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SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD

FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS∗

MILOSLAV VLASÁK †

Abstract. We deal with a numerical solution of a scalar nonstationary convection-diffusion equa-
tion with a nonlinear convection and a linear diffusion. We carry out the space semi-discretization
with the aid of the nonsymmetric interior penalty Galerkin (NIPG) method and the time discretiza-
tion by the time discontinuous Galerkin method linearized by extrapolation from previous time
interval. The resulting scheme is unconditionally stable, has a high order of accuracy with respect
to space and time coordinates and requires only solutions of linear algebraic problems at each time
step. We derive a priori error estimate in the L2-norm.
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1. Introduction. We numerically solve a nonstationary nonlinear convection-
diffusion equation, which represents a model problem for the system of the com-
pressible Navier-Stokes equations. The class of discontinuous Galerkin (DG) methods
seems to be one of the most promising candidates to construct high order accurate
schemes for solving convection-diffusion problems. For a survey about DG methods,
see [1] or [3]. An analysis of DG methods was presented in many papers, see, e.g. [6],
[8], [11], [10].

In [8] we carried out the space semi-discretization of the scalar convection-diffusion
equation with the aid of the discontinuous Galerkin finite element method and derived
a priori error estimates. Within this contribution, we deal with the time discretization
of the resulting system of ordinary differential equations. In contrary to [9], where
we used the so-called backward difference formulae (BDF) approach, here we employ
the time discontinuous Galerkin method, see [15]. Since this scheme is implicit and
we would like to avoid solving strongly nonlinear problem at each time level, we
recomend linearization in a similar way as it was done before for BDF in [9]. We
present a formulation of the arbitrary order linearized time discontinuous Galerkin
scheme and derive a priori error estimate for the second order scheme.

2. Continuous problem. Let Ω ⊂ Rd (d = 2 or 3) be a bounded polyhedral
domain and T > 0. We set QT = Ω × (0, T ). By Ω and ∂Ω we denote the closure
and boundary of Ω, respectively. Let us consider the following initial-boundary value

problem: Find u : QT → R such that

∂u

∂t
+ ∇ · ~f(u) = ∆u + g in QT ,(1)

u
∣

∣

∂Ω×(0,T ) = uD,(2)

u(x, 0) = u0(x), x ∈ Ω.(3)

In (1) – (3), ~f = (f1, . . . , fd), fs ∈ C2(R), fs(0) = 0, s = 1, . . . , d repre-
sents convective terms, g ∈ C([0, T ]; L2(Ω)) represents volume sources. The Dirich-
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let boundary condition is given over ∂Ω by uD, which is the trace of some u∗ ∈
C([0, T ]; H1(Ω)) ∩ L∞(QT ) and u0 ∈ L2(Ω) is an initial condition. We use the stan-
dard notation for Lebesgue, Sobolev and Bochner function spaces (see, e. g. [12]).

In order to introduce the concept of a weak solution, we define

(u, w) =

∫

Ω

uw dx, u, w ∈ L2(Ω),

a(u, w) =

∫

Ω

∇u · ∇w dx, u, w ∈ H1(Ω),

b(u, w) =

∫

Ω

∇ · ~f(u)w dx, u ∈ H1(Ω) ∩ L∞(Ω), w ∈ L2(Ω),

Definition 2.1. We say that a function u is a weak solution of (1) – (3) if the
following conditions are satisfied

a) u − u∗ ∈ L2(0, T ; H1
0(Ω)), u ∈ L∞(QT ),(4)

b)
d

dt
(u(t), w) + b(u(t), w) + a(u(t), w) = (g(t), w)

for all w ∈ H1
0 (Ω) in the sense of distributions on (0, T ),

c) u(0) = u0 in Ω.

By u(t) we denote the function on Ω such that u(t)(x) = u(x, t), x ∈ Ω.
With the aid of techniques from [13] and [14], it is possible to prove that there

exists a unique weak solution. We shall assume that the weak solution u is sufficiently
regular, namely,

u ∈ W 1,∞(0, T ; Hp+1(Ω)) ∩ W 2,∞(0, T ; H1(Ω)),(5)

an integer p ≥ 1 will denote a given degree of polynomial approximations. Such a
solution satisfies problem (1) – (3) pointwise.

