ACCRETIVE METRIC PROJECTIONS

L. VESELÝ

ABSTRACT. In this note we prove that all metric projections onto closed subsets of a normed linear space X are accretive if and only if X is an inner-product space. Instead of all closed sets it suffices to consider more special classes of sets in X.

Introduction. Let X be a real normed linear space and let 2^X be the set of all its subsets. A multivalued mapping $A: X \to 2^X$ is termed **accretive** if $||x-y+t(\bar{x}-\bar{y})|| \ge ||x-y||$ whenever $t > 0, \bar{x} \in A(x), \bar{y} \in A(y)$. Accretive mappings have been intensively studied in connections with semi-groups of nonexpansive mappings and with differential equations and inclusions in Banach spaces. In Hilbert spaces, accretive operators coincide with monotone operators. We refer the reader to [3], [4] for basic facts about accretive operators and their applications.

For a set $F \subset X$ we define $P_F(x) = \{\bar{x} \in F : ||x - \bar{x}|| = \operatorname{dist}(x, F)\}$. The mapping $P_F : X \to 2^F \subset 2^X$ is called **metric projection onto** F. We put $P_F^{-1}(y) = \{x \in X : y \in P_F(x)\}$ for any $y \in X$.

If X is an inner product space, it is easy to prove that both P_F and P_F^{-1} are accretive for any $F \subset X$. It is natural to ask whether this property extends to more general spaces. H. Berens and U. Westphal [2] proved that the accretivity of all P_F^{-1} is equivalent to the existence of an inner product generating the norm of X. Our aim is to prove that a similar situation appears for metric projections themselves. Clearly we can confine ourselves to metric projections onto closed sets, since $P_{\bar{F}}(x) \supset P_F(x)$ for any $x \in X$ and any $F \subset X$. We shall show that it is possible to consider all two-points sets or, if $dim(X) \ge 3$, all lines only.

Results. We need two well-known characterizations of inner product spaces in terms of orthogonality. For $x, y \in X$ let us write

x # y if ||x + y|| = ||x - y|| (James orthogonality), and $x \perp y$ if $||x + ty|| \ge ||x||$ for any $t \in \mathbb{R}$ (Birkhoff orthogonality).

Theorem 1 (cf. [1, (4.1) and (12.11)]).

(a) If the implication $x \# y \implies x \perp y$ holds in X, then X is an inner-product space.

Received December 12, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 41A65, 47H06; Secondary 46B99, 46C10.

(b) If $dim(X) \ge 3$ and the Birkhoff orthogonality is left-additive (i.e. $(x + y) \perp v$ whenever $x \perp y$ and $y \perp v$), then X is an inner-product space.

Theorem 2. For a normed linear space X the following assertions are equivalent:

- (i) X is an inner product space.
- (ii) P_F is accretive for any closed $F \subset X$.
- (iii) P_Q is accretive for any $Q = \{a, b\} \subset X$.

Proof. (i) \Longrightarrow (ii). Let $\bar{x} \in P_F(x)$, $\bar{y} \in P_F(y)$, t > 0. Then $||x - \bar{x}|| \le ||x - \bar{y}||$ and $||y - \bar{y}|| \le ||y - \bar{x}||$. Hence $||x - y + t(\bar{x} - \bar{y})||^2 \ge ||x - y||^2 + 2t < x - y, \bar{x} - \bar{y} > =$ $||x - y||^2 + t(||x - \bar{y}||^2 - ||x - \bar{x}||^2 + ||y - \bar{x}||^2 - ||y - \bar{y}||^2) \ge ||x - y||^2$. The implication (ii) \Longrightarrow (iii) is obvious.

We shall use Theorem 1(a) for the proof of (iii) \Longrightarrow (i). Let $x, y \in X, x \# y, Q = \{-y, y\}$. Then $P_Q(x) = P_Q(0) = Q$. For any t > 0 the definition of accretivity implies $||x - 2ty|| \ge ||x||$ (because $-y \in P_Q(x)$ and $y \in P_Q(0)$) and $||x + 2ty|| \ge ||x||$ (because $y \in P_Q(x)$ and $-y \in P_Q(O)$). Hence $x \perp y$ and the proof is complete. \Box

Now let us consider various classes of convex sets. We begin with hyperplanes.

