A NOTE ON COMPACTNESS OF TENSOR PRODUCTS

J. ZANNI anD C. S. KUBRUSLY

ABSTRACT. Compactness is preserved from a pair of operators to their tensor product. The converse
was considered in [13] under some restrictions on the spectra of the operators. This paper shows that
no restriction is necessary: the converse holds whenever the tensor product is nonzero.

1. INTRODUCTION

The tensor product of two Hilbert spaces can be constructed as the completion of the span of
a collection of conjugate bilinear maps on their Cartesian product. The tensor product of two
Hilbert-space operators are then naturally defined so that they can be viewed as an extention to
infinite-dimensional spaces of the standard Kronecker product of matrices on finite-dimensional
spaces. Important results on tensor product of (bounded linear) operators have been continuously
considered in the literature (see, e.g., [1], [16], [4], [17], [3], [12], [14], [10], [8], and [7]).

In this paper we deal with preservation of compactness for tensor product of operators. Com-
pactness for tensor product of operators has several relevant aspects from both theoretical and
applied points of view (e.g., applications to partial integral operators considered in [5, 6]). The
following result was established in [13]. If a tensor product A ® B is compact and one of the
operators A or B has a nonzero eigenvalue, then the other is compact. We improve the previous
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statement by dismissing the spectral condition, and showing that a nonzero tensor product A ® B
is compact if and only if A and B are nonzero compact operators.

2. PRELIMINARIES

Notation, terminology and basic results are posed in this section. Throughout the paper, H and
K are complex infinite-dimensional Hilbert spaces. Inner product in any of them will be denoted
by (-;-). Let B[H, K] stand for the Banach space of all bounded linear transformations of H into
K. A Hilbert-space operator is a bounded linear transformation of a Hilbert space into itself. Set
B[H] = B[H,H], the unital Banach algebra of all operators on H. Let T* € B[H] be the adjoint
of T € B[H)]. An operator T' € B[H] is compact if it maps bounded sequences into sequences that
have a convergent subsequence (see, e.g., [L1, Theorem 4.52 (d)]). For equivalent definitions see,
for instance, [2, Section I1.4] or [11, Section 4.9]. Thus T' € B[H] is compact if for every bounded
sequence {z,} of vectors z, in H, there exists a subsequence {z,,} of {z,} such that {Tz,, }
converges in .

The concept of tensor product of two Hilbert spaces can be defined in terms of single ten-
sors which in turn can be defined as conjugate bilinear functionals on the Cartesian product of
H x K (see, e.g., [9]). The single tensor of 2 € H and y € K is the conjugate bilinear functional
z®y: H x K — C defined by (z®y)(u,v) = (x;u){y;v) for every (u,v) in H x K. The tensor
product space H ® K of H and K is the completion of the inner product space consisting of all
(finite) sums of single tensors x; ® y; with z; € # and y; € K. The inner product on H ® K is
defined by

<in®yi;2wj ®zj> = ZZ(xi;wﬁ(yi;zj)



for every >, z; ®y; and 3, w; ® z; in H ® K. The norm on H ® K is the one induced by the
inner product. The tensor product of two operators T € B[H] and S € B[K] is the operator
TRS:HR®K — H K defined by

(T®S)in®yi=ZT:ci®Syi for every in®yi€H®K,

which lies in B[H ® K]. The proposition below summarizes some basic well-known properties of
tensor products in a Hilbert space setting that will be required in the sequel (see, e.g., [9]). (Here
IT|| denotes the induced uniform norm of 7' on B[H], and |7’ ® S|| the induced uniform norm of
T® S on B[H®K].)

Proposition 1. Take o, € C, z,we H, y,2z€ K, T, A€ B[H], and S, B€ B[K] arbitrary. The
following identities hold true:

(a) aB(z®y) =az®By, aBf(T®S)=aT®LS,

b) T+w)@(y+2)=20y+uwy+r@2z+wd 2,
T+A)®(S+B)=TS+AQS+TQB+A®B,

(c) TA® SB=(T®S)(A® B),

d) (Tes)" =(T"®5),

) lzyl ==l llyll,
1T ® S| =TS

For further properties on tensor products, see, for instance, [9] and [15].
3. TENSOR PrRODUCT AND COMPACT OPERATORS

Consider the following result presented in this journal [13, Theorem 2].
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Theorem 1. If A€ B[H] and B € B[K] are compact, then A® B € B[H ® K] is compact.
Conversely, if A® B € B[H® K] is compact and one of A€ B[H] or B € BIK] has a nonzero
etgenvalue, then the other is compact.

