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RADICALS COMMUTING WITH BANDS OF SEMIGROUPS

A. V. KELAREV

It is known that ring and semigroup theories have evolved many similar meth-

ods. The exchange of ideas between these theories has enriched both of them.

Among ring concepts transfered to semigroups, the notion of a radical deserves

mentioning. The analogy with radicals of rings suggests that semigroup radicals

may be applicable in studying the structure of semigroups. On the other hand,

many structure results involve bands of semigroups. Therefore in order to ap-

ply radicals it seems important to know what are the radicals interacting with

bands well in a sense. Let ρ be a radical, B a band. Defering complete defini-

tions to §1, now we only say that one of the most convenient cases arises when

ρ(S) = ∪b∈Bρ(Sb) for every S = ∪b∈BSb, band of semigroups. The aim of the

present paper is to describe radicals with this property.

1. The Main Theorem

We use the standard notation [2]. For any semigroup, the universal congruence

and the equality relation will be designated by ω and ι, respectively. Assume that,

for each semigroup S in an abstract class A of semigroups, a congruence ρ(S) is

defined. The mapping ρ : S → ρ(S) is called a radical (or a radical on A) if

(R1) the (x, y) ∈ ρ(S) =⇒ (f(x), f(y)) ∈ ρ(T ) for any homomorphism

f : S → T ;

(R2) ρ(S/ρ(S)) = ι for any s ∈ A.

Throughout, we shall consider radicals on the class of all semigroups. The congru-

ence ρ(S) is called the ρ-radical of S. A semigroup S is said to be ρ-semisimple

(ρ-radical) if ρ(S) = ι (or ρ(S) = ω). If it is clear which radical is under consider-

ation, then we shall omit the prefix ‘ρ-’. The class S of all semisimple semigroups

is called the semisimple class of ρ. A radical ρ will be called trivial if every

semigroup is ρ-semisimple. Each radical is uniquely determined by its semisimple

class (see [10]). Therefore there is only one trivial radical.

Let B be a band. For possible applications of radicals to the study of semigroups

which are represented as a band B of semigroups the most convenient case arises
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when for any S = ∪b∈BSb the equality ρ(∪b∈BSb) = ∪b∈Bρ(Sb) holds. In this case

we shall say that ρ commutes with B. Note that in ring theory an analogous

concept of radicals commuting with bands was introduced in [3]. Radicals of this

sort were described in [3], [2] and [5]. Similar problem concerning radicals and

bands in the class of semigroups with zero was solved in [6].

Recall that ρ is said to be hereditary if ρ(I) = ρ(S)∩(I×I) for every semigroup

S with an ideal I. We say that ρ is strict if ρ(T ) ⊆ ρ(S) for any subsemigroup

T of S. This concept is analogous to that of strict ring radicals, see [11]. The

strict radicals of groups and monoids are defined in a somewhat different manner

(cf. [8]). If S is a semigroup and I ⊆ S, then Iρ(S) denotes the set of all pairs

(is, it) where i ∈ I, (s, t) ∈ ρ(S). We say that ρ is right strict (right weakly

hereditary; right transitive) if and only if for any right ideal I of S the inclusion

ρ(I) ⊆ ρ(S) (Iρ(S) ⊆ ρ(I); ρ(I)S ⊆ ρ(I)) holds. Left strict, left weakly hereditary

and left transitive radicals are defined dually.

Let S be a class of semigroups, B a band. We say that S is B-closed if and

only if for every S = ∪b∈BSb all Sb belong to S implies S ∈ S. We say that S
is 0-closed if for each S ∈ S the semigroup S0 with zero adjoined belongs to S.

Recall that B is said to be a semilattice (left zero band; right zero band;

rectangular band) if it satisfies the identity xy = yx (xy = x;xy = y;xyx = x).

We say that B is nonsingular if |B| > 1.

Theorem. Let B be a nonsingular band, and let S be the semisimple class of a

radical ρ. Then ρ commutes with B if and only if one of the following conditions

holds:

(i) B is a semilattice, ρ is strict and hereditary, S is 0-closed;

(ii) B is a left zero band, ρ is right strict, right weakly hereditary and right

transitive, S is B-closed;

(iii) dual to (2);

(iv) B is a rectangular band, ρ is right and left strict, right and left weakly

hereditary, right and left transitive, S is B-closed.

