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ENTROPY–MINIMALITY

E. M. COVEN and J. SMÍTAL

In this note, we introduce a dynamical property of continuous maps, which we

call entropy-minimality, lying between minimality and topological transitivity.

We pay special attention to maps of the interval, showing that topological transi-

tivity implies entropy-minimality for piecewise monotone maps but not for maps

of the interval in general.

Let f : X → X be a continuous self-map of a compact metric space. Recall that

f is minimal if the only nonempty, closed, f -invariant subset of X is X itself,

and f is topologically transitive if the only closed, f -invariant subset of X

with nonempty interior is X itself. We say that f is entropy-minimal if the

only nonempty, closed, f -invariant subset Y of X such that ent (f |Y ) = ent (f) is

Y = X. (Here ent (·) denotes topological entropy [AKM].)

Clearly every minimal map is entropy-minimal. The converse is false. Any

topologically transitive, piecewise monotone map of the interval provides a coun-

terexample (see Theorem 2 below), as does any infinite, topologically transitive

shift of finite type.

Theorem 1. Every entropy-minimal map is topologically transitive.

Proof. Let f : X → X be an entropy-minimal map. Let Ω = Ω(f) denote

the nonwandering set of f , defined by x ∈ Ω if and only if for every open set U

containing x, there exists n ≥ 1 such that fn(U) ∩ U 6= ∅. Ω is nonempty, closed,

f -invariant, and [W, Corollary 8.6.1(iii)] ent (f) = ent (f |Ω). Therefore Ω = X.

By [GH, Theorem 7.21], Ω(fn) = X for every n ≥ 1.

We use the following equivalent formulation of topological transitivity: f is

topologically transitive if and only if for every nonempty open set U ,

cl ∪n≥1f
n(U) = X. For ease of notation, if E is a subset of X, we write E∗ in

place of cl ∪n≥1f
n(E). If f is not topologically transitive, there exists a nonempty

open set U such that U∗ 6= X. Let V = X − U∗. Since X = U∗ ∪ V ∗, we have

ent (f) = max{ent (f |U∗), ent (f |V ∗)} [AKM, Theorem 4]. Since U∗ 6= X, we

have ent (f |U∗) < ent (f). Therefore ent (f |V ∗) = ent (f) and hence V ∗ = X.
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From the equivalent formulation of topological transitivity, there exists n ≥ 1

such that fn(V ) ∩ U 6= ∅. Let W be a nonempty open subset of V such that

fn(W ) ⊆ U . Then fkn(W ) ⊆ U∗ for every k ≥ 1. Since U∗ ∩ V = ∅, we have

fkn(W ) ∩W ⊆ fkn(W ) ∩ V = ∅ for every k ≥ 1. But then no point of W is in

Ω(fn). �
We now turn to the question: when does topological transitivity imply entropy-

minimality? Recall that an f -invariant, Borel probability measure µ on X is called

a measure of maximal entropy if ent µ(f) = ent (f). Here ent µ(f) denotes the

measure-theoretic entropy [W] of the system (X, f, µ).

Theorem 2. Every topologically transitive, piecewise monotone map of the

interval is entropy-minimal.

Proof. Let f : [a, b] → [a, b] be such a map. By [P, Corollary 3], f is topolog-

ically conjugate to a piecewise linear map, each of whose linear pieces has slope

±β, where ent (f) = log β. Without loss of generality, we may assume that f itself

has this property and hence satisfies the hypotheses of [H]. By [H, Theorem 8], f

has a unique measure µ of maximal entropy and µ is positive on nonempty open

sets.

Let a = a0 < · · · < an = b, where the intervals [ai−1, ai] are maximal with

respect to “f is monotone on J”, and let A = {a1, . . . , an−1}. For x ∈ [a, b] −
∪j≥0f

−j(A), define ϕ(x) ∈
∏∞

0 {1, . . . , n} by [ϕ(x)]j = i if and only if f j(x) ∈
[ai−1, ai]. The map ϕ−1 is uniformly continuous on ϕ([a, b]−∪j≥0f

−j(A)) and so

extends to a continuous map ψ from Σ = cl ϕ(x ∈ [a, b]−∪j≥0f
−j(A)) onto [a, b].

Then #ψ−1(x) = 1 or 2 for every x ∈ [a, b] and ψ ◦ σ = f ◦ψ, where σ is the shift

on Σ.

