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PRECOLORING EXTENSION. II.

GRAPHS CLASSES RELATED TO BIPARTITE GRAPHS

M. HUJTER and ZS. TUZA

Abstract. We continue the study of the following general problem on vertex col-
orings of graphs. Suppose that some vertices of a graph G are assigned to some
colors. Can this “precoloring” be extended to a proper coloring of G with at most k
colors (for some given k)? Here we investigate the complexity status of precoloring
extendibility on some graph classes which are related to bipartite graphs, giving a
complete solution for graphs with “co-chromatic number” 2, i.e., admitting a parti-
tion V = V1∪V2 of the vertex set V such that each Vi induces a complete subgraph
or an independent set. On one hand, we show that our problem is closely related to
the bipartite maximum matching problem that leads to a polynomial solution for
split graphs and for the complements of bipartite graphs. On the other hand, the
problem turns out to be NP-complete on bipartite graphs.

1. Introduction

We consider finite undirected graphs G = (V,E) with vertex set V and edge

set E. The clique number or maximum clique size and the chromatic num-

ber of G are denoted by ω(G) and χ(G), respectively. For any vertex set W ⊆ V ,

GW denotes the subgraph induced by W . By definition, for a given integer k ≥ 2,

a (proper) k-coloring is a function f : V → {1, 2, . . . , k} such that uv ∈ E implies

f(u) 6= f(v).

The problem we investigate in this paper was initiated in [2] and is called

the PRECOLORING EXTENSION problem, or PrExt in short. PrExt is more

general than the usual CHROMATIC NUMBER problem and less general than

LIST-COLORING [22]. PrExt can be formulated as follows.

Instance. An integer k ≥ 2, a graph G = (V,E) with |V | ≥ k, a vertex subset

W ⊆ V , and a proper k-coloring ϕ of GW .

Question. Can ϕ be extended to a proper k-coloring of the entire graph G?

PrExt is closely related to many interesting concepts of combinatorics, including

partial Latin squares, integer-valued multicommodity flows, bipartite matchings,

perfect graphs, etc. Those connections were partly discussed in [2] and will also

be explored here and in our forthcoming papers [17, 18]. We note that PrExt
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has also motivated some graph-coloring games [15]. Some practical applications

of PrExt have already been sketched in [2, 3]. In this paper we first show that

PrExt is NP-complete on bipartite graphs. On the other hand, for some important

related graph classes we prove that PrExt is polynomially solvable.

Basic notions.

For an instance of PrExt we say that the number k is the color bound, and G

is a precolored or a partially k-colored graph. The vertices of W and V −W
are called precolored and precolorless, respectively. The precolored classes

are the sets Ci = {x ∈W : f(x) = i}, i = 1, 2, . . . , k. In words, the ith precolored

class consists of all precolored vertices assigned to color i, i = 1, 2, . . . , k.

Given a nonnegative integer d, the subproblem d-PrExt is defined as the problem

in which the instances of PrExt are restricted to those partially k-colored graphs

where the size of each precolored class is at most d. Note that 0-PrExt is the usual

chromatic number problem, i.e., “Is χ(G) ≤ k?”.

Since the problem of finding χ(G) is a subproblem of PrExt, and it is NP-hard

even in rather restricted cases (see [19, 10, 11]), we have

Theorem 1.1. For any fixed color bound k ≥ 3, PrExt is NP-complete. It

remains NP-complete even for partially 3-colored planar graphs of maximum de-

gree 4.

On the other hand, a simple argument will show that for k = 2, PrExt is

polynomially solvable (cf. Section 4).

2. NP-Complete Results

The main result of this section is that PrExt is NP-complete on bipartite graphs.

We shall also see that the same holds for the line graphs of bipartite graphs. The

former result will be proved in the following stronger form.

Theorem 2.1. 1-PrExt is NP-complete on bipartite graphs.

This result will be proved by showing that a polynomial algorithm for 1-PrExt

on bipartite graphs would yield a polynomial algorithm that decides if any given

graph is properly 3-colorable. In order to make the proof more transparent, we

decompose the reduction into three steps. We consider the following decision

problems:

BIPARTITE PrExt, or B-PrExt;

BIPARTITE 1-PrExt, or B-1-PrExt;

BIPARTITE LIST COLORING, or B-LC;

3-COLORATION, or 3C.

