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NUMERICAL SOLUTION OF FLUID-STRUCTURE INTERACTION

PROBLEMS BY FINITE ELEMENT METHOD ∗

SVÁČEK P. †

Abstract. This paper is devoted to the topic of mathematical modelling and numerical simu-
lation of the interaction of two dimensional incompressible viscous flow and a vibrating structure.
A solid airfoil with two degrees of freedom is considered. The numerical simulation consists of the
finite element solution of the Navier-Stokes equations coupled with the system of ordinary differential
equations describing the airfoil motion. The time dependent computational domain and a moving
grid are taken into account with the aid of the Arbitrary Lagrangian-Eulerian (ALE) formulation of
the Navier-Stokes equations. High Reynolds numbers up to 106 require the application of a suitable
stabilization of the finite element discretization. Here, the modified Streamline-Upwind/Petrov-
Galerkin(SUPG) together with Pressure Stabilizing/Petrov-Galerkin(PSPG) stabilization is applied
and modified within the context of ALE formulation of Navier-Stokes system of equations. The fluid
model is coupled with the nonlinear structure model for the solid airfoil. The method is applied on
several technical problems.
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1. Introduction. In many technical disciplines the interaction of fluid flow and
an elastic structure plays an important role. The research in aeroelasticity or hydroe-
lasticity focuses on the interaction between moving fluids and vibrating structures
[see, e.g., [6], [16]]. Usually only special problems of aeroelasticity or hydroelasticity
are solved, mainly limited to linearized models. The nonlinear postcritical limit states
usually had not been considered, as the appearance of any aerodynamic instability
is not admissible in normal flight regimes. Recently, the modelling of post-flutter
behaviour began to be more important.

Nonlinear fluid/structure interaction problems arise in many engineering and
scientific applications. During last years, significant advances have been made in the
development and use of computational methods for fluid flows with structural interac-
tions. The more efficient computational techniques were reached with the increasing
computational power, see for example [1]. As the valuable information coming from
fluid-structure interaction analysis need to be performed in many fields of industry
(automobile, airplane) as well as in biomedicine, the analysis of fluid-structure inter-
action problems become more effective and more general. Since there is a need for
effective fluid-structure interaction analysis procedures, various approaches have been
proposed. In current simulations, arbitrary Lagrangian-Eulerian (ALE) formulations
are now widely used. The ALE method is straightforward; however there is a number
of important computational issues, cf. [7], [13], [9], [2].

In this paper, attention is paid step-by-step to the following aspects: second order
time discretization and space finite element discretization of the Reynolds Averaged
Navier-Stokes equations, GLS stabilization of the FEM, the choice of stabilization
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parameters, discretization of the structural model, numerical realization of the non-
linear discrete problem including the coupling of the fluid flow and airfoil motion. The
developed sufficiently accurate and robust method is applied to a technically relevant
case of flow-induced airfoil vibrations.

2. Fluid model. In order to take into account the deformations of the compu-
tational domain, we start with a short introduction of Arbitrary Lagrangian-Eulerian
(ALE) method, see also [18], [17], [9].

2.1. Arbitrary Lagrangian-Eulerian method. Let us assume that there exists
a mapping Φ = Φ(ξ, t) defined for any ξ ∈ Ω0 and t ∈ [0, T ] such that for any t
the mapping Φ(·, t) is a one-to-one transformation of Ω0 onto Ωt. Let us denote
At = Φ(·, t). The mapping At is called arbitrary Eulerian-Lagrangian mapping (ALE
mapping). We assume that for any t ∈ I the mapping At denotes C1 continuous
bijective mapping from the reference (original) configuration Ω0 onto the domain Ωt

at time t (the current configuration).

The time derivative of the ALE mapping At yields the domain velocity wD =
wD(x, t) for x ∈ Ωt and t ∈ [0, T ].

wD(x, t) =
∂

∂t
Φ(ξ, t), At(ξ) = x, ξ ∈ Ω0. (2.1)

Furthermore, by DA/Dt the ALE derivative is denoted (derivative with respect
to a fixed point ξ in the reference domain ξ ∈ Ω0). The ALE derivative is related to
the time and spatial derivatives as

DAf

Dt
(x, t) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t), (2.2)

for any x ∈ Ωt and t ∈ (0, T ).

