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EDGE NEIGHBORHOODS IN LINE GRAPHS

L’. ŠOLTÉS

Abstract. By an edge-neighborhood of an edge f in a graph we mean the subgraph
induced by nodes outside f which are adjacent to some node on f . Connected graphs
whose line graphs have the same edge-neighborhood of any edge are characterized.
There are P4, stars, complete graphs and regular triangle-free graphs in which any
two nodes with the distance two have the same number of common neighbors.

Objects which possess certain properties of symmetry have been widely studied

in mathematics, partly because of esthetic reasons. Their characterizations often

demonstrate the strength of mathematical theories. The current paper deals with

one kind of them, e-locally homogeneous graphs, characterizes those of them which

are line graphs, and reveals their connections to other intensively studied areas of

combinatorics.

The terminology is based on [2]. Our graphs are finite, undirected, without

loops and multiple edges. If v is a node, then N(v) means the set of nodes adjacent

to v. By the neighborhood 〈N(v)〉 of a node v we mean the subgraph induced

by N(v) and by Nk(v) we mean the set of nodes with the distance k to v. A graph

is said to be a locally-H graph, or a locally homogeneous graph, if for all its

nodes v, 〈N(v)〉 is isomorphic to a given graph H. Analogously, Ne(f) is the set

of nodes outside the edge f which are adjacent to some endnode of f , 〈Ne(f)〉 is

referred to as the edge-neighborhood of the edge f . A graph is said to be an

e-locally-F graph, or an e-locally homogeneous graph, if for all its nodes v,

〈Ne(v)〉 is isomorphic to a given graph F .

Zelinka [17] proposed the e-neighborhood version of the well-known Zykov prob-

lem [18] (concerning neigbors of nodes):

Characterize the graphs F for which there exists an e-locally-F graph.

Such graphs will be called e-realizable. Fronček [11] showed that stars, com-

plete graphs and K1,2,...,2 are the only e-realizable graphs of the radius one. He

also described e-realizable complete multipartite graphs (= Kn1,n2,...,nk , where

n1 + 1 = n2 + 1 = n3 = · · · = nk) [6] and double stars ( = two stars which share a

common edge; e-realizable if and only if each node has an odd degree) [10]. A class

of non e-realizable trees homeomorphic to a star is described in [8]. Combining
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the results in [6] and [14], we obtain that a cycle Cn is e-realizable if and only if

n is even or n = 3. K2k+2 − (k + 1)K2 is the only graph which is both locally

homogeneous and e-locally homogeneous and in which the neighborhoods have the

same number (k) of nodes as edge-neighborhoods have [5]. An upper bound for

the number of edges in e-locally acyclic graphs was given in [9]. e-locally path

graphs were studied in [7].

In this paper we characterize line graphs in which the edge-neighborhoods of

any two edges have the same number of nodes. Before doing this, we need to

introduce the atomic and king graphs.

A graph is (a, b)-biregular, if each edge joins nodes with the degrees a and b,

a 6= b. A connected graph is (a, b)-atomic if it can be obtained from an (a, b)-

biregular graph G after replacing each its node v with the degree a by the complete

graph Ka and joining Ka to NG(v) by a pairwise independent edges, each of them

joins a node from Ka to a node of NG(v). Note that we obtain a (2, b)-atomic

graph if we insert two nodes into each edge in a b-regular multigraph, while (1, b)-

atomic graphs are stars K1,b. A node of a degree d is referred to as a d-node.

A graph is a king graph if it can be obtained from a union of several crowns

K2 + K3 after joining each 2-node to just one 2-node from another crown by an

edge.

Theorem 1. Let G be a connected nontrivial graph and n be an integer. Then

every edge in L(G) has the edge-neighborhood with n nodes if and only if one of

the following statements holds.

(S1) G = P4, n = 1; G = K1,3 + e, n = 2; G = K4 − e, n = 3.

(S2) G is the star on n+ 3 nodes.

(S3) G is the complete graph on (n+ 8)/3 nodes, n ≡ 1 (mod 3).

(S4) G is an ((n+ 4)/3)-regular triangle-free graph, n ≡ 2 (mod 3).

(S5) G is (2, n)-atomic.

(S6) G is ((n+ 5)/3, (n+ 2)/3)-atomic, n ≡ 1 (mod 3)

(S7) G is a king graph, n = 6.