Here bipartite PrExt and bipartite 1-PrExt mean PrExt and 1-PrExt on

bipartite graphs, respectively. In case of bipartite list coloring, the input is
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a bipartite graph G = (V,E) on n vertices, and a list L(v) ⊆ {1, 2, . . . , n} of

colors for each vertex v ∈ V . The question is whether or not there exists a proper

coloring f : V → {1, 2, . . . , n} for which f(v) ∈ L(v) holds for each v ∈ V . If the

answer is affirmative, then G is said to be list-colorable. Finally, the 3-coloration

problem simply is the question “Is χ(G) ≤ 3?” for an arbitrary graph G.

Given two decision problems, P and Q, we use the notation P ∝ Q if there

exists a polynomial reduction of P to Q in the usual sense (cf. [10]). We prove the

following three lemmas.

Lemma 2.2. B-PrExt ∝ B-1-PrExt.

Lemma 2.3. B-LC ∝ B-PrExt.

Lemma 2.4. 3C ∝ B-LC.

We mention that further complexity aspects of LIST COLORING will be in-

vestigated in the forthcoming paper [20].

Proof of Lemma 2.2. Consider an instance of B-PrExt with color bound k, i.e.,

a partially k-colored bipartite graph G = (V,E) with bipartition V = X ∪ Y . If

x, x′ ∈ X are precolored with the same color, then identifying x and x′ changes

neither the bipartite status of G nor the answer for PrExt. Therefore, we may

assume that G is precolored in such a way that each color occurs at most once

in X. The same may be assumed for Y . Now, let X ′ = {x′1, x
′
2, . . . , x

′
k} and

Y ′ = {y′1, y
′
2, . . . , y

′
k} be k-element sets for which X, Y , X ′, and Y ′ are pairwise

disjoint. We add X ′ ∪ Y ′ as a set of new vertices to G yielding a bipartition

(X ∪ X ′) ∪ (Y ∪ Y ′) of the new graph G′ such that for any x ∈ X, y ∈ Y and

i, j ∈ {1, 2, . . . , k}, the following new adjacency relations hold:

x′i is adjacent to y′j if and only if i 6= j;

x′i is adjacent to y if and only if y is precolored with a color distinct from i;

y′j is adjacent to x if and only if x is precolored with a color distinct from j.

We consider G′ as an instance of B-1-PrExt where x′i is precolored with i,

i = 1, 2, . . . , k. Now the answer to this instance of 1-PrExt is “yes” if and only if

the original precoloring of G is extendible. Moreover, G′ can be obtained from G

in polynomial time. This completes the proof. �

Proof of Lemma 2.3. Consider an instance of B-LC, i.e., assume that a bipartite

graph G = (V,E) with bipartition V = X∪Y is given, and for each v ∈ V , we have

a list L(v) ⊆ {1, 2, . . . , n} of the possible colors of v. Let k = |∪v∈V L(v)|. Similarly

to the previous proof, we add two k-element sets of vertices, X ′′ = {x′′1 , x
′′
2 , . . . , x

′′
k}

and Y ′′ = {y′′1 , y
′′
2 , . . . , y

′′
k}, to G such that X, Y , X ′′, and Y ′′ are pairwise disjoint.

Furthermore, we take a bipartition (X ∪X ′′)∪ (Y ∪Y ′′) of the new graph G′′, and

for any x ∈ X, y ∈ Y , and i, j ∈ { 1, 2, . . . , k}, define the following new adjacency

relations:
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X ′′ ∪ Y ′′ is an independent set;

x′′i is adjacent to y if and only if i /∈ L(y).

y′′i is adjacent to x if and only if i /∈ L(x).

We precolor x′′i and y′′i with color i in G′′, i = 1, 2, . . . , k, leaving the vertices of G

precolorless. Now the answer for this instance of bipartite PrExt is “yes” if and

only if G is list-colorable. Moreover, G′′ and its precoloring can be derived from G

(and from the lists L(v), v ∈ V ) in polynomial time. This completes the proof. �

Proof of Lemma 2.4. Consider an instance of 3C, i.e., let an arbitrary graph

G = (V,E) be given with V = {v1, . . . , vn} and E = {e1, . . . , em}. Let E0, E1,

E2 be pairwise disjoint sets, each disjoint from V , Eq = {e1
q, . . . , e

m
q }, q = 0, 1, 2.