This result was announced in [4]. As it has been mentioned above, the anal-

ogous problems on the commutation of bands and radicals in the classes of rings

(cf. [1], [3], [5]) and semigroups with zero (cf. [6]) are solved too. There are essen-

tial differences between the answers in the three classes considered. For instance,

in [5] an example of a non-hereditary ring radical commuting with every semilat-

tice is constructed. Our Theorem yields that a radical of this sort does not exist

in the case of semigroups.

2. Proof of the Main Theorem

We need a few known results on the structure of bands (cf. [2] §4.2).
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Lemma 1. Each rectangular band is isomorphic to a direct product of a left

zero band and a right zero band.

Lemma 2. Each band is uniquelly represented as a semilattice of rectangular

bands.

Lemma 2 easily gives us

Lemma 3. Let B be a nonsingular band. If B is a semilattice, then B contains

a two-element subsemilattice. If B is not a semilattice, then B contains a two-

element left zero band or a two-element right zero band, as a subsemigroup.

We say that a radical ρ is B-homogeneous if for every semigroup S = ∪BSb the

radical ρ(S) is contained in S = ∪b∈BSb×Sb. Obviously every radical commuting

with B is B-homogeneous.

Lemma 4. A radical ρ is B-homogeneous if and only if B is ρ-semisimple.

Proof. The semigroup B is a band B of one-element semigroups. Therefore if

ρ is B-homogeneous, then ρ(B) ⊆ ∪b∈B {(b, b)}, i.e. B is semisimple.

Conversely, let B be semisimple. Suppose that ρ is not B-homogeneous, i.e.

there is a semigroup S = ∪b∈BSb with elements x, y such that (x, y) ∈ ρ(S),

x ∈ Sa, y ∈ Sb, a 6= b. Consider the map f defined by the rule f(s) = b

whenever s ∈ S, b ∈ B, s ∈ Sb. Evidently f is a homomorphism, and f(x) = a,

f(y) = b. Hence condition (R1) implies (a, b) ∈ ρ(B), giving the contradiction.

This completes the proof. �

Let us say that a radical ρ is weakly hereditary if and only if for every

semigroup S with an ideal I the inclusion ρ(S)I ∪ Iρ(S) ⊆ ρ(I) holds. A radical

ρ will be called transitive if and only if for any semigroup S with an ideal I the

union ρ(I) ∪ ι is a congruence of S.

Lemma 5. Let B be a non-rectangular band, ρ a radical commuting with B.

Then ρ is strict, weakly hereditary and transitive.

Proof. By Lemma 2, B is a semilattice Y of rectangular bands Ry. Since B is

not rectangular, Y must be nonsingular.

First, we prove that ρ is strict. Take any semigroup S and any subsemigroup

T in S. Consider elements y0 < y1 of Y . Let b1 ∈ Ry1 , b2 ∈ Ry0 , b0 = b1b2b1.

Then the set Z2 = {y0, y1} is a semilattice. Let Z1 = {y ∈ Y | y ≥ y1}, Z=Y \Z1,

Xi = ∪y∈ZiRy, where i =, 1. There are pairwise disjoint semigroups Wb, b ∈ B,

such that

Wb
∼=

{
T when b ∈ X1;

S when b ∈ X0.

These isomorphisms and the operation of the semigroup S naturally induce an

operation on the union W = ∪b∈BWb. Thus W is a semigroup being a band B of
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the subsemigroups Wb. Denote by π the homomorphism of W onto S expanding

the isomorphisms of the components Wb on T or S. Fix any γ in X1. Since ρ

commutes with B, we get ρ(Wγ) ⊆ ρ(W ). Hence ρ(S) ⊇ π(ρ(W )) ⊇ π(ρ(Wγ)) =

ρ(T ). Thus ρ is strict.

Now we prove that ρ is hereditary and transitive. Let S be a semigroup and I

be an ideal in S. There are pairwise disjoint semigroups Wb, b ∈ B, such that

Wb
∼=

{
S when b ∈ X1;

I when b ∈ X0.

Denote by π the homomorphism of W onto S defined by the isomorphisms of

the components Wb on T or S. Let b0, b1 be the elements of B introduced at

the beginning of the proof. Since ρ is strict we have ρ(Wb1) ⊆ ρ(W ). Therefore

Wb0ρ(Wb1) ∪ ρ(Wb1)Wb0 ⊆ (Wb0 ×Wb0) ∩ ρ(W ). Keeping in mind that Wb1
∼= S,

Wb0
∼= I we get Iρ(S) ∪ ρ(S)I ⊆ ρ(I), because ρ commutes with B. Thus ρ is

weakly hereditary.

