irrational”  values of q in 
the interval q∈ (0,4; 0,9). Results of this experiment are presented in FIG. 4-5. 
 It can be seen from the graphs that the properties of the hash function were 
improved and the relative criterion Q’  has lower value. 

 

C z ech  dictionary (end)

0,6445

0,645

0,6455

0,646

0,6465

0,647

0,6475

0,4 0,5 0,6 0,7 0,8 0,9

" Irrational"  coef f icients q

Re
la

ti
ve

 c
ri
te

ri
o
n
 Q
'

 
FIG. 4. Relative criterion for Czech dictionary 

 



EFFICIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES  
 

 
 

389

E nglish  dictionary (start)

0,628

0,63

0,63 2

0,63 4

0,63 6

0,63 8

0,4 0,5 0,6 0,7 0,8 0,9

" Irrational"  coef f icients q

Re
la

ti
ve

 c
ri
te

ri
o
n
 Q
'

 
FIG. 5. Relative criterion for English 

 
Varying the size of the hash table. Some small  improvement can be expected if the 
size of the hash table is increased and dramatic changes in behavior can be expected if 
the hash table is shorter than a half of the designed length. Such behavior has been 
proved in another experiments, see FIG. 6-7; the mark “X”  is used for comparison only. 
 Note that the sizes of the hash table varied in interval <1,048,576; 33,554,432> 
for the Czech dictionary and <65,536; 2,097,152> for the English dictionary, according 
do Equation 7. 

 

C z ech  dictionary (end)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 1 2 3 4
multip le of th e length  of th e h ash  table

Re
la

ti
ve

 c
ri
te

ri
o
n
 Q
'

 
FIG. 6. Relative criterion for Czech dictionary when varying size of the hash table 

(Ia : 1.02-2.58, Im : 4-12) 



V. SKALA AND J.HRÁDEK 390

E nglish  dictionary (start)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 1 2 3 4

multip le of th e length  of th e h ash  table

Re
la

ti
ve

 c
ri
te

ri
o
n
 Q
'

 
FIG. 7. Relative criterion for English dictionary when varying size of the hash table 

(Ia : 1.02-2.36, Im : 3-10) 
 

Additional experiments. Conclusions drawn from recent experiments were also 
supported by additional experiments with other languages. In TABLE 2 are the general 
properties of the dictionaries of the selected languages we used. 
 

TABLE 2 
The general properties of additional languages 

Language M N Designed HS 
French 285 992 220 291 524 288 
German 309 838 294 899 1 048 576 
Hebrew 10 669 10 669 32 768 
Russian 963 212 956 715 2 097 152 

 
The selected dictionaries were tested using the same hash functions as the Czech and 
English dictionaries. The Russian dictionary was processed like the Czech dictionary 
(both of them are Slavonic languages), i.e. the words are processed from the end. The 
hash function that processed words from the beginning was used for the other 
dictionaries. The results obtained are presented in TABLE 3. 
 

TABLE 3 
The properties of proposed hash function for additional languages 

Language Ia Im Q’ 
French 1,22 5-7 ~0,707 
German 1,15 5-8 ~0,638 
Hebrew 1,16 4-6 ~0,652 
Russian 1,24 6-8 ~0,726 

 
It is obvious from TABLE 3 that the behavior of the proposed hash function with other 
languages is similar to that with Czech and Engli sh dictionaries. 



EFFICIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES  
 

 
 

391

6. Conclusion. This paper presents a new hash function with stable properties 
convenient for textual data processing. The behavior of the hash function has been 
tested on Czech and English dictionaries as these two languages belong to different 
language groups. Additional experiments made with four other languages proved 
properties of the proposed approach. 
 For the proposed data structure the optimal hash table length was derived and also 
the recommendations for q values were verified. It can be recommended to take value q 
as a fraction of two prime numbers, e.g. 5/13. It was shown that the Slavonic languages 
(in proposed experiments Czech and Russian) should be processed from the end because 
of the different language structure (more suff ixes and fewer prefixes combined with 
each word). Also the influence of the hash table length was experimentall y verified.  
 It has been shown that the proposed hash function can be used for incremental 
processing, i.e. the hash table size designed from the initial size of the data set is also 
satisfying if the size of the data set is doubled. The proposed hash function can be used 
in situations where the final size of the data set is known only approximately and it also 
must be guaranteed that the hash function has good properties even for larger data sets.  
The proposed hash function has low computational complexity. With the average cluster 
length ~1.17 the complexity O(M*Ia) is very near to the O(M) complexity. 
 
 7. Acknowledgement. The authors would li ke to thank to all  who contributed to 
this work, especiall y to colleagues, MSc. and PhD. students at the University of West 
Bohemia in Plzen who have stimulated this work. The project was supported by the 
project VIRTUAL 2C006 of the Ministry of Education of the Czech Republic. 
 

REFERENCES 
[1] Gettys, T. (2001) : Generating perfect hash function, Dr. Dobb's Journal, Vol. 26. 

No.2, pp.151-155.  
[2]  Glassner,A. (1994): "Building Vertex Normals from an Unstructured Polygon 

List",  Graphics Gems, IV, pp.60 - 73. Academic Press, Inc., Cambridge. 
[3]  Horowitz,E., Sahni,S.: Fundamentals of Data Structures, Pitman Publ.Inc., 1976 
[4] Morris,J., Hash Tables: http://swww.ee.uwa.edu.au/~plsd210/ds/hash_tables.html 
[5]  SPELL Dictionaries, http://ficus-www.cs.ucla.edu/geoff/ispell -dictionaries.html 
[6] Knuth,D.,E. (1969-90)  The Art of Computer Programming, vol. 3, Searching and 

sorting, Addison-Wesley. 
[7]  Korfhage,R.,R., Gibbs,N.E. (1987) : Principles of Data Structures and Algorithms 

with Pascal, Wm.C.Brown Publishers 
[8]  Kuchar,M., (supervisor V. Skala) (2000) : Construction of the triangular meshes 

from STL Data Format and Stereoscopic visualization, MSc. thesis. University of 
West Bohemia, Plzen, Czech Republic. 

[9] Pagh,R. (1663) : Hash and Displace: Eff icient Evaluation of Minimal Perfect Hash 
Functions WADS '99, LNCS, pp.49-54.  Springer-Verlag. 

[10]  Skala,V., Kuchar,M. (2000): Hash Function for geometry Reconstruction in Rapid 
Prototyping, Algoritmy 2000 Int.Conf. proceedings, pp.279-384, Slovakia.  

[11]  Skala,V., Kuchar,M. (2001):The Hash Function and Principle of Dualit y, IEEE 
CGI proceedings, pp. 167-174, 2001, Hong  Kong. 

[12] Hradek,J., Skala,V. (2003): Hash Function and Triangular mesh Reconstruction, 
Vol.29, No.6., pp.741-751, Computers & Geosciences, Pergamon Press, 2003 