3. Space semi-discretization. We discretize problem (4) in space with the aid
of the discontinuous Galerkin finite element method with nonsymmetric treatment of
stabilization terms and interior and boundary penalties. This approach is called the
NIPG variant of the DGFE method, see [1]. We derived the space discretization of
(1) – (3) by the NIPG variant of DGFE method in [8] hence here we present only the
final expressions.

3.1. Triangulation. Let Th (h > 0) be a partition of the domain Ω into a finite
number of closed d-dimensional mutually disjoint simplices K i.e., Ω =

⋃

K∈Th
K.

By ∂K we denote the boundary of element K ∈ Th and set hK = diam(K), h =
maxK∈Th

hK . We set Γ the faces of Th (Γ =
⋃

K∈Th
∂K). By ρK we denote the

radius of the largest d-dimensional ball inscribed into K and by |K| we denote the
d-dimensional Lebesgue measure of K.

Furthermore, we use the following notation: n = (n1, . . . , nd) – a normal vector
to Γ which is well defined almost everywhere (on ∂Ω we use outer normal, inside of
Ω we use one (arbitrary but fixed) direction at every point of Γ).

3.2. Broken Sobolev spaces. We define the so-called broken Sobolev space in
the following way

Hs(Ω, Th) = {w; w|K ∈ Hs(K) ∀K ∈ Th}(6)
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and define there the norm

‖w‖Hs(Ω,Th) =

(

∑

K∈Th

‖w‖2
Hs(K)

)1/2

(7)

and the seminorm

|w|Hs(Ω,Th) =

(

∑

K∈Th

|w|2Hs(K)

)1/2

.(8)

For w ∈ H1(Ω, Th), we introduce the following notation on Γ \ ∂Ω:

wR(x) = lim
δ→0+

w(x + δn)(9)

wL(x) = lim
δ→0−

w(x + δn)

〈w〉 =
1

2
(wR + wL) ,

[w] = wL − wR

and on ∂Ω we put

wL(x) = lim
δ→0−

w(x + δn)(10)

〈w〉 = wL,

[w] = wL

3.3. Space discretization. For u, w ∈ H2(Ω, Th) we set

Ah(u, w) =
∑

K∈Th

∫

K

∇u · ∇w dx −

∫

Γ

(

〈∇u〉 · n[w] − 〈∇w〉 · n[u]
)

dS(11)

+

∫

Γ

σ[u] [w] dS

bh(u, w) =

∫

Γ\∂Ω

H(uL, uR, n) [w] dS +

∫

∂Ω

H(uL, uD, n)wL dS(12)

−
∑

K∈Th

∫

K

~f(u) · ∇w dx, u, w ∈ H1(Ω, Th), u ∈ L∞(Ω)

ℓh(w) (t) = (g(t), w) −

∫

∂Ω

(∇w · nuD(t) − σuD(t)w) dS.(13)

The penalty parameter function σ in (11) and (13) along the face e ⊂ Γ is defined
by σ|e = 1/(hK + hK̃), e = K ∩ K̃. The function H(·, ·, ·) in the face integrals in
(12) is called the numerical flux, well-known from the finite volume method and it

approximates the terms ~f(u) ·n. Now we define the space of discontinuous piecewise
polynomial functions

Sh = Sp,−1(Ω, Th) = {w; w|K ∈ Pp(K) ∀K ∈ Th},(14)

where Pp(K) denotes the space of all polynomials on K of degree ≤ p, where the
integer p ≥ 1 is a given degree of approximation.
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We find that the exact solution of (4) with property (5) satisfies the identity

(

∂u

∂t
(t), wh

)

+ Ah(u(t), wh) + bh(u(t), wh) = ℓh(wh) (t)(15)

for all wh ∈ Sh and all t ∈ (0, T ).
The (semi)-discrete problem (15) represents a system of ordinary differential equa-

tions (ODEs) which is solved by a suitable solver in the next section.

4. Time discretization. Since problem (15) is stiff, it is necessary to solve it
with a method having a large stability domain. In [9] we employ the well known back-
ward difference formulae (BDF). Within this contribution, we present a new approach
based on the time discontinuous Galerkin method. Since this method is implicit, we
introduce linearization from previous time interval in such a way that linear part of
the problem is treated implicitly and the nonlinear one explicitly. Therefore, the re-
sulting semi-implicit scheme leads to a highly stable method which requires only a
solution of the linear algebraic problem at each time step.