Let X be a closed, f -invariant subset of [a, b] and let Σ′ = ψ−1(X). Then

[W, Theorems 8.2, 8.7(v)] σ|Σ′ has a (not necessarily unique) measure ν′ of max-

imal entropy. Let ν be the measure defined on X by ν(E) = ν′(ψ−1(E)). Then

ent (f |X) = ent (σ|Σ′) = ent ν′(σ|Σ′) = ent ν(f |X), the first and last equalities

because finite-to-one factor maps preserve topological entropy [B, Theorem 17],

[NP, Corollary to Lemma 1]. Extend ν to all of [a, b] by defining ν([a, b]−X) = 0.

If X 6= [a, b], then ν 6= µ, and so ent ν(f |X) < ent µ(f) = ent (f). �
The proof above contains the easy proof of the following statement: if a shift

has a unique measure of maximal entropy, then the restriction of the

shift to the support of this measure is entropy-minimal and has the same

entropy as the original shift. The converse is false: consider any minimal

shift with entropy zero which has more than one invariant measure. See, for

example, [O].

Below is an example which shows that Theorem 2 need not hold if the map

is not piecewise monotone. Our example is a modified version of the map con-

structed by M. Barge and J. Martin [BM, Example 3]. It is defined on [0, 1] and
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has the property that for every ε > 0, there is a closed, f -invariant set Xε ⊆ [0, ε]

such that ent (f |Xε) = ent (f). B. Gurevich and A. Zargaryan [GZ] used a sim-

ilar construction to produce a map of the interval with no entropy-maximizing

measure.

Example. Let (an) be a doubly infinite increasing sequence such that

limn→−∞ an = 0 and limn→∞ an = 1. Let f : [0, 1] → [0, 1] be a map such that

f(0) = 0,f(1) = 1, and for all n, f(an) = (an) and f maps [an, an+1] piecewise

linearly onto [an−1, an+2] with three linear pieces, as in Figure 1.

Figure 1.

As in [BM], it is easy to show that f is topologically transitive. We show that

ent (f) = log 5 and that f is not entropy-minimal.

For k = 2, 3, . . . , let

Xk = {x ∈ [0, 1] : f i(x) ∈ [a−k, ak] for i = 0, 1, . . . }.

Then ent (f) ≥ lim supk→∞ ent (f |Xk), and ent (f |Xk) = ent (fk), where

fk : [0, 1]→ [0, 1] is defined by

fk(x) =


a−k, if f(x) ≤ a−k;

f(x), if a−k ≤ f(x) ≤ ak;

ak, if f(x) ≥ ak.

Since fk → f and entropy is C0 lower semicontinuous [M, Theorem 2], ent (f) ≤
lim infk→∞ ent (fk). It follows that ent (f) = limk→∞ ent (fk).
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Now fk = f on [a−k+1, ak−1], and on [a−k, a−k+1] and [ak−1, ak], the graphs of

fk are as in Figure 2.

Figure 2.

By [ALM, Theorem 4.4.5], ent (fk) is the logarithm of the spectral radius,

denoted ρ(·), of the (2k+1)× (2k+1) matrix Bk = (bi,j), indexed by {−k, . . . , k}
and defined by

bi,i = 1 ,

bi,i−1 = bi,i+1 = 2 ,

bi,j = 0 otherwise.

We show that 5− 4
k+1 ≤ ρ(Bk) ≤ 5, from which it follows that ent (f) = log 5.

We use the fact from Perron-Frobenius theory (see, for example, [S]) that for any

irreducible nonnegative matrix B and any positive vector v = (vi),

min
i

(Bv)i
vi

≤ ρ(B) ≤ max
i

(Bv)i
vi

.

It is clear that Bk is irreducible. Setting vi = 1 gives ρ(Bk) ≤ 5. To prove the

other inequality, set

vi =

{
k + 1 + i, i ≤ 0 ;

k + 1− i, i ≥ 0 .

Then
(Bv)i
vi

=

{
5, i 6= 0;

5− 4
k+1 , i = 0 .
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To show that f is not entropy-minimal, let

X = {x ∈ [0, 1] : f i(x) ≤ a0 for i = 0, 1, . . .}.

As above, ent (f |X) = log 5.

Replacing a0 by a−m in the definition of X yields the statement that the entropy

of f is concentrated on arbitrarily small closed intervals containing 0.
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