
Acta Math. Univ. Comenianae
Vol. LXII, 2(1993), pp. 155–159

155

GENERATING HAMILTONIAN

CYCLES IN COMPLETE GRAPHS

H. FLEISCHNER, P. HORÁK and J. ŠIRÁŇ

Abstract. We prove that hamiltonian cycles of complete graphs can be generated
in a Gray code manner by means of small local interchanges.

1. Introduction

Let C and C′ be two hamiltonian cycles in a (simple) graph G. We say that

C and C′ are switching-equivalent (symbolically, C ∼ C′) if the symmetric

difference of their edge sets induces a quadrangle in G, i.e., if E(C) 4 E(C′) =

{a, b, c, d} where a, b, c, d are the consecutive edges of a cycle of length 4 in G.

It is easy to see that C ∼ C′ if and only if the cyclic sequences of vertices

representing C and C′ have the form C = (u1u2v1 . . . vku3u4w1 . . . wm), C′ =

(u1u3vk . . . v1u2u4w1 . . . wm); in this case E(C) 4 E(C′) is the edge set of the

quadrangle u1u2u4u3 in G. Roughly speaking, C′ is then obtained from C by

“switching” the pairs of edges u1u2, u3u4 and u1u3, u2u4. If k = 0, i.e., if

C = (u1u2u3u4 . . . ) and C′ = (u1u3u2u4 . . . ), then we say that C and C′ are

strongly switching-equivalent.

We note that analogous concepts have been studied in operations research in

connection with the travelling salesman problem. For example, the transformation

used to define switching-equivalent hamiltonian cycles is the basic operation on

travelling salesman tours called “2-opt” (see e.g. [L]). Also, the transformation for

strong switching-equivalence (called “2-swap” in [J]) has been considered in local

optimization of travelling salesman algorithms.

Let G be a hamiltonian graph. We associate with G two new graphs H(G) and

Hs(G) as follows: The vertices of both H(G) and Hs(G) are the hamiltonian cycles

of G; two vertices of H(G) or Hs(G) are adjacent if the corresponding hamiltonian

cycles are switching equivalent or strongly switching-equivalent, respectively.

The idea of defining H(G) and Hs(G) is to express how “close” two structures

(in our case, hamiltonian cycles) are, and how the switching operation can be

used in generating all hamiltonian cycles of a graph. Similar situations are of-

ten encountered in the theory of generating combinatorial objects: the task is to
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generate all structures of a certain type in a Gray Code manner, that is, where

successively generated objects are “close” in some sense (they are obtained from

each other by a “small local perturbation”). The combinatorial structures which

have so far been studied from this point of view include, for example, permutations

[KL, RuS], spanning trees of a given graph [C, S], eulerian trails and eulerian

orientations [MP, ZX1], 0-1 matrices [BL], perfect matchings [ZX2], polyhedra

[NP], and linear extensions of posets [Ru]. Most of those results say that the

associated “local perturbation” graph is edge hamiltonian. We are interested in

the same problem for the “hamiltonian cycle graph” Hs(G).

Closely related to our problem, in fact we were inspired by it, is a problem of

Gary Meisters and Janusz Olech concerning knight tours on chessboard, which

were considered already by Euler. In our terminology, a knight tour (knight cycle)

is a hamiltonian path (hamiltonian cycle) of a graphG on 64 vertices corresponding

to the squares of a chessboard where two vertices are adjacent if a knight can get

from one to the other in one move. The Meisters and Olech problem asks: Is the

graph H(G) connected? How many components are there?

2. The Result

Observe that if G is a hamiltonian graph of girth at least 5, then H(G) consists

of isolated vertices only. On the other hand, if G is a complete graph, then one

would expect that even Hs(G) is a graph of fairly rich structure.

Our aim is to prove that for every n ≥ 4 the graph Hs(Kn) is edge-hamiltonian.