Also, for the same semigroup S and ideal I the strictness of ρ implies ρ(Wb0) ⊆
ρ(W ). Hence Wb1ρ(Wb0) ∪ ρ(Wb0)Wb1 ⊆ ρ(Wb0), and so Sρ(I) ∪ ρ(I)S ⊆ ρ(I).

Therefore ρ(I) ∪ ι is a congruence on S, yielding that ρ is transitive. �

Lemma 6. Let ρ be a radical, B a semilattice S of rectangular bands Qs, s ∈ S,

where Qs is a direct product of a left zero band Ls and a right zero band Rs. If

ρ commutes with B and some Ls (or Rs) is not a singleton, then ρ is right (left)

strict, right (left) weakly hereditary and right (left) transitive.

Proof. We will consider only the case where some Ls is nonsingular. Let c and

d be distinct elements of Ls.

Take any semigroup S with a right ideal I. Set Z1 = {y ∈ Y | y ≥ s} , Z0 =

Y \Z1,Xi = ∪y∈ZiRy.

There are pairwise disjoint semigroups Wb, b ∈ B, such that

Wb
∼=


S when b ∈ X0;

I when b ∈ X1\Qs;

I when b = (c, r), r ∈ Rs;

S when b = (g, r), c 6= g ∈ Ls, r ∈ Rs.

These isomorphisms and the operation of the semigroup S naturally induce an

operation on the union W = ∪b∈BWb. Then W is a semigroup being a band B of

the subsemigroups Wb. Therefore ρ(W ) = ∪α∈Bρ(Wα).

Fix some r ∈ Rs and set e = (c, r), f = (d, r). Then ρ(We) ⊇ Weρ(Wf ). Since

We
∼= I and Wf

∼= S we get ρ(I) ⊇ Iρ(S). Thus ρ is right weakly hereditary.

Since ρ(W ) is a congruence on W , it follows that ρ(We)Wf ⊆ ρ(We), implying

ρ(I)S ⊆ ρ(I). Thereby ρ is right transitive.
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Denote by π the homomorphism of W onto S continuing the isomorphisms of

the components Wb on T or S. Then ρ(S) ⊇ π(ρ(We)) = ρ(I). Thus ρ is right

strict. �

Now we will consider the interaction of radicals and semilattices.

Lemma 7. Let ρ be a nontrivial strict and weakly hereditary radical, U2 a

commutative semigroup with generators u, v and relations u2 = uv = vu = v2.

Then (u, v) ∈ ρ(U2).

Proof. Let N2 denote the two-element semigroup with zero multiplication. First

we prove that N2 is radical.

Since ρ is nontrivial, there exists a semigroup S which is not semisimple. By Se

we denote a semigroup S with an identity element e adjoined. Let P be the direct

product of Se and the additive semigroup of non-negative integers. Identify S with

S × 0. Choose s, t in S such that s 6= t, (s, t) ∈ ρ(S). Let I be the ideal generated

in S by (e, 1). Since ρ is strict and weakly hereditary, we get ((s, 1), (t, 1)) =

(s(e, 1), t(e, 1)) ∈ ρ(I). Clearly, the set J = {(x, 1)|x ∈ S, x 6= s}∪ I2 is an ideal in

S. Further, I/J ∼= N2 and the images of the elements (s, 1) and (t, 1) in I/J are

not equal. Therefore N2 is radical.

Now let P be a commutative semigroup with generators x, y, z and relations

x2 = y2 = xy = y. Denote by T the ideal of P generated by z. The set {x, y} is a

semigroup isomorphic to N2. It follows that (x, y) ∈ ρ(T ), since ρ is strict. Then

by weak heredity (xz, yz) ∈ ρ(T ). Consider on T the equivalence relation µ whose

classes are {zy}, {z, zx}, {zn, znx, zny}, n = 2, 3, . . . . It is routine to verify that µ

is a congruence on T (not on P !). The quotient semigroup T/µ is isomorphic to

U2, and this isomorphism maps zx to u and zy to v. Hence (u, v) ∈ ρ(U2). �

Lemma 8. Let ρ be a strict radical and let Y be a nonsingular semilattice. If

Y is semisimple, then all semilattices are semisimple.