We define a bipartite graph GL with bipartition V ∪ U of its vertex set where

U = E0 ∪ E1 ∪ E2. Two vertices vi and ejq, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

q = 0, 1, 2, will be adjacent in GL if and only if vi is incident to ej in G. Clearly,

GL can be obtained from G in polynomial time.

We assign a list L(x) to each x ∈ V ∪ U as follows: For i, i′ = 1, 2, . . . , n,

j = 1, 2, . . . ,m, q = 0, 1, 2, let L(vi) = {i, n+i, 2n+i} and L(ejq) = {qn+i, qn+i′}

if ej = vivi
′

in G. Now we prove that GL is list-colorable if and only if G is

3-colorable. First assume that G admits a proper 3-coloring; the color of vi is

denoted by qi + 1, where qi ∈ {0, 1, 2}. In GL, the colors f(x), x ∈ X, will be

defined as follows: For i = 1, 2, . . . , n, j = 1, 2, . . . ,m, q = 0, 1, 2, let f(vi) = qin+i

and let f(ejq) be any element of the color set {qn+ i, qn+ i′}− {qin+ i, qi
′
n+ i′}

where ej = vivi
′

in G. (Such an element always exists since qi 6= qi
′

.)

Observe that f , which can be obtained from G and from the given proper

3-coloring of it in polynomial time, defines a proper list coloring of GL.

Next, having fixed the above color lists L(x), x ∈ V ∪ U , from any proper

list-coloring f ′ of GL, we construct a proper 3-coloring of G. Recall that f ′(vi) ∈
{i, n + i, 2n+ i}, i = 1, 2, . . . , n and f ′(ejq) ∈ {qn + i, qn + i′} if ej = vivi

′
in G,

j = 1, 2, . . . ,m, q = 0, 1, 2. In G, we assign vertex vi to color qi + 1 where

qi = (f ′(vi) − i)/n. We claim that this is a proper 3-coloring of G. Indeed, if

ej = vivi
′

is an arbitrary edge in G, then by the adjacencies in GL, we have

f ′(vi) = qin + i, f ′(ej
qi

) = qin + i′; hence qi
′

n + i′ = f ′(vi
′

) 6= qin + i′ implying

qi
′
6= qi. Observe that the colors qi + 1, i = 1, 2, . . . , n, can be computed in

polynomial time from f ′. This completes the proof. �

Proof of Theorem 2.1. Combine Lemmas 2.2–2.4 with the NP-completeness of

3-colorability [19, 10, 11]. �

The following problem is still open.

Problem 2.5. Is PrExt NP-complete on bipartite graphs if the color bound is

fixed but greater than two?
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Line graphs.

R. Häggkwist kindly called our attention to the fact that known results on

partial Latin squares imply the intractability of PrExt on line graphs of bipartite

graphs. A partial Latin square is an n × n matrix M with entries from the

set {0, 1, . . . , n} such that no column or row contains any repeated entry other

than 0. The question of the extendibility problem is this: Can M be extended

to a (full) Latin square, i.e., can we replace each zero entry in M by an element

of { 1, 2, . . . , n} in such a way that no row or column contains a repeated entry?

Colbourn [4] showed that the partial Latin square extendibility problem is NP-

complete.

To show the explicit connection between this problem and PrExt, let Ln denote

the line graph of the complete bipartite graph Kn,n, n = 2, 3, . . . . This Ln is a

(2n − 2)-regular perfect graph with maximum clique size n, and the number of

proper complete n-colorings of Ln is a very fast increasing function of n.

Theorem 2.6. PrExt is NP-complete on {Ln; n = 2, 3, . . . }.

