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A NOTE ON COMPACTNESS OF TENSOR PRODUCTS

J. ZANNI and C. S. KUBRUSLY

Abstract. Compactness is preserved from a pair of operators to their tensor product. The converse
was considered in [13] under some restrictions on the spectra of the operators. This paper shows that

no restriction is necessary: the converse holds whenever the tensor product is nonzero.

1. Introduction

The tensor product of two Hilbert spaces can be constructed as the completion of the span of
a collection of conjugate bilinear maps on their Cartesian product. The tensor product of two
Hilbert-space operators are then naturally defined so that they can be viewed as an extention to
infinite-dimensional spaces of the standard Kronecker product of matrices on finite-dimensional
spaces. Important results on tensor product of (bounded linear) operators have been continuously
considered in the literature (see, e.g., [1], [16], [4], [17], [3], [12], [14], [10], [8], and [7]).

In this paper we deal with preservation of compactness for tensor product of operators. Com-
pactness for tensor product of operators has several relevant aspects from both theoretical and
applied points of view (e.g., applications to partial integral operators considered in [5, 6]). The
following result was established in [13]. If a tensor product A⊗B is compact and one of the
operators A or B has a nonzero eigenvalue, then the other is compact. We improve the previous
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statement by dismissing the spectral condition, and showing that a nonzero tensor product A⊗B
is compact if and only if A and B are nonzero compact operators.

2. Preliminaries

Notation, terminology and basic results are posed in this section. Throughout the paper, H and
K are complex infinite-dimensional Hilbert spaces. Inner product in any of them will be denoted
by 〈· ; ·〉. Let B[H,K] stand for the Banach space of all bounded linear transformations of H into
K. A Hilbert-space operator is a bounded linear transformation of a Hilbert space into itself. Set
B[H] = B[H,H], the unital Banach algebra of all operators on H. Let T ∗∈ B[H] be the adjoint
of T ∈ B[H]. An operator T ∈ B[H] is compact if it maps bounded sequences into sequences that
have a convergent subsequence (see, e.g., [11, Theorem 4.52 (d)]). For equivalent definitions see,
for instance, [2, Section II.4] or [11, Section 4.9]. Thus T ∈ B[H] is compact if for every bounded
sequence {xn} of vectors xn in H, there exists a subsequence {xnk

} of {xn} such that {Txnk
}

converges in H.

The concept of tensor product of two Hilbert spaces can be defined in terms of single ten-
sors which in turn can be defined as conjugate bilinear functionals on the Cartesian product of
H×K (see, e.g., [9]). The single tensor of x ∈ H and y ∈ K is the conjugate bilinear functional
x⊗ y : H×K → C defined by (x⊗ y)(u, v) = 〈x ;u〉〈y ; v〉 for every (u, v) in H×K. The tensor
product space H⊗K of H and K is the completion of the inner product space consisting of all
(finite) sums of single tensors xi ⊗ yi with xi ∈ H and yi ∈ K. The inner product on H⊗K is
defined by 〈∑

i

xi ⊗ yi ;
∑
j

wj ⊗ zj
〉

=
∑
i

∑
j

〈xi ;wj〉〈yi ; zj〉
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for every
∑

i xi ⊗ yi and
∑

j wj ⊗ zj in H⊗K. The norm on H⊗K is the one induced by the

inner product. The tensor product of two operators T ∈ B[H] and S ∈ B[K] is the operator
T ⊗ S : H⊗K → H⊗K defined by

(T ⊗ S)
∑
i

xi ⊗ yi =
∑
i

Txi ⊗ Syi for every
∑
i

xi ⊗ yi ∈ H ⊗K,

which lies in B[H⊗K]. The proposition below summarizes some basic well-known properties of
tensor products in a Hilbert space setting that will be required in the sequel (see, e.g., [9]). (Here
‖T‖ denotes the induced uniform norm of T on B[H], and ‖T ⊗ S‖ the induced uniform norm of
T ⊗ S on B[H⊗K].)

Proposition 1. Take α, β ∈ C, x,w∈ H, y, z∈ K, T,A∈ B[H], and S,B∈B[K] arbitrary. The
following identities hold true:

(a) αβ(x⊗ y) = αx⊗ β y, αβ(T ⊗ S) = αT ⊗ β S,
(b) (x+ w)⊗ (y + z) = x⊗ y + w ⊗ y + x⊗ z + w ⊗ z,

(T +A)⊗ (S +B) = T ⊗ S +A⊗ S + T ⊗B +A⊗B,
(c) TA⊗ SB = (T ⊗ S)(A⊗B),
(d) (T ⊗ S)∗ = (T ∗ ⊗ S∗),
(e) ‖x⊗ y‖ = ‖x‖ ‖y‖,
‖T ⊗ S‖ = ‖T‖ ‖S‖.