Proof. Suppose the contrary: let there exist a semilattice B and (a, b) ∈ ρ(B),

a 6= b. Then a 6= ab or b 6= ab. Without loss of generality we may assume that

a 6= ab. Obviously (a, ab) ∈ ρ(B). Set Z1 = {c ∈ B | c ≥ a} , Z0 = B\Z1. Denote

by µ the congruence on B whose classes are Z0 and Z1. Let Y2 = B/µ. Then

Y2 is a semilattice consisting of two elements. Hence Y2 is radical, because the

images of a and ab in Y2 do not coincide with each other. However, Y contains a

subsemilattice isomorphic to Y2. Since ρ is strict, we get a contradiction with the

semisimplicity of Y . �

Lemma 9. Let S be a semisimple class of a strict weakly hereditary radical ρ.

If S is 0-closed, then S is closed under every semilattice.

Proof. The two-element semilattice Y2 is semisimple, since it is isomorphic to

00. Hence Lemma 8 implies that all semilattices are semisimple.
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Now let Y be a semilattice, and S = ∪y∈Y Sy, where Sy ∈ S. Suppose the

contrary: let S be not semisimple, (s, t) ∈ ρ(S), s 6= t. By Lemma 4 there is y ∈ Y
such that (s, t) ∈ ρ(Sy). Set Z1 = {z ∈ Y | z ≥ y} , Z0 = Z\Z1, Si = ∪z∈ZiSz,
i = 0, 1. Then S/S0

∼= S0
1 . By (R1) we get (s, t) ∈ ρ(S0

1). Since S0
y is a semisimple

ideal of S1, weak heredity implies xs = xt, sx = tx for every x ∈ Sy. Hence

s2 = st = ts = t2. Therefore the semigroup T , generated in Sy by s, t, is a

homomorphic image of the semigroup U2 with generators u, v and relations u2 =

uv = vu = v2. Lemma 7 yields (s, t) ∈ ρ(T ). This contradicts the semisimplicity

of Sy and strictness of ρ. �
Lemma 10. If ρ is a strict transitive and weakly hereditary radical, then ρ is

hereditary.

Proof. Take any semigroup S and an ideal I of S. We are to prove that ρ(I) =

(I × I)∩ ρ(S). The strictness of ρ yields ρ(I) ⊆ (I × I)∩ ρ(S). Now we will prove

the converse inclusion.

Set ζ = ρ(I) ∪ ι. Then ζ is a congruence relation on S, since ρ is transitive.

Therefore we can pass to the quotient semigroup S/ζ. To simplify the notation

we assume that S = S/ζ, i.e. I is semisimple, which is equivalent to saying that

ζ = ι. It remains to show that in this case (I × I) ∩ ρ(S) ⊆ ι.
Suppose the contrary: let there be elements s, t in I such that (s, t) ∈ ρ(S),

s 6= t. Denote by T the semigroup generated in S by s and t. As earlier, U2 denotes

the commutative semigroup on generators u, v with relations u2 = uv = v2. Since

ρ is weakly hereditary, ρ(I) contains (sx, tx) and (xs, xt). Hence sx = tx, xs = xt.

Therefore the mapping u 7→ s, v 7→ t can be expanded to a homomorphism of U2

on T . This and Lemma 7 imply (s, t) ∈ ρ(T ). The strictness of ρ yields (s, t) ∈ ρ(I)

giving a contradiction with the semisimplicity of I. �
Now we can describe radicals commuting with a semilattice.

Lemma 11. Let B be a nonsingular semilattice. A radical ρ commutes with B

if and only if ρ is strict and hereditary, and the semisimple class S of ρ is 0-closed.

Proof. If ρ commutes with B, then obviously S is 0-closed. Therefore the ‘only

if’ part follows from Lemmas 5 and 10.

The ‘if’ part. Let ρ be strict and hereditary, and let S be 0-closed. First

we will prove that ρ commutes with the two-element semilattice Y2. Take any

semigroup S which is a semilattice Y2 of a subsemigroup Se and an ideal So. Then

µ = ρ(Se) ∪ ρ(So) is a congruence on S, and µ ⊆ ρ(S). By Lemma 9, S is closed

under every semilattice. Clearly S/µ is a semilattice Y2 of semisimple semigroups

Se/ρ(Se) and So/ρ(So). Hence S/µ is semisimple, and so µ ⊇ ρ(S). Since ρ is

strict, µ = ρ(S). We have shown that ρ commutes with Y2. An easy induction

yields that ρ commutes with every finite semilattice.