2.2. Reynolds equations. We consider the following ALE form of Reynolds
equations in Ωt

DAv

Dt
−∇ · (νeffS(v)) + ((v − wD) · ∇)v + ∇p = 0, (2.3)

∇ · v = 0,

where S(v) =
(
∇v + (∇v)T

)
, νeff = (ν + νT ), v denotes the vector of mean part

of the velocity, p denotes the mean part of the kinematic pressure, ν denotes the
kinematic viscosity, and νT denotes the turbulent viscosity.

The system is equipped with the boundary conditions prescribed on the mutually
disjoint parts of the boundary ∂Ωt:

a) v(x, t) = vD(x), x ∈ ΓD,

b) v(x, t) = wD(x, t), x ∈ ΓWt, (2.4)

c) − νeffS(v) · n + pn = 0, x ∈ ΓO.

Finally, we prescribe the initial condition

v(x, 0) = v0(x), x ∈ Ω0.
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2.3. Time discretization. We consider a partition 0 = t0 < t1 < · · · < T, tk =
kτ , with a time step τ > 0, of the time interval [0, T ] and approximate the solution
v(·, tn) and p(·, tn) (defined in Ωtn

) at time tn by vn and pn, respectively. For the
time discretization we employ a second-order two-step scheme using the computed
approximate solution vn−1 in Ωtn−1

and vn in Ωtn
for the calculation of vn+1 in the

domain Ωtn+1
= Ωn+1.

We define for a fixed time t = tn+1 the function spaces W ,X by

W = H1(Ωtn+1
), X =

{
z ∈ W : z = 0 on ΓD ∪ ΓWtn+1

}
,

and space Q = L2(Ωtn+1
). Furthermore, the ALE velocity wD(tn+1) is approximated

by wn+1
D and we set v̂i = vi ◦Ati

◦A−1
tn+1

. The vector-valued functions v̂i are defined
in the domain Ωtn+1

.
The second-order two-step ALE time discretization on each time level tn+1 yields

the problem of finding unknown functions vn+1 : Ωtn+1
→ R2 and pn+1 : Ωtn+1

→ R
satisfying the equations

3vn+1 − 4v̂n + v̂n−1

2τ
+
(
wn+1 · ∇

)
vn+1 −∇ · (νeffS(v)) + ∇pn+1 = 0, (2.5)

divvn+1 = 0,

in Ωtn+1
, wn+1 = vn+1 −wn+1

D , and the boundary conditions (2.4 a,b). The problem
(2.5) is then weakly formulated. For the weak formulation we shall make use of the
forms

a(U∗; U, V ) =

(
3v

2τ
, z

)

Ωn+1

+

∫

Ωn+1

(w · ∇v) · zdx

+ (νeffS(v),∇z)Ωn+1
− (p,∇ · z)Ωn+1

+ (∇ · v, q)Ωn+1

f(V ) =

∫

Ω

4v̂n − v̂n−1

2τ
· zdx −

∫

ΓO

prefz · n dS, (2.6)

where U = (v, p), V = (z, q), U∗ = (v∗, p), and where Ω = Ωn+1, w = v∗ − wn+1
D .

Problem 2.1 (Weak formulation of Navier-Stokes in ALE form). Find U = (v, p)
such that

a(U ; U, V ) = f(V ), (2.7)

holds for all V = (z, q) ∈ X ×Q, and v satisfies conditions (2.4 a,b).

2.4. Stabilized finite element method. In order to apply the Galerkin FEM,
we approximate the spaces W , X , Q from the weak formulation by finite dimensional
subspaces W△, X△, Q△, △ ∈ (0, △0), △0 > 0, X△ = {v△ ∈ W△;v△|ΓD∩ΓWt

= 0}.
The couple (X△,Q△) of the finite element spaces should either satisfy the Babuška–

Brezzi (BB) condition, cf. [11], [12] or [19], or the BB condition can be violated
provided additional stabilization is applied, cf. [15]. In practical computations we
assume that the domain Ωn+1 is a polygonal approximation of the region occupied by
the fluid at time tn+1. The spaces W△, X△, Q△ are defined over a triangulation T△

of the domain Ωn+1, formed by a finite number of closed triangles K ∈ T△. We use
the standard assumptions on the system of triangulation, cf. [4]. Here △ denotes the
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size of the mesh T△. In this paper the non-conforming equal order finite elements are
used, i.e for k = 1 or k = 2 we define

H△ = {v ∈ C(Ωn+1); v|K ∈ Pk(K) for each K ∈ T△},

W△ = [H△]d , X△ = W△ ∩ X , (2.8)

Q△ = {v ∈ C(Ωn+1); v|K ∈ Pk(K) for each K ∈ T△}.