Theorem 3. For a normed linear space X the following two assertions are equivalent:

- (i) X is strictly convex (i.e. the unit sphere does not contain any nontrivial line segment).
- (ii) P_H is accretive for any closed hyperplane $H \subset X$.

Proof. (i) \Longrightarrow (ii). Let X be strictly convex and $H \subset X$ be a closed hyperplane containing the origin. Then either H is a Chebyshev hyperplane or $P_H(x) = \emptyset$ for all $x \in X \setminus H$, and in both cases P_H is singlevalued and linear on $D(P_H) = \{x \in X | P_H(x) \neq \emptyset\}$, [5]. For any $x, y \in D(P_H)$ and any t > 0 we have

$$||x - y + t(P_H(x) - P_H(y))|| = ||x - y + tP_H(x - y)||$$

$$\geq (1+t)||x - y|| - t||(x - y) - P_H(x - y)|| \geq (1+t)||x - y|| - t||(x - y) - 0|| = ||x - y||.$$

Consequently P_H is accretive.

(ii) \Longrightarrow (i). Let $x, v \in X$ be such that ||x|| = ||x-v|| = ||x+v|| = 1. Take a nonzero functional $f \in X^*$ such that f(x) = ||f|| and denote $H = f^{-1}(0)$. Then $v \in P_H(x)$ and $0 \in P_H(x+v)$. Consequently $||v|| = ||(x+v)-x|| \le ||(x+v)-x+(0-v)|| = 0$, since P_H is accretive by (ii). This implies (i).

Corollary. Let $\dim(X) = 2$. Then the following are equivalent:

- (i) X is strictly convex.
- (ii) P_M is accretive for any subspace $M \subset X$.

The following theorem shows that for spaces of dimension greater than 2 the Corollary does not hold.

Theorem 4. Let X be a normed linear space with $\dim(X) \ge 3$. Then the following assertions are equivalent:

- (i) X is an inner-product space.
- (ii) P_C is accretive for any closed convex $C \subset X$.
- (iii) P_M is accretive for any closed subspace $M \subset X$.
- (iv) P_L is accretive for any 1-dimensional subspace $L \subset X$.

Proof. (i) \Longrightarrow (ii) follows from Theorem 2. The implications (ii) \Longrightarrow (iii) \Longrightarrow (iv) are obvious. We shall prove (iv) \Longrightarrow (i) using Theorem 1(b).

Let $x, y, v \in X, x \perp v$ and $y \perp v$. If v = 0 then $(x + y) \perp v$ holds trivially. Let $v \neq 0, L = \operatorname{span}\{v\}$. Then the definition of the Birkhoff orthogonality implies $0 \in P_L(-x)$ and $tv \in P_L(y + tv)$ for any $t \in \mathbb{R}$. The accretivity of P_L implies $||y + tv + x|| \leq ||y + tv + x + stv||$ for any $t \in \mathbb{R}$ and s > 0. Introducing the substitution r = st we get

$$\|y+(r/s)v+x\|\leq \|y+(r/s)v+x+rv\|\qquad\text{whenever }r\in\mathbb{R},\,s>0.$$

After passing $s \to \infty$ we obtain $(x + y) \perp v$ and the proof is complete by Theorem 1(b).

References

- Amir D., Characterizations of Inner Product Spaces, Operator Theory: Advances and Appl. 20, Birkhäuser Basel, 1986.
- Berens H. and Westphal U., Kodissipative metrische Projektionen in normierten linearen Räumen, Linear Spaces and Approximation (P. L. Butzer and B. Sz.-Nagy, eds.), ISNM 40, Birkhäuser Basel, 1978, pp. 120–130.
- Brézis H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Math. Studies 5, North-Holland, Amsterdam, 1973.
- 4. Deimling K., Nonlinear Functional Analysis, Springer-Verlag, 1985.
- 5. Holmes R. B., A Course on Optimization and Best Approximation, Lecture Notes in Math. 257, Springer-Verlag, 1972.

L. Veselý, Charles University, Faculty of Math. and Phys., KMA, Sokolovská 83, 18600 Praha 8, Czechoslovakia