Procealings of ALGORITMY 2009
pp.382391

EFFICIENT HASH FUNCTION FOR DUPLICATE
ELIMINATION IN DICTIONARIES

VACLAV SKALAT, JAN HRADEK

Abstract. Fast elimination of dudicate datais needed in many aress, espedaly in the textual data
context. A solution to this problem was recently foundfor geometricd data using a hash function
to speead up the process The usage of the hash function is extremely efficient when incremental
diminationis required espedally for processng large data sets. In this paper a new construction
of the hash function is presented, giving short clusters with few collisions only. The proposed
hash function is not a perfed hash function neverthelessit gives similar properties to it. The hash
function used takes advantage of the relatively large amourt of available memory on modern
computers, and works well with large data sets.

Experiments have proved that different approaches shoud be used for different types of
langueges, becaise the structures of Slavonic and Anglo-Saxon langueges are different.
Therefore, tests were made with a Czech dictionary having 2.5 milli on words and an English
dictionary having 130 thousands words. Algorithm was also tested for a few other languages.
Experimental results are presented in this paper aswell.

Keywords. Hash function, hash table, dugi cate elimination, data structure, dictionary

AM S subject classification. 65Y20, 68P05, 68P10, 68P20
1. Notation

M -the number of itemsin the origina data set with dugicaes,
N -the number of itemsin the final data set after the dupicate elimination,
I - the number of itemsin a cluster (also stated as the length of a cluster),
la, Im- the average cluster length, resp the maximal cluster length,
C, -thenumber of clusters of length I,
Q -thevalue of the absolute criterion,
Q' -thevalue of the relative criterion,
h(x), HS- the hash function value, resp. the hash table length,
¢ -themultiplicaion coefficient of the propased hash function,
g -thehash function coefficient of the proposed hash function,
X -theprocessed string from dictionary,
X -anaphabeticd value (A=0, B=1, ...) of the charader in the string x at the
positioni,
Ly Lmax - the length of the string x, resp. maximal length,
n -thenumber of charadersin the given alphabet,
f - the load fadtor of the hash function,
- the coefficient of the recent hash function.

" Department of Computer Science and Engineeing, Faailty of Applied Sciences, University of
West Bohemia, Plzen, Czech Repullic (http://herakles.zcu.cz/~skala)

-382-

EFFCIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES 383

2. Introduction. Many problems require fast elimination of dupicae data
Resolving this problem can be very difficult, espedaly as the size of the data set
increases. The solution also depends on how the data set is to be processed, e.g. if it is
to be processed incrementally or in abatch. Several approadies can be taken to solve
this problem. Some strategies that can be used are presented in TABLE 1.

The key advantages of hash function use are:
very low expeded complexity (O(1) expeded) for a query if the item is arealy
stored in the hash data structure,
it is easy to implement.

TABLE 1
Complexty of various approaches to dugi cate elimination

Batch processng Insert oneitem with
complexity (for all dugicate elimination
items)
Sort and dugli cae elimination O(M IgM) O(N)
Usingatreeincludingbalancing | O(M IgM) O(IgN) withou balancing
Hash function use (expeded) Oo(M*1,) O(l,)
Hash function use (the worst case) | O(N?) O(N)

There are two approaches to the hash function design:

1. The perfed hash function design is applicable to the final data sets that are not
expeded to change, and its computation is of O(M) expeded complexity for the
given data set [9]. The perfed hash function gives a unique index for ead item from
the data set. The minimal perfed hash functionisthe perfed hash function for which
the hash table has no hales, i.e. the size of the hash table is equal to the number of
items. This hash function can be made for a static list only and it is usually referred
to asthe dictionary problem [1].

2. The hash function design is based on experience with recently designed hash
functions. Such an approach must be used in the case where the hash table is build
incrementally. However some problems will occur:

To design ahash function properly, the fundamental requirement is that the
number of collisions must be as small as possble. Collision occurs when
different items are transformed to the same index to the hash table.

There can be a problem with memory requirements as the size of the hash table
rises, particularly as the functionality of the hash function depends on the hash
table length.

The hash function has been used effedively in several geometricd applicaions [2], for
the dupicate elimination among geometric entities. The experiments with geometric
applications made recently [10], [11] raised a question whether a similar approach can
be taken for string-based problems as well, espedally for large data sets and for batch
and incremental processng as well.

V. SKALA AND JHRADEK 384

3. Previous work. The perfed hash function cannat be used for cases when the
data sets are built incrementally. In these cases a hash function design is based on
experience Neverthelessthis approadc is nat reliable as there is no always-optimal hash
function and final results might be quite strange.