For further properties on tensor products, see, for instance, [9] and [15].

3. Tensor Product and Compact Operators

Consider the following result presented in this journal [13, Theorem 2].
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Theorem 1. If A ∈ B[H] and B ∈ B[K] are compact, then A⊗B ∈ B[H⊗K] is compact.
Conversely, if A⊗B ∈ B[H⊗K] is compact and one of A ∈ B[H] or B ∈ B[K] has a nonzero
eigenvalue, then the other is compact.

Remark 1. It is worth noticing that part of the results in [13] was worked out for separable
Hilbert spaces, although the preceding Theorem 1 does not require that the Hilbert spaces are
separable, as well as the forthcoming Theorem 2. Indeed, the direct assertion in Theorem 1 (but
not the converse) was proved in [13] by using the fact that a compact operator on a Hilbert space
(not necessarily separable) is the uniform limit of finite-rank operators — see, e.g., [2, Theorem
II.4.4] or [11, Problem 5.42(b)]. This, however, also holds in a Banach space with a Schauder basis
(which turns out to be separable) — see, e.g., [11, Problem 4.58].

We improve the converse in Theorem 1 by showing in Theorem 2 that if A⊗B is nonzero and
compact, then so are both A and B without any restriction on their spectra. First we need the
following elementary auxiliary result which says that if a sequence of single tensors converges, then
it must converge to a single tensor.

Lemma 1. Take sn = x⊗ yn ∈ H ⊗K with x ∈ H and yn ∈ K for each positive integer n. If
{sn} converges in H⊗K to s ∈ H ⊗K, then s = x⊗ y for some y ∈ K.

Proof. Let {sn} be a sequence of vectors in H⊗K as in the lemma statement. If {sn} converges
in H⊗K, then {sn} is a Cauchy sequence,

‖sm − sn‖ → 0 as m,n→∞.

Since sm − sn = x⊗ ym − x⊗ yn = x⊗ (yn − ym), and since ‖x⊗ (yn − ym)‖ = ‖x‖ ‖yn − ym‖,
it follows that

‖x‖ ‖yn − ym‖ → 0 as m,n→∞.
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Thus {yn} is a Cauchy sequence in K. Since K is a Hilbert space, {yn} converges in K to, say,
y ∈ K. Since {sn} converges, let s be its limit in H⊗K, so that (by continuity of the conjugate
bilinear functional)

s = lim
n
sn = lim

n
(x⊗ yn) = x⊗ lim

n
yn = x⊗ y. �

Theorem 2. If A⊗B is a nonzero compact tensor product in B[H⊗K], then both A ∈ B[H]
and B ∈ B[K] are nonzero compact operators.

Proof. Suppose A⊗B 6= O in B[H⊗K]. Thus A 6= O and B 6= O in B[H] and B[K]. Since
A 6= O, there exists x 6= 0 in H such that ‖Ax‖ 6= 0. Take an arbitrary bounded sequence {yn} of
vectors yn in K, and let {sn} be a sequence of single tensors sn in H⊗K given by sn = x⊗ yn for
each positive integer n. Note that {sn} is bounded because {yn} is bounded. In fact,

sup
n
‖sn‖ = sup

n
‖x⊗ yn‖ = sup

n
‖x‖ ‖yn‖ = ‖x‖ sup

n
‖yn‖ <∞.

Thus, if A⊗B is compact, then there exists a subsequence {snk
} of {sn} such that {(A⊗B)snk

}
converges in H⊗K. Hence, by Lemma 1,

(A⊗B)snk
= (A⊗B)(x⊗ ynk

) = Ax⊗Bynk
→ Ax⊗ z

for some z ∈ K (not necessarily in the range of B, since the range of B is not necessarily closed in
K). Then, by Proposition 1(a, b, e),

‖Ax‖‖Bynk
− z‖ = ‖Ax⊗ (Bynk

− z)‖ = ‖Ax⊗Bynk
−Ax⊗ z)‖

= ‖(A⊗B)(x⊗ ynk
)−Ax⊗ z‖ = ‖(A⊗B)snk

−Ax⊗ z‖ → 0.

Therefore, since ‖Ax‖ 6= 0, it follows that Bynk
→ z. Outcome: Recalling that {yn} was taken to

be an arbitrary bounded sequence, then we can conclude that for every bounded sequence {yn}
of vectors yn in K, there exists a subsequence {ynk

} of it such that {Bynk
} converges in K. This

means that B is compact. Symmetrically, if A⊗B is nonzero and compact, then A is compact. �
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Theorems 1 and 2 together yield a complete characterization of compactness preservation for
tensor products.

Corollary 1. A tensor product A⊗B ∈ B[H⊗K] is nonzero and compact if and only if
A ∈ B[H] and B ∈ B[K] are both nonzero and compact.
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