We consider a partition 0 = t0 < t1 < . . . < tr = T consisting of time intervals
Im = (tm−1, tm], m = 1, . . . , r of the length |Im| = τm and τ = maxm=1,...,rτm. We
set the space–time fully discrete space

Sh,τ ≡ {w ∈ L2(QT ) : w|Im
=

q
∑

s=0

tszs, zs ∈ Sh}.(16)

For simplicity we set

wm
± = lim

δ→0±
w(tm + δ),(17)

{w}m = wm
+ − wm

− .(18)

To avoid the nonlinearity in our problem we define ŵ|Im
as prolongation of w from

previous time interval Im−1, it means there exists z ∈ Pq(Im−1 ∪ Im) such that

z(t) = w|Im−1
(t), ∀t ∈ Im−1,(19)

ŵ|Im
(t) = z(t), ∀t ∈ Im.

Now we are able to define fully discrete solution U ∈ Sh,τ .
Definition 4.1. We define the approximate solution of problem from Definition

(2.1) a) – c) as functions U ∈ Sh,τ satisfying the conditions

a)

∫

Im

(U ′, w) + Ah(U, w) + bh(Û , w)dt + ({U}m−1, w
m−1
+ ) =

∫

Im

ℓh(w)dt

∀w ∈ Sh,τ , m = 2, . . . , r,(20)

b)(U0
−, w) = (u0, w) ∀w ∈ Sh.

We should remark on some strange character of this scheme. This scheme is one–
step method as it is usual for time discontinuous Galerkin, but on the other hand we
need to use the information from the whole previous time interval for construction of
the prolongation, so this method is not self–started.
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5. Error estimates. Our goal is to analyse the error estimates of the approxi-
mate solution U obtained by the method (20) for the piecewise linear approximation
in time (q = 1). In the next we set

|||w|||2 = Ah(w, w) ∀w ∈ H2(Ω, Th).(21)

5.1. Parabolic projection. For the next purpose we need projection

π : L2(QT ) → Sh,τ

well known for the time discontinuous Galerkin. This projection satisfies
∫

Im

(πv − v, tjw)dt = 0 ∀w ∈ Sh, j = 0, . . . , q − 1,(22)

πvm
− = Πvm

− ,

where Π be the standard L2(Ω) → Sh orthogonal projection. About the projection π
it is possible to prove following estimates

Lemma 5.1. Let w ∈ W q+1,∞(Im, Sh), then

‖w(t) − πw(t)‖L2(Ω) ≤ Cτq+1
m , ∀t ∈ Im,(23)

|||w(t) − πw(t)||| ≤ Cτq+1
m , ∀t ∈ Im,

where C depends on time derivatives of w.
Proof. The lemma can be prooved by standard scaling argument.
Since we have simplicial mesh we obtain standard estimates for projection Π

under sufficient regularity of function w

‖w − Πw‖L2(Ω) ≤ Chp+1(24)

|||w − Πw||| ≤ Chp,

we can estimate projection error of arbitrary function w ∈ W q+1,∞(Im, H1(Ω)) ∩
W 1,∞(Im, Hp+1(Ω)) by

‖w(t) − πw(t)‖L2(Ω) ≤ C(hp+1 + τq+1
m ), ∀t ∈ Im,(25)

|||w(t) − πw(t)||| ≤ C(hp + τq+1
m ), ∀t ∈ Im.

5.2. Extrapolation. We set ŵ as extrapolation from previous time interval. For
q = 1 we get

ŵ(t) = (1 +
t − tm−1

τm−1
)wm−1

− −
t − tm−1

τm−1
wm−2

+ ∀t ∈ Im.(26)

As standard result from interpolation theory with additional assumption

τm

τm−1
≤ C(27)

and under sufficient regularity w ∈ W 2,∞(0, T, H1(Ω)) we get

‖w − ŵ‖L2(Ω) ≤ Cτ2,(28)

|||w − ŵ||| ≤ Cτ2,

where constant C depends on time derivatives of w. This can be prooved by standard
scaling argument.