Remark 1. It is worth noticing that part of the results in [13] was worked out for separable
Hilbert spaces, although the preceding Theorem 1 does not require that the Hilbert spaces are
separable, as well as the forthcoming Theorem 2. Indeed, the direct assertion in Theorem 1 (but
not the converse) was proved in [13] by using the fact that a compact operator on a Hilbert space
(not necessarily separable) is the uniform limit of finite-rank operators — see, e.g., [2, Theorem
I1.4.4] or [11, Problem 5.42(b)]. This, however, also holds in a Banach space with a Schauder basis
(which turns out to be separable) — see, e.g., [11, Problem 4.58].

We improve the converse in Theorem 1 by showing in Theorem 2 that if A ® B is nonzero and
compact, then so are both A and B without any restriction on their spectra. First we need the
following elementary auxiliary result which says that if a sequence of single tensors converges, then
it must converge to a single tensor.

Lemma 1. Take s, =2 Qy, € H® K with x € H and y,, € K for each positive integer n. If
{sn} converges in HR K to s € H® K, then s =x ®y for some y € K.

Proof. Let {s,} be a sequence of vectors in % ® K as in the lemma statement. If {s, } converges
in H ® K, then {s,} is a Cauchy sequence,

I$m — sn]l =0 as m,n — oco.

Since S — Sn = L@ Ym — LR Yn = T ® (Yn — Ym), and since || @ (Yn — ym)|l = 12l |yn — ymll,
it follows that

|zl |y — ym| — 0 as m,n — oo.
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Thus {y,} is a Cauchy sequence in K. Since K is a Hilbert space, {y,} converges in K to, say,
y € K. Since {s,} converges, let s be its limit in % ® K, so that (by continuity of the conjugate
bilinear functional)
s=1irrlnsn=1irrln(x®yn)=x®lirrlnyn=x®y. 0
Theorem 2. If A® B is a nonzero compact tensor product in B[H ® K], then both A € B[H)]
and B € B[K] are nonzero compact operators.

Proof. Suppose A® B # O in B[H® K]. Thus A# O and B # O in B[H] and B[K]. Since
A # O, there exists z # 0 in #H such that ||Az|| # 0. Take an arbitrary bounded sequence {yy,} of
vectors y,, in K, and let {s,,} be a sequence of single tensors s,, in H ® K given by s, = z ® y,, for
each positive integer n. Note that {s,} is bounded because {y,} is bounded. In fact,

sup [|sn || = sup |z @ yn | = sup ||z lyn|l = [lz]| sup [[yn| < oo
Thus, if A® B is compact, then there exists a subsequence {s,, } of {s,} such that {(A® B)sy, }
converges in H ® K. Hence, by Lemma 1,
(A® B)sn, = (A® B)(z @ Yn,) = Az ® By, — Az ® 2

for some z € K (not necessarily in the range of B, since the range of B is not necessarily closed in
KC). Then, by Proposition 1(a, b, e),
[Az (|| Byn, — 2|l = | Az ® (Byn, — 2)I| = || Az ® Byn, — Az ® 2)||
=[(A® B)(z @ yn,) — Az @ 2| = (A ® B)sn, — Az @ 2| = 0.
Therefore, since ||Az|| # 0, it follows that By,, — z. Outcome: Recalling that {y,} was taken to
be an arbitrary bounded sequence, then we can conclude that for every bounded sequence {y,}

of vectors y,, in K, there exists a subsequence {y,, } of it such that {By,, } converges in K. This
means that B is compact. Symmetrically, if A ® B is nonzero and compact, then A is compact. [



Theorems 1 and 2 together yield a complete characterization of compactness preservation for

tensor products.

Corollary 1. A tensor product A® B € B[H ® K| is nonzero and compact if and only if

A € B[H] and B € B[K] are both nonzero and compact.
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