As mentioned above the Galerkin approximation of the weak formulation suffer
from two sources of instabilities. One instability is caused by the incompatibility of
the pressure and velocity pair of finite elements. It can be overcome by the use of
pressure stabilizing terms. Further, the dominating convection requires to introduce
some stabilization of the finite element scheme, as, e.g. upwinding or streamline-
diffusion method. In order to overcome both difficulties, modified Galerkin Least
Squares method is applied, cf. [10]. We start with the definition of the local element

rezidual terms Ra
K and Rf

K defined by

Ra
K(w;v, p) =

3v

2∆t
−∇ ·

(
(ν + νT )

(
∇v + (∇v)T

))
+ (w · ∇)v + ∇p (2.9)

and

Rf
K(v̂n, v̂n−1) =

1

2∆t
(4v̂n − v̂n−1). (2.10)

The GLS stabilizing terms are then defined

L△(U∗
△
; U△, V△) =

∑

K∈T△

δK

(
Ra

K(wn+1;v, p),
(
wn+1 · ∇

)
z + ∇q

)

K
, (2.11)

F△(V△) =
∑

K∈T△

δK

(
Rf

K(v̂n, v̂n−1),
(
wn+1 · ∇

)
z + ∇q

)

K
,

where the local element rezidual terms Ra
K( · ; ·, ·) and Rf

K(·, ·) are defined by equa-
tions (2.9) and (2.10), and where the function wn+1 = v∗ − wn+1

D .
Further, the div-div stabilization is introduced

P△(U△, V△) =
∑

K∈T△

τK(∇ · v,∇ · z)K , (2.12)

U = (v, p), V = (z, q).

The following choice of parameters τK , δK is used

τK = νK

(
1 + Reloc +

h2
K

νK ∆t

)
, δK =

h2
K

τK

,

where νK = |ν + νT |0,2,K , hK denotes the local element size and the local Reynolds
number Reloc is defined as

Reloc =
hK‖v‖K

2νK

.

The stabilized GLS scheme then reads: Find U△ = (v, p) ∈ W△ ×Q△ such that v

satisfies approximately the Dirichlet boundary conditions (2.4 a,b) and the equation

a(U△; U△, V△) + L(U△; U△, V△) + P△(U△, V△) (2.13)

= f(V△) + F(V△),

holds for all V△ = (z, q) ∈ X∆ ×Q△.
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3. Spalart-Allmaras turbulence model. The system of equations (2.3) is
coupled with the nonlinear partial differential equation for an additional quantity ν̃.
The one equation turbulence model reads

∂ν̃

∂t
+ v · ∇ν̃ =

1

β

[
2∑

i=1

∂

∂xi

(
(ν + ν̃)

∂ν̃

∂xi

)
+ cb2 (∇ν̃)2

]
+ G(ν̃) − Y (ν̃), (3.1)

where the functions G(ν̃) and Y (ν̃) are functions of the tensor (ωij)ij of rotation of
the mean velocity and of the wall distance y. Here, the components of the rotation

tensor are defined by ωij = 1
2

(
∂vj

∂xj
−

∂vj

∂xi

)
. The turbulent viscosity νT is defined by

νT = ν̃
χ3

χ3 + c3
v

, χ =
ν̃

ν
. (3.2)

Furthermore we use the following relations (see also [20])

G(ν̃) = cb1 S̃ν̃, Y (ν̃) = cw1

ν̃2

y2

(
1 + c6

w3

1 + c6
w3

/g6

) 1
6

, S̃ =

(
S +

ν̃

κ2y2
fv2

)
,

fv2
= 1 −

χ

1 + χfv1

, g = r + cw2
(r6 − r), r =

ν̃

S̃κ2y2
, S =

√
2
∑

i,j

ω2
ij ,

where y denotes the distance from a wall. The following choice of constants is used
cb1 = 0.1355, cb2 = 0.622, β = 2

3 , cv = 7.1, cw2
= 0.3, cw3

= 2.0, κ = 0.41,
cw1

= cb1/κ2 + (1 + cb2)/β.

3.1. Time discretization. The equation (3.1) is time discretized with the aid
of θ-stepping scheme, cf. [14]. We choose the parameter θ ∈ (0, 1〉 and at every time
step tn we approximate ν̃(tn) ≈ ν̃(n). We define

ν̃(n+θ) = (1 − θ)ν̃(n) + θν̃(n+1)

and for every n = 0, 1, . . . solve the nonlinear equation of Spalart-Allmaras turbulence
model coupled with the Reynolds equations (2.3), i.e.