Proof. Consider an arbitrary instance of the partial Latin square extendibility

problem. From such an n × n matrix M we construct a partial n-coloring of Ln
as follows. The vertices eij of Ln (corresponding to the edges ricj of the complete

bipartite graph on the rows ri and columns cj as vertices) can be identified with

the entries mij of M . In Ln, eij is precolorless or precolored with color mij if

and only if mij = 0 or mij ∈ {1, 2, . . . , n}, respectively. Thus there is a one-to-

one correspondence between the partial Latin squares and the precolorings of Ln
with color bound n. Therefore, any extension of a partial n-coloring is actually

an extension of a partial Latin square, and vice versa. Of course, a complete

n-coloring corresponds to a Latin square. Thus Colbourn’s theorem completes the

proof. �

We close this section noting that 2-PrExt is also NP-complete on the class of

interval graphs (see [2]).

3. Some Polynomial Reductions

Given a partially k-colored graph G = (V,E), a vertex v ∈ V is said to be

irrelevant if the answer for PrExt is the same on G and GV−{v}.

Assume that we can find some irrelevant vertex in polynomial time (together

with a proof that it is in fact irrelevant). Then the polynomial or NP-complete sta-

tus of PrExt does not change if we delete this irrelevant vertex from G. Therefore,

we can simplify an instance of PrExt as follows.

First, we seek an irrelevant vertex. Second, we delete it from the partially

k-colored input graph. Then we repeat these two steps. If finally no precolorless

vertex is left or in each connected component the number of vertices is at most k,
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we have obtained a “yes” answer to the original instance of PrExt in polynomial

time. Of course, this case is not the typical one since PrExt is NP-complete in

general. Now we define some special kinds of irrelevant vertices. In each case, the

irrelevance can be proved in polynomial time.

For any vertex v ∈ V , let N(v) denote its (open) neighborhood, i.e., the set

of vertices u for which uv ∈ E. The subset N0(v) ⊆ N(v) denotes the set of

precolorless neighbors, and K(v) denotes the set of distinct colors occurring on

N(v) − N0(v). Let δ(v) = |N0(v)| and ρ(v) = |K(v)|. Now we distinguish some

vertices of the precolored graph as follows:

A precolored vertex v is called

redundant if N0(v) = ∅, or there exists another precolored vertex u col-

ored with the same color such that ∅ 6= N0(v) ⊆ N0(u).

A precolorless vertex x is called

redundant if there exists another vertex u ∈ (V −{v})−N(v) (no matter

whether u is precolored or precolorless) such that N0(v) ⊆
N0(u) and K(v) ⊆ K(u).

A precolorless vertex v is called

preventive if ρ(v) = k;

compelled if ρ(v) = k − 1;

negligible if ρ(v) ≤ k − 2 and ρ(v) + δ(v) < k.

The proofs of the following lemmas can be deduced easily from the definitions.

Lemma 3.1. Any redundant or negligible vertex is irrelevant, and the irrele-

vance can be proved in polynomial time.

Lemma 3.2. The existence of any preventive vertex implies that the answer

for PrExt is “no”. Furthermore, this case can be checked in polynomial time.

Lemma 3.3. Assume that v ∈ V is a compelled vertex in a partially k-colored

graph G = (V,E). The existence of such a vertex can be checked in polynomial

time. Then coloring v with the unique color it can properly get, the answer for

PrExt does not change.

We say that a partially k-colored graphG = (V,E) is reduced if each connected

component of it has more than k vertices, and G contains neither preventive,

nor redundant, nor compelled, nor negligible vertices. According to the above

observations, PrExt can either be solved in polynomial time, or from the original

instance, a reduced instance can be obtained in polynomial time such that it is

sufficient to solve PrExt only on the reduced instance. This fact makes the reduced

partially k-colored graphs very important. The following lemma is immediate by

definition.
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Lemma 3.4. A partially k-colored graph G = (V,E) is reduced if and only if

each of its connected components is reduced.

Next we study the connected, reduced, partially k-colored graphs. Such a graph

is the triangle on three precolorless vertices with color bound k = 2. The following

lemma shows that this is the simplest example from several points of view.

Lemma 3.5. If G = (V,E) is a reduced, partially k-colored connected graph,

then it has at least 3 precolorless vertices; moreover, each precolorless vertex has

at least 2 precolorless neighbors.

Proof. If no precolorless vertex exists, then each vertex is redundant. If v is a

precolorless vertex with δ(v) ≤ 1, then either v is preventive (if ρ(v) = k), or v is

compelled (if ρ(v) = k − 1), or v is negligible (if ρ(v) ≤ k − 2). Thus δ(v) ≥ 2 for

each precolorless vertex v, and therefore at least three precolorless vertices exist.�

4. Polynomial Algorithms

First we prove that PrExt can be hard only if the color bound is at least three.