TIME DGM FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS 281

5.3. Properties of the forms Ah and bh. Here we want to summarize the
properties of the forms Ah and bh.

Lemma 5.2. Let u ∈ W 1,∞(0, T, Hp+1(Ω)). Then it holds that

|Ah(u(t) − Πu(t), w)| ≤ Chp|||w||| ∀w ∈ Sh,

|Ah(v, w)| ≤ C|||v||| |||w||| ∀v, w ∈ Sh.

|Ah(u(t) − πu(t), w)| ≤ C(hp + τq+1)|||w||| ∀w ∈ Sh

Proof. The proof can be found in [8] in Lemma 9.
Lemma 5.3. Let u ∈ W 1,∞(0, T, Hp+1(Ω)). Let the numerical fluxes H be Lip-

schitz continuous, conservative and consistent. Then it holds that

|bh(v, w) − bh(v̄, w)| ≤ C(‖v − v̄‖L2(Ω) + |||v − v̄|||) |||w||| ∀v, v̄ ∈ L2(Ω), w ∈ Sh,

|bh(u, w) − bh(Πu, w)| ≤ Chp+1|||w||| ∀w ∈ Sh,

|bh(v, w) − bh(v̄, w)| ≤ C‖v − v̄‖L2(Ω) |||w||| ∀v, v̄, w ∈ Sh,

|bh(u, w) − bh(û, w)| ≤ Cτ2|||w||| w ∈ Sh.

Proof. The proof can be found in [8] in Lemma 5 and Lemma 6.

5.4. Main result. In the sequel we use the notation U −u = U −πu+πu−u =
ξ + η.

Theorem 5.4. Let u be the exact solution of problem (4) satisfying (5). Let the
mesh be regular (hK/ρK ≤ C), assumption (27) be satisfied and the numerical fluxes
H be Lipschitz continuous, conservative and consistent. Let U be the approximate
solution defined by (20). Then

max
s=0,...,r

‖Us
− − u(ts)‖

2 ≤ C(h2p + τ4 + ‖e1
−‖

2
L2(Ω) + ‖e0

−‖
2
L2(Ω))e

TC(29)

Proof. Since Us
−−u(ts) = ξs

−+ηs, in virtue of (25), it is only sufficient to estimate
‖ξs

−‖. Let us integrate (4) over Im and substract this equation from (20). Then we
have
∫

Im

(ξ′, w) + Ah(ξ, w)dt + ({ξ}m−1, w
m−1
+ ) = −

(
∫

Im

(η′, w)dt + ({η}m−1, w
m−1
+ )

)

−

∫

Im

Ah(η, w)dt +

∫

Im

bh(u, w) − bh(Û , w)dt w ∈ Sh,τ .(30)

Now let us have a look at all the parts of (30).
∫

Im

(η′, w)dt + ({η}m−1, w
m−1
+ )(31)

= (ηm
− , wm

− ) − (ηm−1
+ , wm−1

+ ) −

∫

Im

(η, v′)dt + ({η}m−1, w
m−1
+ )

= (ηm
− , wm

− ) − (ηm−1
− , wm−1

+ ) −

∫

Im

(η, w′)dt

Using properties (22) of π we obtain

(ηm
− , wm

− ) − (ηm−1
− , wm−1

+ ) −

∫

Im

(η, w′)dt = 0.(32)
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Estimating linear form Ah using Lemma 5.2 we obtain

−

∫

Im

Ah(η, w)dt ≤
1

4

∫

Im

|||w|||2dt + τmC(h2p + τ4).(33)

Now we should estimate nonlinear form bh.

|bh(u, v) − bh(Û , w)| ≤ |bh(u, w) − bh(û, w)|

+|bh(û, w) − bh(Πû, w)| + |bh(Πû, w) − bh(Û , w)|(34)

We estimate the individual terms using Lemma 5.3.

|bh(u, w) − bh(û, w)| ≤ Cτ2|||w|||

|bh(û, w) − bh(Πû, w)| ≤ Chp+1|||w|||(35)

|bh(Πû, w) − bh(Û , w)| ≤ C‖Πû − Û‖L2(Ω) |||w|||

With the aid of the definition of extrapolation of û and Û we get

‖Πû − Û‖L2(Ω)(36)

= ‖

(

1 +
t − tm−1

τm−1

)

(Πum−1 − Um−1
− ) −

t − tm−1

τm−1
(Πum−2 − Um−2

+ )‖L2(Ω)

≤

(

1 +
t − tn−1

τn−1

)

‖ξm−1
− ‖L2(Ω) +

t − tn−1

τn−1
‖Πum−2 − Um−2

+ ‖L2(Ω).