ν̃(n+θ) − ν̃(n)

θ∆t
+ (v · ∇) ν̃(n+θ) =

1

β

[
∇ ·
(
(ν + ν̃(n+θ))∇ν̃(n+θ)

)
+ cb2

(
∇ν̃(n+θ)

)2
]

+ cb1 S̃ν̃(n+θ) − cw1

(
ν̃(n+θ)

)2

y2

(
1 + c6

w3

1 + c6
w3

/g6

) 1
6

. (3.3)

Once ν̃(n+θ) has been computed, the value ν̃(n+1) is obtained by

ν̃(n+1) =
1

θ
ν̃(n+θ) +

(
1 −

1

θ

)
ν̃(n).

3.2. Weak formulation and linearization. The numerical solution of the
Spalart-Allmaras problem is performed with the aid of finite element method. The
turbulence model is described by one partial differential equation of the convection-
diffusion-reaction character with dominating convection, strong nonlinear behaviour
and with abrupt changes of the source functions.
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Now, we choose the space V = H1
0 (Ω), take a test function ϕ ∈ V , multiply

equation (3.3) by ϕ, integrate over Ω and apply Green’s theorem. Thus we get the
weak formulation of the problem: Find ν̃ ∈ V such that Bsa(ν̃, ϕ) = Lsa(ϕ) for all
ϕ ∈ V , where

Bsa(ν̃, ϕ) = (ε∇ν̃,∇ϕ)Ω

+

(
ν̃

θ∆t
+ (v · ∇) ν̃ + s (ν̃)

2
−

cb2

β
(∇ν̃)

2
− cb1 S̃ν̃, ϕ

)

Ω

,

Lsa(ϕ) =
( ν̃(n)

θ∆t
, ϕ
)

Ω

and we set

s = cw1

1

y2

(
1 + c6

w3

1 + c6
w3

/g6

) 1
6

, ε = ε(ν̃) =
ν + ν̃

β
. (3.4)

The weak formulation of Spalart-Allmaras turbulence model is nonlinear and requires
application of a linearization procedure. We use the following linearization:

s
(
ν̃(n+θ)

)2

≈ s (ν̃n)2 + 2s ν̃n (ν̃(n+θ) − ν̃n),
(
∇ν̃(n+θ)

)2

≈ ∇ν̃(n) · ∇ν̃(n+θ).

Thus the linearized problem reads: Find ν̃ ∈ V such that

B(ν̃, ϕ) = L(ϕ), (3.5)

for all ϕ ∈ V , where

B(ν̃, ϕ) =

(
ν̃

θ∆t
+

(
v −

cb2

β
∇ν̃(n)

)
· ∇ν̃ + 2s ν̃(n) ν̃, ϕ

)

Ω

+ (ε∇ν̃,∇ϕ)Ω , (3.6)

L(ϕ) =
(
s ν̃n ν̃n +

ν̃(n)

θ∆t
+ cb1 S̃ ν̃(n), ϕ

)

Ω
. (3.7)

The viscosity parameter ε is taken as ε = ε(ν̃n) = ν+eνn

β
.

3.3. Space discretization of the turbulence model. In order to aproximate
the problem (3.5) the space V is approximated by the finite element subspace V△ ⊂ V

V△ =
{
ϕ ∈ C0(Ω) : ϕ|K ∈ P1(K) ∀K ∈ T△

}
,

and Galerkin approximations are sought by solution of the problem: Find ν̃△ ∈ V△

such that (3.5) holds for any ϕ△ ∈ V△.
Due to large mesh Péclet numbers the Galerkin approximations are unstable. In

order to obtain admissible solution, the SUPG stabilization is applied:

BSUPG(ν̃, ϕ) = B(ν̃, ϕ)+ (3.8)

+
∑

K∈T△

δK

( ν̃

θ∆t
+ b · ∇ν̃ + 2s ν̃(n)ν̃ + ∇ · (ε∇ν̃) , (b · ∇)ϕ

)

K

LSUPG(ϕ) = L(ϕ) +
∑

K∈T△

δK

(
s ν̃n ν̃n +

ν̃(n)

θ∆t
+ cb1 S̃, (b · ∇)ϕ)

)

K
, (3.9)
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where the vector b is defined locally on every element K ∈ T△ as b =
(
v −

cb2

β
∇ν̃(n)

)
,

and the parameters δK are defined by

δK =

(
4|ε|0,K

h2
K

+
2|b|0,K

hK

+ |s|0,K

)−1

.