Take any semilattice B and any semigroup S which is a semilattice B of sub-

semigroups Sb. Set µ = ∪b∈Bρ(Sb). Pick x ∈ Sa, and (s, t) ∈ ρ(Sb), where
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a, b ∈ B. Clearly, the semigroup T = Sa ∪ Sb ∪ Sab is a semilattice of its subsemi-

groups Sc, where c ∈ {a, b, ab}. Given that ρ is strict and commutes with finite

semilattices, pairs (xs, xt) and (sx, tx) are in ρ(Sab). So µ is a congruence on S.

By Lemma 9, S is closed under every semilattice. This, as above, yields that S/µ

is semisimple. Hence µ ⊇ ρ(S). The reverse inclusion follows from the strictness

of ρ. �

Now let us consider radicals commuting with rectangular bands.

Lemma 12. A radical ρ commutes with a nonsingular left (right) zero band

B if and only if it is right (left) strict, right (left) weakly hereditary, right (left)

transitive, and the semisimple class S of ρ is closed under B.

Proof. Necessity follows from Lemma 6.

Sufficiency. We consider only the case where B is a left zero band. Take any

semigroup S which is a band B of its subsemigroups Sb. Since all Sb are right

ideals in S and ρ is right strict, right weakly hereditary and right transitive, we

obtain that µ = ∪b∈Bρ(Sb) is a congruence on S and µ ⊆ ρ(S). Further, S/µ is a

band B of semisimple semigroups Sb/ρ(Sb). Therefore S/µ ∈ S, whence µ ⊇ ρ(S).

So µ = ρ(S) and ρ commutes with B. �

Lemma 13. Let B be a rectangular band isomorphic to a direct product L×R
where L is a left zero band, R is a right zero band. A radical ρ commutes with B

if and only if it commutes with L and R.

Proof. Necessity. Assume that ρ commutes with B. If L is a singleton, then ρ

commutes with L. Let |L| > 1.

Then Lemma 6 says that ρ is right strict, right weakly hereditary and right

transitive. We claim that the semisimple class S of ρ is closed under L.

Suppose the contrary: let there exist a non-semisimple semigroup S which is a

band L of subsemigroups Sb. If R is a singleton, then B = L gives a contradiction.

Let R be nonsingular. Then ρ is left strict by Lemma 6.

There exist semigroups Wb(b ∈ B) such that Wa ∩ Wb = ∅ whenever a 6=
b, and Wb

∼= Sl when b = (l, r), l ∈ L, r ∈ R. Expanding the multiplication

of S to the union W = ∪b∈BWb we get the semigroup W which is a band B

of semisimple semigroups Wb. Hence W is semisimple. However W contains a

left ideal ∪l∈LW(l,r) isomorphic to S. Since ρ is left strict, it follows that S is

semisimple, a contradiction. Thus S is closed under L.

Lemma 12 tells us that ρ commutes with L. One can dually prove that ρ

commutes with R.

Sufficiency. Assume that ρ commutes with L and R. Take a semigroup S which

is a band B of its subsemigroups Sb. For l ∈ L by Tl we denote the union of

semigroups S(l,r), where r runs over R. Then Tl is a band R of its subsemigroups

S(l,r), and therefore ρ(Tl) = ∪r∈Rρ(S(l,r)). Besides, ρ(S) = ∪l∈Lρ(Tl) because S
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is a band L of subsemigroups Tl. Hence ρ(S) = ∪b∈Bρ(Sb) which completes the

proof. �
Lemmas 1, 12 and 13 immediately give us

Lemma 14. Let B be a rectangular band which is neither a left nor a right

zero band. Then ρ commutes with B if and only if ρ is right and left strict, right

and left weakly hereditary, right and left transitive and the semisimple class S of

ρ is closed under B.

Proof of Theorem. Sufficiency follows from Lemmas 11, 12 and 14.

Necessity. Suppose that ρ commutes with B but all the conditions (1)–(4) are

not valid. Then Lemmas 11, 12 and 14 show that B is neither a semilattice nor

a rectangular band. By Lemma 3, B contains a two-element band Bo consisting

entirely of left zeros or right zeros. Without loss of generality we consider the

case where Bo is a left zero band. Then ρ is right weakly hereditary by Lemma 6.