Proposition 4.1. If the color bound is 2, then PrExt can be solved in polyno-

mial time.

Proof. Let G = (V,E) be a partially 2-colored graph. First we add two new

adjacent vertices, u1 and u2 to G such that any v ∈ V will be adjacent to up,

p = 1, 2, if and only if v is precolored with color p. Observe that the answer

for PrExt on the precolored graph G with color bound 2 is “yes” if and only if

the new graph G+ is bipartite. The well-known fact that bipartite graphs can be

recognized in polynomial time completes the proof since G+ can be obtained from

G in polynomial time. �

Next we investigate PrExt on forests. The essential observation is

Proposition 4.2. No forest is reduced.

Proof. Consider a partially k-colored tree G = (V,E) on n ≥ k + 1 vertices.

Let t be maximal such that G contains t precolorless vertices inducing a path, and

denote one of its endpoints by v. If G were reduced, Lemma 3.5 would imply t ≥ 3

and δ(v) ≥ 2. However, from the maximality of t, δ(v) = 1. This contradiction

and Lemma 3.4 complete the proof. �

This proposition proves the following result.

Theorem 4.3. PrExt is polynomially solvable on forests.

Next we study PrExt on split graphs, which can be considered as relatives

of bipartite graphs since by definition, split graphs are graphs whose vertex set

is the union of a complete subgraph and an independent set. Split graphs were
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introduced by Földes and Hammer [9]; however the basic characterization of split

graphs had already been found by Gyárfás and Lehel [13]: The class of split

graphs is exactly the largest self-complementary class of graphs containing neither

a chordless 4-cycle nor a chordless 5-cycle. In other words, these graphs can be

characterized by the property that they are chordal and their complements are

also chordal. Thus split graphs are perfect, and the class is closed under induced

subgraphs.

Most of the usual problems of algorithmic graph theory are known to be poly-

nomially solvable on split graphs (see e.g. [12]). However, the k-DOMINATING

SET problem is NP-complete on split graphs (cf. [7]) showing that their structure

is not so simple as it seems. Further problems have been shown to be hard on this

class of graphs in [5]. We note that among the randomly generated graphs which

contain no 4-cycle as an induced subgraph, almost all graphs are split (see [21]).

Knowing that PrExt is NP-complete on bipartite graphs (Theorem 2.1), on

the line graphs of bipartite graphs (Theorem 2.6), and on interval graphs [2], the

following theorem is worth some attention.

Theorem 4.4. PrExt is polynomially solvable on split graphs.

Proof. We use the observations of the previous section and we apply induction

on the color bound. If the color bound is 2, we are home by Proposition 4.1. For

k ≥ 3, we may restrict ourselves to those partially k-colored split graphsG = (V,E)

which are reduced. By definition, there exists a maximum clique C ⊆ V such that

GV−C is edgeless. Actually, such a C can be found in polynomial time. Let

n = |V | and m = |C| = ω(G).

The answer for PrExt is trivially “no” if m > k. Therefore, without loss of

generality, we may assume thatm ≤ k. SinceG is reduced, n > k; hence V−C 6= ∅.
Observe that ρ(y)+ δ(y) ≤ m holds for each y ∈ V −C; hence V −C is completely

precolored because G is reduced. Moreover, no color of a y ∈ V −C occurs on C,

since otherwise y were redundant. Similarly, no color of a precolored vertex x ∈ C
occurs on V − {x}.

Observe that if x ∈ C is precolored, then the answer for PrExt on G with color

bound k is the same as on GN(x) with color bound k−1. Hence in this case we are

home by induction. Therefore, we may assume that C is completely precolorless.

Let C = {x1, x2, . . . , xm}, and let Z = {z1, z2, . . . , zk} be an arbitrary set of

size k such that C ∩ Z = ∅. We define a bipartite graph G∗ with bipartition

V ∗ = C∪Z of its vertex set V ∗ such that any x ∈ C will be adjacent to a zi ∈ Z if

and only if there is no y ∈ N(x)∩ (V −C) precolored with i in G. Observe that if

xjzν(j), j = 1, 2, . . . ,m, are the edges of a matching in G∗, then by coloring each xj

with ν(j), we obtain a proper k-coloring extension of the given precoloring of G.