Nevertheless, the use of SUPG/GLS stabilization still does not avoid local os-
cillations near sharp layers, which can lead to patological situations with negative
viscosity. In order to solve this problem we shall make use of the discontinuity cap-
turing techniques (or shock capturing techniques). These stabilization techniques
introduce additional dissipation in crosswind direction, cf. [15], [5]. The nonlinear
stabilization problem reads: Find ν̃ ∈ V△ such that

BDC(ν̃, ϕ) = LSUPG(ϕ), ∀ϕ ∈ V△, (3.10)

where

BDC(ν̃, ϕ) = BSUPG(ν̃, ϕ) +
∑

K∈T△

∫

K

αK∇ν̃ · ∇ϕdx+

+
∑

K∈T△

∫

K

(max(αK − α′
K , 0) − αK) ∇ν̃ ·

(
b⊗ b

‖b‖2
0,∞,K

)
∇ϕdx.

Here α′
K is the additional diffusion from SUPG terms

α′
K = δK ‖b‖0,∞,K

and αK is the diffusion of the shock capturing method, see [5], [14]. The additional
diffusion is based on the local element reziduals

rez(ν̃) =
ν̃

θ∆t
+ b · ∇ν̃ + 2s ν̃(n)ν̃ + ∇ · (ε∇ν̃) − s ν̃n ν̃n −

ν̃(n)

θ∆t
− cb1 S̃.

We set

αK =

{
1
2AKhK

‖rez(eν)‖0,2,K

‖∇eν‖0,2,K
if ‖∇ν̃‖0,2,K 6= 0,

0 elsewhere,

where AK = max
(
0, 0.7 − 2ε

‖a1‖0,2,KhK

)
, a1 = rez(eν)

‖∇eν‖2
0,2,K

∇ν̃, and hK is the characte-

ristic length of the element K

4. Structure model. Here, a solid flexibly supported airfoil is considered. The
airfoil can be vertically displaced and rotated. Figure 4.1 shows the elastic support
of the airfoil on translational and rotational springs. The pressure and viscous forces
acting on the vibrating airfoil immersed in fluid result in the lift force L(t) and the
torsional moment M(t). The governing nonlinear equations are written in the form
(see [6], [8])

mḧ + Sα α̈ cosα − Sαα̇2 sin α + dhhḣ + khhh = −L(t), (4.1)

Sαḧ cosα + Iαα̈ + dααα̇ + kααα = M(t),

where khh and kαα are the bending stiffness and torsional stiffness, respectively, and
m is the mass of the airfoil, Sα is the static moment around the elastic axis EA, Iα is
the inertia moment around the elastic axis EA.
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h

L(t)M(t)

U

T

EAα

Fig. 4.1. The elastic support of the airfoil on translational and rotational springs.

t [s]0 0.2 0.4 0.6 0.8 1
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α

U =∞ 5 m/s
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h
[m

m
]

0 0.2 0.4 0.6 0.8 1

0

1 U =∞ 5 m/s

Fig. 5.1. The aeroelastic response (h, α) for the far field velocity U∞ = 5m/s.

5. Numerical results. For the aeroelastic simulations we compare the pre-
sented approach to the results of the method published previously in [8], where the
laminar incompressible Navier-Stokes equations were employed and discretized by the
conforming finite element method (Taylor-Hood family of finite elements) together
with SUPG and grad-div stabilization. We use the modified parameter values taken
from [3], where the critical velocity determined by NASTRAN was 30.4 m/s. We
present comparison of laminar and turbulence results for the far field velocity in the
range U∞ = 10 − 32m/s. The parameters of the structural model was set as

m = 0.086622 kg, Sα = 0.000779673 kg m, Iα = 0.000487291 kg m2,

khh = 105.109 N m−1, kαα = 3.695582 N m rad−1, l = 0.05 m, c = 0.3 m.

The elastic axis is located at 40% of the airfoil, ρ = 1.225 kg m−3, ν = 1.5 ·
10−5 m s−2. The numerical computations were performed for airfoils NACA 0012.
Figures 5.1, 5.2, 5.3 shows the comparison of the aeroelastic response for different
values of the inlet velocity.
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Fig. 5.2. The aeroelastic response (h, α) for the far field velocity U∞ = 15m/s.
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Fig. 5.3. The aeroelastic response (h, α) for the far field velocity U∞ = 31m/s.
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