We estimate last norm by (24) and (25)

‖Πum−2 − Um−2
+ ‖L2(Ω)(37)

≤ ‖Πum−2 − um−2‖L2(Ω) + ‖um−2 − πum−2
+ ‖L2(Ω) + ‖πum−2

+ − Um−2
+ ‖L2(Ω)

≤ Chp+1 + C(hp+1 + τ2) + ‖ξm−2
+ ‖L2(Ω)

≤ C(hp+1 + τ2) + ‖{ξ}m−2‖L2(Ω) + ‖ξm−2
− ‖L2(Ω).

When we use assumption (27), we could complete estimate for form bh

∫

Im

bh(u, w) − bh(Û , w)dt ≤
1

4

∫

Im

|||w|||2dt + τmC(h2p+2 + τ4)(38)

+τmC(‖ξm−1
− ‖2

L2(Ω) + ‖{ξ}m−2‖
2
L2(Ω) + ‖ξm−2

− ‖2
L2(Ω)).

When we apply w = 2ξ to the left-hand side of (30), we obtain
∫

Im

2(ξ′, ξ) + 2|||ξ|||2dt + 2({ξ}m−1, ξ
m−1
+ )(39)

= ‖ξm
− ‖2

L2(Ω) − ‖ξm−1
+ ‖2

L2(Ω) + 2‖ξm−1
+ ‖2

L2(Ω) − 2(ξm−1
− , ξm−1

+ ) + 2

∫

Im

|||ξ|||2dt

= ‖ξm
− ‖2

L2(Ω) − ‖ξm−1
− ‖2

L2(Ω) + ‖{ξ}m−1‖
2
L2(Ω) + 2

∫

Im

|||ξ|||2dt.

If we apply all these estimates with w = 2ξ together we gain

‖ξm
− ‖2

L2(Ω) − ‖ξm−1
− ‖2

L2(Ω) + ‖{ξ}m−1‖
2
L2(Ω)(40)

≤ τmq(h, τ) + τmC(‖ξm−1
− ‖2

L2(Ω) + ‖{ξ}m−2‖
2
L2(Ω) + ‖ξm−2

− ‖2
L2(Ω)),
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where q(h, τ) = O(h2p + τ4). Summing over m = 2, . . . , k ≤ r and using (27), we gain

‖ξk
−‖

2
L2(Ω) − ‖ξ1

−‖
2
L2(Ω) + ‖{ξ}k−1‖

2
L2(Ω)(41)

≤ Tq(h, τ) + C
k−1
∑

s=1

τs+1

(

‖ξs
−‖

2
L2(Ω) + ‖{ξ}s−1‖

2
L2(Ω) + ‖ξs−1

− ‖2
L2(Ω)

)

≤ Tq(h, τ) + τ2C‖ξ0
−‖

2
L2(Ω) + C

k−1
∑

s=1

(τs+1 + τs+2)‖ξ
s
−‖

2
L2(Ω) + τs+1‖{ξ}s−1‖

2
L2(Ω)

≤ Tq(h, τ) + τ2C‖ξ0
−‖

2
L2(Ω) + C

k−1
∑

s=1

τs+1‖ξ
s
−‖

2
L2(Ω) + τs+1‖{ξ}s−1‖

2
L2(Ω).

Applying Gronwall’s lemma we obtain

‖ξk
−‖

2
L2(Ω) + ‖{ξ}k−1‖

2
L2(Ω) ≤

(

C‖ξ0
−‖

2
L2(Ω) + ‖ξ1

−‖
2
L2(Ω) + Tq

)

k
∏

s=2

(1 + τsC)(42)

≤
(

C‖ξ0
−‖

2
L2(Ω) + ‖ξ1

−‖
2
L2(Ω) + Tq

)

eTC ,

which proves our theorem.
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[6] V. Doleǰśı, M. Feistauer, and V. Kučera, V. Sobot́ıková. An optimal L∞(L2)-error estimate
of the discontinuous Galerkin method for a nonlinear nonstationary convection-diffusion
problem. IMA J. Numer. Anal., (submitted).
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