The recommendation for the hash function h(x) is usually of the form [6]:

1 index h(x) *x *y *z ..modHS
where:
v - are the coefficients - mostly prime numbers are taken,
XY, Z - are the values that form a string,
index - isthe evaluated index to the hash table, seeFiG. 1.
When this hash function is used it is important to anticipate colli sions, and to prepare
effedive solutions for these cases. If parameters , , are not seleded properly long

clusters might be produced, causing unwieldy sequential searches. Re-hashing, overflow
aress and chaining can be used to solve collisions effedively, see [3], [4]. In our
approach the chaining technique in a separate memory is used, see FIG. 1. If the hash
functionis well designed, and the maximal cluster length is close to one, then a query if
the item is already stored has expeded O(1) complexity and dupicae elimination is
therefore of O(M) expeded complexity for the whole data set.

X 5 index=h(x) index
Hash table v
| (o]
° Chains
X Strings

FiG. 1. The data structures used

Properties of hash function. The most important hash function properties are:
to keep the cluster lengths as low as possble,
to cope well with large data sets,
to keep the hash function simple to speed up evaluation,
to use all cdls of the hash table as much as possble, i.e. to minimize the number
of empty cdls.
To be able to compare diff erent hash functionsit is necessary to introduce some general
criteria. Let us assume that there are already N items stored in the data structure and | is
the cluster length. Threebasic situations can occur when anew item, i.e. astring, is
inserted to the structure:
1. Theitemisnat stored in the data structure and the appropriate cluster is empty.
Theitemisinserted to this cluster. The cost of this operation for all such items
can be expressed as

2 Q O

EFFCIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES 385

2. The item is not stored in the data structure so the whole cluster is to be
seached and the item is to be inserted to an appropriate cluster. The cost of
this operation for al such items can be expressed as (becaise the cluster of the
length | must be searched for all itemsin this cluster I-times, value | is powered
by two)

lm
@) Q dlI*c
11

3. Theitemis stored already in the data structure so the correspondng cluster is
to be seached and the item is nat inserted to the appropriate cluster. Because
only half of the cluster is to be seached on average, the cost of this operation
for al such items can be expressed as

Im
@ Q Z% I’C,
1
It is necessary to point out that the cost of the hash function evaluation has not been
considered, as it is the same for all cases. The cost of item insertion to a cluster was
omitted®. The final criterion can be expressd as
o, 3

(5) Q Ql Qz Q3 Zalzcl

Empty clusters are not considered by this criterion because the hash table length HS
depends on the number of items stored. It can be seen that the criterion Q depends on
the number of items. We used a relative criterion Q' to evaluate properties of hash
functions for different data sets with diff erent sizes defined as

1
6 Q Q
© N

Several experiments with coefficients , for the hash function defined by
Equation 1 were made recently. These coefficients were taken as dedmal numbers and
hash function behavior was tested for large data sets with very good results being
obtained for geometricd applications [8], [10]-[12]. These results encouraged us to
apply the hash functions to large dictionaries. For these purpases of this paper two
dictionaries, Czech and English, were used [5]. The proposed approach was also
experimentall y proved on French, German, Hebrew and Russan dictionaries as well.

4. Proposed solution. There were several significant results from the previous
experiments with large geometricd data sets. The most important assumptions of our
approach have been:

large avail able memory for applicaionsis considered,

the load factor f (will be defined later in this paper) shoud be smaller than or
equal to 0.5,

the hash function value shoudd be in the interval of <0; 2°-1> before the
moduo operationis used to get a better spread for all considered items,

the expeded number of items to be stored isin the range < 10°; 10’ > or higher,

! Theitemis aways place at the beginning of the cluster

V. SKALA AND JHRADEK 386

hash functions used for strings must be different from hash function used in
geometricd applications, becaise strings can have various length, i.e
non-constant dimensionality, and charaders are taken from a discrete value set?,
nonuniform distribution of charadersin dictionaries will not be considered in
order to obtain reasonable generality and simpli city.

Hash table size. The size of the hash table depends on the number of items to be stored
in the data structure and also on the load fador f. The load fador f is a ratio of the
number of items (strings) stored and the total length of the hash table. The
recommended value for the load fador is 0.5 [7]. The hash table sizeis determined as

{'092(%'\‘)-'
() HS 2

If the number of unique elements N in the data set is unknawn, it is posdgble to use M,
i.e. the number of elements with dugicates, or to take some estimation. The relationship
between hash table size and the number of elements has been widely studied

(2], [10]-{12.