Clearly, Hs(K4) ∼= K3. It is an easy exercise to show that Hs(K5) is isomorphic

to K6,6 minus a perfect matching.

For the sake of convenience put Hn = Hs(Kn). Let x be an edge of Kn; consider

the subgraph of Hn induced by those vertices which correspond to hamiltonian

cycles containing the edge x. Denote this subgraph by Hn(x). Obviously, Hn and

Hn(x) have (n− 1)!/2 and (n− 2)! vertices, respectively.

Let Pn−2 be the path u1u2 . . . un−2 (n ≥ 3) on n − 2 vertices. A bijection

f : V (Pn−2) → {1, 2, . . . , n − 2} is called a labelling. The graph L(Pn−2) of all

labellings of Pn−2 is defined as follows. The vertices of L(Pn−2) are all the (n−2)!

labellings of Pn−2. Two labellings f and g are adjacent in L(Pn−2) if they differ

“along” just one edge of Pn−2, i.e., if there is an edge uiui+1 of Pn−2 such that

f(ui) = g(ui+1), f(ui+1) = g(ui), and f(u) = g(u) for every u /∈ {ui, ui+1}. Our

first observation relates the labelling graph L(Pn−2) to Hn(x).

Lemma 1. Hn(x) ∼= L(Pn−2) for n ≥ 3.

Proof. Let V (Kn) = {v1, v2, . . . , vn} and let x = vn−1vn. The mapping vi 7→
ui, 1 ≤ i ≤ n− 2 induces a bijection Φ of the vertex sets of Hn(x) and L(Pn−2)

which assigns to a hamiltonian cycle C = (vnvn−1vi1vi2 . . . vin−2) the labelling

f = Φ(C) for which f(uj) = ij , 1 ≤ j ≤ n− 2. Moreover, it is easy to check that
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C and C′ are adjacent in Hn(x) if and only if Φ(C) and Φ(C′) are adjacent in

L(Pn−2). �

By a result of [RuS] (see also [RSZ]) we know that there is a hamiltonian cycle

in L(Pn−2) through any two specified edges. We thus have:

Corollary. If n ≥ 4 then for any two given edges of Hn(x) there is a hamil-

tonian cycle in Hn(x) containing the two edges.

This corollary will be of central importance in the proof of the next theorem.

Theorem 2. For n ≥ 4 the graph Hn = Hs(Kn) is edge-hamiltonian.

Proof. As we have already seen, the statement is true for n = 4 or 5. We proceed

as follows. Fix a vertex u ∈ V (Kn+1), n ≥ 5, and consider a hamiltonian cycle, say,

(vuw . . . ) in Kn+1. Suppressing the vertex u in the cycle yields the hamiltonian

cycle (vw . . . ) in the graph Kn+1−u ∼= Kn which passes through the edge x = vw.

Clearly, the subgraph Hx
n of Hn+1 induced by those hamiltonian cycles of Kn+1

that pass through the edges vu and uw is isomorphic to Hn(x) (note again that

x = vw). Moreover, if y = v′w′ is another edge not incident to u, then the

subgraphs Hx
n and Hy

n are vertex-disjoint. We thus may put V (Hn+1) = ∪xV (Hx
n)

where x runs through all edges of Kn = Kn+1−u; the union here is considered as

a disjoint union.

Now, for convenience we assume that V (Kn+1) = {0, 1, . . . , n} and that u = 0.

Consider the following cyclic sequence S of all edges of Kn = Kn+1 − 0:

(∗) S = (1n, 1n− 1, . . . , 12, 2n, 2n− 1, . . . , 23, 3n, . . . , . . . , n− 1n).

Note that any two consecutive edges in S are adjacent in Kn+1; this also holds for

the last and first edge. In what follows, this sequence will play only an auxiliary

role.