Proof. It is easy to verify that if G satisfies some of the conditions (S1), (S2),

. . . , (S7), then every edge in L(G) has the edge-neighborhood with n nodes, but

we reccomend the reader to read the next paragraph at first.

Now assume that each edge-neighborhood in L(G) has the order n. If S ⊆ G,

then f(S) =
∑
x∈V (S) degG(x) is called the force of S. We prove that the force

of any induced P3 is n+ 4 and the force of any K3 is n+ 5. Note that there is a

one-to-one correspondence between paths on three nodes, say P = abc, in G, and

edges, (ab)(bc), in L(G). Futhermore, the order of the edge-neighborhood of the

edge (ab)(bc) in L(G) equals to the number of edges in G adjacent to the edges

ab or bc, but distinct from them. Hence n = f(〈a, b, c〉) − 5, if 〈a, b, c〉 ∼= K3, and

n = f(〈a, b, c〉)− 4 otherwise.
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Since the force of any 3-element set of nodes in a k-regular graph G is 3k, it

follows from the above facts that either there is no induced P3 in G, or there is no

K3 in G. In the former case G is complete and (S3) holds, while in the latter case

(S4) holds.

Suppose G is not regular. Let v be a node in G with the maximal degree ∆. If

∆ = 2, then G is P3 or P4, hence assume ∆ ≥ 3. Note that the following three

observations hold:

(O1) If xaby is an induced path, then deg(x) = deg(y).

(O2) For any y, z ∈ V (G) there is x ∈ V (G) such that the distance from y to

x is at most two and deg(x) = deg(z).

(O3) If x, y ∈ N(v); x 6= y, then

deg(x) + deg(y) = n+ 5−∆ if x and y are adjacent

deg(x) + deg(y) = n+ 4−∆ if x and y are not adjacent.

The first observation holds, since 〈x, a, b〉 ∼= 〈a, b, y〉 ∼= P3 gives

deg(x) + deg(a) + deg(b) = f(〈x, a, b〉) = f(P3) = deg(a) + deg(b) + deg(y).

To prove (O2), note that (O1) gives that the nodes with the distance three have

the same degrees. Hence if P is a shortest y-z-path and its length is d, then the

node on P with the distance d− 3bd/3c from y has the same degree as z has and

(O2) follows.

Finally we prove (O3). If x and y are adjacent, then 〈v, x, y〉 ∼= K3, hence

deg(x) + deg(y) + ∆ = deg(x) + deg(y) + deg(v) = f(〈x, y, v〉) = f(K3) = n+ 5.

If x and y are not adjacent, then 〈x, y, v〉 ∼= P3, and

deg(x) + deg(y) + ∆ = deg(x) + deg(y) + deg(v) = f(〈x, y, v〉) = f(P3) = n+ 4.

Denote ρ(S) = {degG(x) | x ∈ S} for S ⊆ V (G). If ρ(〈N(v)〉) contains at least

three elements, then the difference between the maximal and the minimal value

of deg(x) + deg(y) for x, y ∈ N(v) is at least two, a contradiction to (O3). Thus

| ρ(〈N(v)〉) |≤ 2. Put Di = {x ∈ V (G) | degG(x) = i}. We distinguish two cases.

Case 1. Let | ρ(N(x)) |= 1 for any ∆-node x, and let all neighbors of v have the

same degree r. Then, due to (O3), 〈N(v)〉 is either complete or trivial. If 〈N(v)〉 is

complete, then G ∼= K∆ + 1, since ∆ is the maximal degree, a contradiction, since

G is not regular. Otherwise 〈N(v)〉 is trivial, so n+ 4 = ∆+ 2r. If v is adjacent to

all other nodes of G, then G is a star and (S2) holds. Otherwise each node z from

N2(v) is adjacent to an r-node v1 ∈ N(v); f(〈v, v1, z〉) = n + 4 = ∆ + 2r gives
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deg(z) = r and (O2) gives ρ(G) = {∆, r}, ∆ > r, since G is not regular. Now we

distinguish two subcases.

Subcase 1.1. Let r ≥ 3 and u,w ∈ N(v1)−{v}, u 6= w. Then 〈v1, u, w〉 ∼= K3,

since f(〈v1, u, w〉) = 3r 6= n+4. Hence n+5 = 3r < ∆+2r = n+4, a contradiction.