Hash function. A hash function for strings must be designed with a diff erent strategy as
strings consist of different number of charaders represented by discrete values and the
number of charadersin an alphabet is limited, i.e. the dimension varies and the range of
valuesis fixed. On the other hand a simple functionis needed in spite of the fad that the
string length is not constant. Considering this fad a simple polynomial function has
been seleded, generally defined as:

L1
(8) h x ch)gq'Jmod HS
i0

The form of this hash function is based on an ideathat all possble strings shoud be
transformed into different indices in the hash table. It is well known that using the
moduo operation (mod) improves the spread of items over the hash table. If the length
of the hash table is the power of two the moduo operation can be implemented using
binary and operation. Because of the various length of strings we need to make this sum
convergent and therefore g values must be taken from the interval of (0; 1). Because of
that it is posshble to compute the maximal value of h (x) in Equation 8:

9) h. X max h X l‘ﬂ

q

Also the constant ¢ must be determined as well. The purpase of this constant isto obtain
the maximal range of logicd indices that are transformed to the adual size of the hash
table HS using the moduo operation. It means that the value of the hash function h(x) is
mapped to the interval <0; 2°%1> if a 32 bits representation for integer is used. The
constant ¢ is computed as.

2 |n geometricd applicaions the dimensiondlity is usualy constant and values are from an
“unlimited” value set (a set of possble valuesin FLOAT / DOUBLE representation)

EFFCIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES 387

22 1 22 11q
hmax X Lmax

(10) c

If the hash table size HS is the power of 2 then the mod function can be replacal with
binary and operationthat is faster.

L1
11 h x {cz xq'Jand HS 1
i0

This function works well for the Engdlish dictionary but for the Czed dictionary the
results were not so good because of the different structure of the language. The Czed
language uses prefix and suffix conreded with the kernel of the word as all Slavonic
languages do. Because the suffix varies more (the charaders and also its length) in
Slavonic languages than the prefix and the roat, it is better to processstrings from the
end.

Therefore the hash function for the Czed language is actually computed similarly
but starting from the end to the beginning of the string. The computing complexity of
this hash functionis O(L,).

5. Experiments. Both hash functions were tested using Czec and English ISPELL
dictionaries [5]. The data sets for both languages were taken from the i spel | padckage
for spell chedking. The Czed dictionary contains approx. 2.5* 10° words and the
English dictionary contains approx. 1.3* 10° words. Several experiments were made
including dlight modificaions for the Czech language.

ec dictionary end
10000

1000 \
100 \
ol N\

0 02 04 06 08 1
oeicientsq

elati ecriterion

FiG. 2. Relativecriterion for Czech dictionary
(I3 : min. .15, I, : min. 6)

V. SKALA AND JHRADEK 388

nglis dictionary start
10000
1000
c
ke
£ 100
o
g |
© 10
o \\LN_
1 : : : :
0 02 04 06 08 1
oeicientsq

FiG. 3. Relativecriterion for English dictionary
(Ig: mn 113 I, : min4)

The properties of the hash function are very poa at the interval (0; 0.3). This behavior
is caused by the nonuniform frequency of charaders in words. The “perfed”
overlapping of some words causes the pedks for the multipliers of 0.125. For example:
the strings “ab”, "aac”, “aaae’, ... will have exadly the same value.

To improve the properties of the hash function and reduce overlapping the
coefficient g shoud be an irrational number. However it is not possble to store an
irrational number on the computer in the usual way. Thus in the adual implementation
the irrational coefficient q is approximated using the closest available number on
acomputer with 64 bit doulde type. In thisinstance 17 dedmal places were used for the
representation of g. The experiments were repeaed again for “irrational” values of g in
theinterval g (0,4; 0,9). Results of this experiment are presented in FIG. 4-5.

It can be seen from the graphs that the properties of the hash function were
improved and the relative criterion Q' has lower value.

ec dictionary end
06475
0647 -
06465 A
0646 -
06455 -
0645
06445

elati ecriterion

04 05 06 07 08 0
rrationalcoe icientsq

FiG. 4. Relativecriterion for Czech dictionary

EFFCIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES 389

nglis dictionary start

06 8

06 6
c
8 064 d 4 A 4
£ V\JN\!MUU\WUWW\A J\
§ 062 A I V U ! v||”v'v
< 06

0628 : : : :

04 05 06 07 08 0
rrationalcoe icientsq

FiG. 5. Relativecriterion for English

Varying the size of the hash table. Some small improvement can be expeded if the
size of the hash table is increased and dramatic changes in behavior can be expeded if
the hash table is shorter than a half of the designed length. Such behavior has been
proved in ancther experiments, seeFIG. 6-7; the mark “X” is used for comparison only.

Note that the sizes of the hash table varied in interval <1,048576, 33,554432>
for the Czed dictionary and <65,536, 2,097,152> for the English dictionary, acarding
do Equetion 7.

ec dictionaryend

elati ecriterion
eNoNoe]
o
L

0 T T

0 1 2 4
multi leot elengt ot e as table

FiG. 6. Relativecriterion for Czech dictionary when varying size of the hash table
(I,: 1.02-2.58, |, : 4-12)

V. SKALA AND JHRADEK 390

nglis dictionarystart

18
16

i
N

T~

08
06 |
04

elati ecriterion

0 T T
0 1 2 4
multi leot elengt ot e as table

FIG. 7. Relativecriterion for English dictionary when varying size of the hash table
(I,:1.02-2.36, I, : 3-10)

Additional experiments. Conclusions drawn from recent experiments were aso
suppated by additional experiments with other languages. In TABLE 2 are the general
properties of the dictionaries of the seleded languages we used.