On the other hand, any proper precoloring extension on G defines a matching

xjzν(j), j = 1, 2, . . . ,m, in G∗, where color j is assigned to xν
−1(j). Consequently,

the answer for PrExt on G is “yes” if and only if G∗ has a matching of size m. It



PRECOLORING EXTENSION ON GRAPHS 9

is well-known that a maximum matching of G∗ can be found in polynomial time,

e.g. by applying the famous “Hungarian method”, or by the algorithm of Hopcroft

and Karp [16]. This fact completes the proof since G∗ can be constructed in

polynomial time from the original instance of PrExt. �

As a matter of fact, the proof of Theorem 4.4 shows that the time complexity

of PrExt on reduced split graphs is the same as that of the maximum matching

problem on bipartite graphs.

Next we study PrExt on the complements of bipartite graphs. Interestingly

enough, also in this case PrExt is related to maximum matchings.

Theorem 4.5. PrExt is polynomially solvable on the complements of bipartite

graphs.

Proof. We apply induction on the color bound, k. If k = 2, we are home by

Proposition 4.1. Assume that k ≥ 3, and consider a partially k-colored graph

G = (V,E) where G is a complement of a bipartite graph with vertex bipartition

V = X ∪ Y . If there are two precolored vertices x ∈ X and y ∈ Y of the same

color i, then i cannot be assigned to any further vertex of G, so that the answer for

PrExt with color bound k on G is “yes” if and only if it is “yes” on GV−{x,y} with

color bound k−1. Hence in this case the assertion follows by induction. Therefore,

we may assume that we have an instance of 1-PrExt, i.e., no color occurs more

than once in the partial k-coloring of G.

Make a new graph G̃ = (V, Ẽ) from G by connecting any pair of precolored

vertices of distinct colors. Observe that G̃ is also a complement of a bipartite

graph, and that G̃ is k-colorable if and only if the given partial k-coloring of G is

extendible. On the other hand, G̃ is k-colorable if and only if the complement of

G̃ (which is a bipartite graph) has a matching of size at least |V | − k. Since one

can check in polynomial time if such a matching exists, PrExt can be solved in

polynomial time. �

Finally we prove that in spite of the NP-completeness of PrExt on general

bipartite graphs, it can be solved in polynomial time on a subclass. A graph G is

said to be Pt-free or Ct-free if it has no induced subgraph isomorphic to Pt or to

Ct, the path or the cycle on t vertices, respectively. G is 2K2-free if its complement

is C4-free.

Theorem 4.6. PrExt is polynomially solvable on the P5-free bipartite graphs.

Proof. Let G = (V,E) be connected, bipartite, P5-free, with bipartition V =

X ∪ Y , with a given precoloring, and suppose that G is reduced. Take an xy ∈ E
with N(x) = X and N(y) = Y . The existence of such an edge follows from a whole

bunch of recent results [1, 6, 8, 14], by observing that the following conditions

are equivalent on the class of connected bipartite graphs: P5-free; P5-free and
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C5-free; 2K2-free. Since G has no redundant vertices, each z ∈ V − {x, y} should

be precolored, contradicting to Lemma 3.5 and proving the theorem. �

By the previous proof it also follows that any reduced, partially k-colored,

P5-free graph contains a cycle with 3, 4 or 5 vertices. A simple reduced bipartite

graph is C6, the cycle on 6 vertices, with color bound k = 2 and with all vertices

precolorless.

Problem 4.7. Is there any fixed integer t ≥ 6 such that PrExt is NP-complete

on the Pt-free bipartite graphs?
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Note added in proof. In his recent paper, J. Kratochv́ıl (Precoloring exten-

sion with fixed color bound, to appear) solved Problems 2.5 and 4.7. He proved

that PrExt is NP-complete on bipartite graphs with color bound 3, as well as on

P14-free bipartite graphs. The former result is also proved in (H. L. Bodlaender,

K. Jansen, and G. J. Woeginger, Scheduling with incompatible jobs, manuscript,

1992).
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