Let x and y be two consecutive edges in the cyclic ordering of S, say, x = ij

and y = jk. Consider the following four hamiltonian cycles of Kn+1: C1 =

(j0ik . . . lm . . . ), C2 = (j0ik . . .ml . . . ), D1 = (j0ki . . . lm . . . ), D2 = (j0ki . . .

ml . . . ). Obviously, (C1, C2, D2, D1) forms a 4-cycle in the graph Hn+1. Notice

that by suppressing the vertex 0 we obtain the cycles C1(x) = (jik . . . lm . . . ) and

C2(x) = (jik . . .ml . . . ) which are adjacent in Hx
n ; the same holds true in Hy

n with

respect to the cycles D1(y) = (jki . . . lm . . . ) and D2(y) = (jki . . .ml . . . ). For

consecutive x and y in S we therefore have the following “local picture” of the

graph Hn+1 (we put C1(x) instead of C1, etc., see Fig. 1).

Let us now do the same procedure with each of the
(
n
2

)
consecutive pairs in

our cyclic sequence S. Then, if x is an arbitrary edge of Kn, y is the successor of

x, and z is the predecessor of x in S, the local picture of Hn+1 extends to the one

shown in Fig. 2.
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Figure 1. The local picture of Hn+1.

D1(z)

D2(z)

C1(z)

C2(z)

D1(x)

D2(x)

C1(x)

C2(x)

D1(y)

D2(y)

C1(y)

C2(y)

Hz
n Hx

n Hy
n

Figure 2.

By the Corollary, for each x in S there is a hamiltonian cycle B(x) in Hx
n

passing through the edges C1(x)C2(x) and D1(x)D2(x). For consecutive x, y

in S let Q(x, y) denote the quadrangle (C1(x)C2(x)D2(y)D1(y)). Consider the

symmetric difference

F = (
⋃
x∈S

E(B(x)))4 (
⋃
xy

E(Q(x, y)))

where xy in the second union runs through all consecutive pairs in S except 1n

and n− 1n. Clearly, the edge set F induces a hamiltonian cycle in Hn+1.
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It remains to show that for every given edge e of Hn+1 there exists a hamiltonian

cycle inHn+1 containing e. Consider first the case when e lies inHz
n for some z ∈ S.

Without loss of generality we may assume that z = 1n. Moreover, re-labelling the

vertices of Kn+1 (if necessary) we clearly may achieve that e is different from

the edge f = C1(z)C2(z). Then we proceed as above, with the only exception

that for B(z) we take a hamiltonian cycle in Hz
n passing through both e and f .

The resulting hamiltonian cycle of Hn will contain e. Finally, let e be an edge

traversing from Hx
n to Hy

n for some x 6= y ∈ E(Kn), say, e joins the vertices

(j0i . . . ) and (l0k . . . ). Then, without loss of generality, j = l but i 6= k. Again,

using a suitable re-labelling if necessary we may consider x = ij and y = kj to be

consecutive in the ordering given by S. Therefore, we may identify e with, say,

the edge C1(x)D1(y). This completes the proof. �
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[RŠZ] Rosa A., Širáň J. and Znám Š., The graph of all labellings of a connected graph is hamil-
tonian, Preprint.

[Ru] Ruskey F., Generating linear extensions of posets by transpositions, submitted.
[RuS] Ruskey F. and Savage C., Hamilton cycles which extend transposition matchings in Cayley

graphs of Sn, submitted.
[S] Shank H., A note on hamilton circuits in tree graphs, IEEE Trans. Circuit Theory 15

(1968), 86.
[ZX1] Zhang F. and Xiaofeng G., Hamilton cycles in Euler tour graphs, J. Combin. Theory (B)

40 (1986), 1–8.
[ZX2] Zhang F. and Xiaofeng G., Hamilton cycles in perfect matching graphs, J. Xinjiang Univ.

Nat. Sci. 3 (1986), 10–16.

H. Fleischner, Austrian Academy of Science, Vienna, Austria

P. Horák, Slovak Technical University, Bratislava, Slovakia
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