Subcase 1.2. Let r = 2 (thus n+4 = ∆+4). Since N(v) and N2(v) are subsets

of D2, a node x is in D∆ if the distance d(u, v) is divisible by three and x ∈ D2

otherwise, ρ(V (G)) = {∆, 2}, because of (O1). Bearing in mind f(P3) = ∆ + 4

and f(K3) = ∆ + 5, one can prove that

(1) 〈D∆〉 is independent. (Since | ρ(N(x)) |= 1 for any ∆-node x).

(2) 〈N(x)〉 is independent for each ∆-node x.

(3) Each 2-node is adjacent to one 2-node and one ∆-node.

(1), (2) and (3) together give G is (2,∆)-atomic, hence (S6) holds.

Case 2. Let ρ(〈N(v)〉) = {r, s}, r > s. Then all nodes from N(v) but one

have the same degree, since otherwise the sum of the degrees of two neighbors of

v could equal to all the numbers 2r, r + s, 2s, a contradiction to (O3). Moreover,

it follows from (O3) that r = s+ 1. We distinguish two subcases.

Subcase 2.1. Assume v1 is the only neighbor of v with the degree s. At first

we prove that ρ(G) = {∆,∆ − 1} or (S6) holds. Note that, due to (O3), 〈N(v)〉
is the union of v1 with the complete graph induced by N(v) − v1. If ∆ ≥ 4, then

K = 〈v ∪N(v)− v1〉 is a complete graph with at least four nodes. Hence each

triple of its nodes has the same force. This gives that all nodes of K have the

same degree, thus ∆ = r = s + 1. Further, ρ(G) = {∆,∆ − 1}, because of (O2)

and since any node in N2(v) lies on an induced P4, in which the other nodes are

in v ∪N(v). If ∆ = 3, then s ≤ 2. If s = 1, then G = K1,3 + e and (S1) holds. If

s = 2, then again ρ(G) = {∆,∆− 1}.
Bearing in mind f(K3) = 3∆ and f(P3) = 3∆− 1, one can verify that:

Each ∆-node is adjacent to just one (∆− 1)-node.

D∆ induces a union of K∆, since 〈D∆〉 is P3-free.

〈N(y)〉 is independent for any (∆− 1)-node y.

This implies that G is (∆,∆− 1)-atomic and (S6) holds.

Subcase 2.2. Assume v1 is the only neighbor of v with the degree s+1. Then,

due to (O3), 〈N(v)〉 is the star with the center v1, hence deg(v1) ≥ ∆, this gives

∆ = s + 1. Further N2(v) ⊆ D∆−1 and ρ(G) = {∆,∆ − 1}. If ∆ = 3, then

G = K4 − e. Let ∆ ≥ 4. Then a node u ∈ N(v) − v1 ⊆ D∆−1 is adjacent to at

most one (∆−1)-node, since 〈D∆−1〉 is P3-free and K3-free. Further, v and v1 are

the only ∆-nodes adjacent to u, since N2(v) ⊆ D∆−1. Hence deg(u) = ∆− 1 = 3.

Now we may assume G does not contain K4, since this would imply that a 4-node

is adjacent to three 4-nodes, and that case was studied in the Subcase 2.1. Bearing

in mind f(P3) = 10 and f(K3) = 11, one can prove that D3 induces a matching,

D4 induces a matching, since the two 4-nodes adjacent to a 3-node are adjacent,
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and x ∪ N(x) induces a crown for any 4-node x. This means G is a king graph

and (S7) holds. �

Now we introduce a class of graphs which are neighborhoods in some line graphs.

Let us color the edges of the union of three complete graphs K1, K2 and K3 on d1,

d2, and d3 nodes by white color. A gate graph Γ(d1, d2, d3, λ123, λ12, λ13, λ23, T ),

T ∈ {0, 1} is obtained from the just constructed graph after the addition of λ123

red triangles and λij red edges joining Ki and Kj such that the components of the

red graph are K2 or K3 and the red graph has precisely λ123 triangles. Moreover,

if T = 1, then add a new node adjacent to all the nodes from K1 and K3.