TABLE 2
The general properties of addtiond languages
Language M N Designed HS
French 285992 220291 524288
German 309838 294899 1048576
Hebrew 10669 10669 32768
Rusdgan 963212 956715 2097152

The seleded dictionaries were tested using the same hash functions as the Czed and
English dictionaries. The Russan dictionary was processed like the Czed dictionary
(bath of them are Slavonic languages), i.e. the words are processed from the end. The
hash function that processed words from the beginning was used for the other
dictionaries. The results obtained are presented in TABLE 3.

TABLE 3
The properties of proposed hash function for addtiond languags
Language la I Q
French 1,22 5-7 ~0,707
German 1,15 5-8 ~0,638
Hebrew 1,16 4-6 ~0,652
Rusgan 1,24 6-8 ~0,726

It is obvious from TABLE 3 that the behavior of the proposed hash function with other
languagesis simil ar to that with Czec and English dictionaries.

EFFCIENT HASH FUNCTION FOR DUPLICATE ELIMINATION IN DICTIONARIES 391

6. Conclusion. This paper presents a new hash function with stable properties
convenient for textual data processng. The behavior of the hash function has been
tested on Czech and Endlish dictionaries as these two languages belong to different
language groups. Additional experiments made with four other languages proved
properties of the proposed approach.

For the propaosed data structure the optimal hash table length was derived and also
the recommendations for g values were verified. It can be reacommended to take value q
as a fradion of two prime numbers, e.g. 5/13. It was shown that the Slavonic languages
(in propased experiments Czed and Russan) shoud be processed from the end becaise
of the different language structure (more suffixes and fewer prefixes combined with
eadt word). Also the influence of the hash table length was experimentall y verified.

It has been shown that the proposed hash function can be used for incremental
procesdng, i.e. the hash table size designed from the initial size of the data set is also
satisfying if the size of the data set is douled. The propased hash function can be used
in situations where the final size of the data set is known only approximately and it also
must be guaranteed that the hash function has goodproperties even for larger data sets.
The propaosed hash function has low computational complexity. With the average cluster
length ~1.17 the complexity O(M*1,) isvery nea to the O(M) complexity.

7. Acknowledgement. The authors would like to thank to all who contributed to
this work, espedally to colleagues, MSc. and PhD. students at the University of West
Bohemia in Plzen who have stimulated this work. The projed was suppated by the
projed VIRTUAL 2C006 of the Ministry of Educaion of the Czet Repulic.

REFERENCES

[1] Gettys, T. (200]) : Generating perfed hash function, Dr. Dobbs Journal, Vol. 26.
No.2, pp.151-155.

[2] Glassner,A. (1994: "Building Vertex Normals from an Unstructured Polygon
List", Graphics Gems, IV, pp.60 - 73. Academic Press Inc., Cambridge.

[3] HorowitzE., Sahni,S.: Fundamentals of Data Sructures, Pitman Publ.Inc., 1976

[4] Morris,J., Hash Tables: http://snww.eeuwa.edu.au/~plsd210ds/hash_tables.html

[5] SFELL Dictionaries, http://ficus-www.cs.ucla.edu/geoff/ispell -dictionaries.html

[6] Knuth,D.E. (196990) The Art of Computer Programning, vol. 3, Searching and
sorting, Addison-Wesley.

[7]1 KorfhageR.,R., GibbsN.E. (1987 : Principles of Data Structures and Algorithms
with Pascal, Wm.C.Brown Publishers

[8] Kuchar,M., (supervisor V. Skala) (2000 : Construction of the triangudar meshes
from STL Data Format and Stereoscopic visualization, MSc. thesis. University of
West Bohemia, Plzen, Czech RepuHic.

[9] PaghR. (1663 : Hash and Displace Efficient Evaluation of Minimal Perfed Hash
Functions WADS'99, LNCS, pp.49-54. Springer-Verlag.

[10] SkalaV., Kuchar,M. (2000: Hash Function for geometry Reanstruction in Rapid
Prototyping, Algoritmy 2000Int.Conf. procealings, pp.279-384, Slovakia.

[11] SkalaV., Kuchar,M. (200):The Hash Function and Principle of Duality, IEEE
CGIl procedlings, pp. 167-174, 2001 Hong Kong

[12] Hradek,J., Skala,V. (2003: Hash Function and Triangudar mesh Reoonstruction,
Vol.29, No.6., pp.741-751, Computers & Geosciences, Pergamon Press 2003