Lemma 5 yields that ρ is strict. As in the proof of Lemma 7, strictness and

weak heredity imply that the two-element semigroup N2 with zero multiplication

is radical.

Consider semigroup R with zero 0 defined by generators e, n and relations e2 =

e, n2 = 0, ene = e. Set T = {0, ne, nen}. Since {0, n} is isomorphic to N2 and

ρ is strict, (0, n) ∈ ρ(R). The pair (0, n) generates a universal congruence in

R, and so R is radical. Clearly T is a right ideal in R. By right weak heredity

ρ(T ) ⊇ Tρ(R) = T × T . The two-element semilattice Y2 is isomorphic to T/

{0, nen}. Hence Y2 is radical. By Lemma 3, B contains a copy of Y2, and so B is

not semisimple or ρ is not strict. The contradiction completes our proof. �

3. Examples of Radicals

Here we will give examples of radicals satisfying the conditions of main theorem.

Let us consider the radical η whose semisimple class S consists of all semilattices.

It is known and easy to prove that S is closed under every semilattice. The inner

characterization of η due to [12] easily yields that η is strict and hereditary. So

by the Theorem we get

Proposition 1. The radical η commutes with every semilattice.

Now we will construct a radical commuting with rectangular bands. For a

semigroup S, by K(S), we denote the set of subgroups T in S such that TST

is contained in T . Let µ denote the mapping taking S to the relation µ(S) =

∪T∈K(S)T × T .

If groups P, T of K(S) have a common element x, then P = xP = xPx ⊆ T ,

and similarly T ⊆ P implying T = P . It means that µ is an equivalence relation.

For x ∈ S, T ∈ K(S) let us consider xT . First, xT is a semigroup, because

x(TxT ) ⊆ xT . Given that T is a group, for any xy in xT we get x(Txy) =
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xT, x(yxT ) = xT . So xT is right and left simple, and therefore it is a group.

Further, xTSxT ⊆ xT , i.e. xT ∈ K(S). Analogously, Tx ∈ K(S). Therefore µ(S)

is a congruence.

Condition (R1) obviously holds for µ. We are to prove (R2). Taking quotient

semigroup F = S/µ(S) we claim that F is semisimple. If not, then there is

G ∈ K(F ), |G| > 1. Set H = f−1(G) where f is the natural homomorphism of

S onto F . Pick any Q in K(S). Since QSQ ⊆ Q and f(H)f(S)f(H) ⊆ f(H),

we see that either Q contains H or Q does not intersect H. The former case is

impossible, because H is not a singleton. Therefore H ∩Q = ∅. Hence H ∼= f(H),

and so H is a group. Given that G ∈ K(F ), we get H ∈ K(S). It follows that

H × H ⊆ µ(S) and so G is a singleton, giving a contradiction. Therefore F is

semisimple and condition (R2) holds too. Thus µ is a radical.

Proposition 2. The radical µ commutes with every rectangular band.

Proof. Let B be a rectangular band. Take any semigroup S which is a band B of

semisimple semigroups Sb. If S is not semisimple, then there exists a nonsingular

group T in K(S). Since T does not have a one-sided ideal, it follows that T ⊆ Sb
for some b ∈ B. By the definition of a rectangular band SbSaSb ⊆ Sbab = Sb for

any a ∈ B. Hence SbSSb ⊆ Sb, and so T ∈ K(Sb), giving a contradiction with

the semisimplicity of Sb. We have proved that the semisimple class of µ is closed

under every rectangular band.

Consider any semigroup S with a right ideal R. If T∩R 6= ∅ for some T ∈ K(S),

then T ⊆ R. So µ(R) contains ζ = µ(S) ∩ (R × R). Further, for any T ∈ K(R)

we get TST = T (TS)T ⊆ T , i.e. T is in K(S). Therefore ρ(R) = ζ. Hence it

is clear that µ is right strict, right weakly hereditary and right transitive. Dually

one can prove that µ is left strict, left weakly hereditary and left transitive. By

the Theorem, µ commutes with every rectangular band. �

Among the conditions in our main theorem the most difficult for tests is the

B-closeness of S in the case of a rectangular band B. If ρ is an M -radical (cf. [9]),

this condition can be simplified. However the interaction of bands and M -radicals

deservers a separate investigation, and we do not present that result here.
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