It is easy to see that if P = a1a2a3 is a path in a graph G, then the edge-

neighborhood of the edge (a1, a2)(a2, a3) in L(G) is the gate graph Γ(d1, d2, d3,

λ123, λ12, λ13, λ23, T ), T ∈ {0, 1}, where T = 1 if and only if a1, a2, a3 induces a

triangle; di = deg(ai)− 1− T , i = 1, 3; d2 = deg(a2)− 2, λ123 =| N(a1)∪N(a2)∪
N(a3) |, λij is the number of nodes adjacent to ai and aj , but not adjacent to the

third node on P and distinct from it. Finally, after the addition of s independent

edges to the union Kr ∪Kr we obtain the graph Kr
s
∪Kr.

Note that P3 = L(P4) is an e-locally-K1 graph which is not locally homogeneous.

The following theorem characterizes e-locally homogeneous line graphs and states

that all such graphs but P3 are also locally homogeneous.

Theorem 2. Let G 6∼= P4 be a connected nontrivial graph. If L(G) is locally

edge-homogeneous with an edge-neighborhood F on n nodes, then F is a gate graph,

L(G) is localy homogeneous with a neighborhood H, and one of the following state-

ments holds.

(T1) G = K1,n+2, F = Kn, H = Kn+1

(T2) G = K(n+3)/8, F = Γ((n− 1)/3, (n− 1)/3, (n− 1)/3, (n− 1)/3, 0, 0, 0, 1),

H = Ks
s
∪Ks, where s = (n+ 2)/3 and n ≡ 1 (mod 3).

(T3) G is an ((n + 4)/3)-regular triangle-free graph and two nodes in G with

the distance two have µ common neighbors, n ≡ 2 (mod 3), 1 ≤ µ ≤ (n + 4)/3,

F = Γ((n + 1)/3, (n − 2)/3, (n + 1)/3, 0, 0, µ − 1, 0, 0), H = Ks ∪ Ks, where

s = (n+ 1)/3.

Proof. Straightforward from Theorem 1. �

Nedela [15] conjectured that every e-locally homogeneous graph is either locally

homogeneous or bipartite. Theorem 2 verifies this conjecture for line graphs. Using

similar approach one can prove that Nedela’s conjecture holds also for complements

of line graphs. It is proved in [16] that for a given graph H either all locally-H

graphs are line graphs or none of them are. We predict a similar result in the case

of a given edge-neighborhood.

Conjecture 1. For a given graph F , either all e-locally-F graphs are line

graphs or none are.
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One can verify that the only e-locally-Kn graphs are Kn+2, C4, or P3; hence

Conjecture 1 holds for complete F .

Finally we will treat graphs which appear in the statement (T3), since the cases

(T1) and (T2) are much more trivial. A number of results on these graphs can be

found in Mulder [13] and Brouwer, Cohen, Neumaier [1]. Here we restate some of

them. Let R(k, µ) be the set of all k-regular triangle-free connected graphs G in

which any two nodes with the distance two have µ common neighbors (1 ≤ µ ≤ k).

Then the problem whether R(k, µ) = ∅ is open. Clearly, µ = 1 if and only if

girth(G) ≥ 5, hence R(k, 1) is infinite for any k ≥ 2, but to find a smallest graph

from R(k, 1) is another open problem. For µ ≥ 2 we have

(1) diam (G) ≤ min{3, k − 2µ+ 4},

[1, Cor.1.9.2, pp. 21], hence we have an algorithm which determines whether

R(k, µ) is empty. Moreover, the equality in (1) holds if G is the k-dimensional

cube or an Hadamard graph of degree 2µ.

Further, if µ < k ≤ 2µ− 1, then Mulder [13] gives that G is a bipartite graph

with the diameter three and hence R(k, µ) is the set of the incidence graphs of

symmetric block designs with certain parameters. The comlements of those block

designs which correspond to finite projective planes are examples of them [13].

Further examples can be made out from the list of block designs given by Mathon

and Rosa [12].

If k = µ, then clearly G is complete multipartite. If k = µ − 1, then G is

Kk+1,k+1 with a one-factor removed or a cycle [1, p. 16].

Problems related to neighborhoods are difficult from an algorithmic point of

view. Bulitko [4] and Bugata [3] gave different proofs of the result which states

that there is no algorithm which can determine whether for a given finite graph H

there exists a locally-H graph G (possibly infinite). It is not known whether the

conclusion remains valid if we restrict ourselves to the case that G is also finite.

One can expect that the analogous problem for e-neighborhoods is easier.

Conjecture 2. There is an algorithm which for any finite graph F can deter-

mine whether there exists a finite e-locally-F graph.
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