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TRACKING INVARIANT MANIFOLDS

WITHOUT DIFFERENTIAL FORMS

P. BRUNOVSKÝ

Abstract. We present a different proof of a result of Jones et al. [3] concerning
the inclination of invariant manifolds of singularly perturbed differential equations
at exit points from neighborhoods of the “slow manifolds” of such systems.

A frequently studied problem of geometric singular perturbation theory consists

in establishing the presence of trajectories of certain types (homoclinic, hetero-

clinic, satisfying given boundary conditions, etc.) approximating singular ones for

the unperturbed problem. A useful tool for this problem has been established in

Jones et al. [2] and called “Exchange Lemma” by the authors. It resembles the

well known λ-lemma (Palis et al. [4]) with critical elements of a dynamical system

replaced by “slow manifolds” of a singularly perturbed differential equation. The

degeneration of transversality in the unperturbed equation in important applica-

tions lead the authors of Jones et al. [3] establish a more precise version of the

Exchange Lemma.

The proof of the Exchange Lemma of Jones et al. [2], [3] involves differential

equations for the evolution of differential forms of tangent vectors along trajec-

tories. The purpose of this paper is to present an alternative proof which avoids

differential forms. We believe that, except of being more elementary, it provides

additional insight into the geometry of the problem.

We refer the reader to Jones et al. [2], [3] for the motivation and the application

of the Exchange Lemma. In order to facilitate the comparison of our result to Jones

et al. [2], [3] we use freely their notation whenever possible.

As in Jones et al. [2], [3] we consider a singularly perturbed system

εẋ = f(x, y, ε)(1)

ẏ = g(x, y, ε)

with x ∈ Rm, y ∈ Rn, 0 < ε� 1 and f, g being C2. As usual, by a change of the

time scale we can transform the system (1) into the regularly perturbed system

x′ = f(x, y, ε)(2)

y′ = εg(x, y, ε), 0 ≤ ε� 1

Received September 29, 1994.
1980 Mathematics Subject Classification (1991 Revision). Primary 34E15, 34A26.



24 P. BRUNOVSKÝ

We assume that S0 is a normally hyperbolic connected manifold of stationa-

ry points of the system (2) for ε = 0, i.e. f(x, y, 0) = 0 for (x, y, 0) ∈ S0 and

Dxf(x, y, 0) does not have eigenvalues on the imaginary axis. As argued in Jones

et al. [3], for 0 < ε � 1 there is a family of normally hyperbolic manifolds

Sε approaching S0 for ε → 0 in a C1 way. Using the “Fenichel coordinates”

(Fenichel [1]), in a sufficiently small neighbourhood of Sε the system can be trans-

formed to the form

a′ = Λ(a, b, y, ε)a, dima = k

b′ = Γ(a, b, y, ε)b, dim b = l(3)

y′ = ε[m(y, ε) + h(a, b, y, ε)ab], dim y = n

for z := (a, b, y) ∈ Ω∆ := {|a| 6 ∆, |b| 6 ∆} ∩ Ω, where ∆ and ε are sufficiently

small, Ω is a fixed compact region,

Reλ > λ0 > 0, for λ ∈ spectrum of Λ(a, b, y, ε)

Re γ < γ0 < 0, for γ ∈ spectrum of Γ(a, b, y, ε)

and h(z(t), ε)(·, ·) is a bilinear form.

In these coordinates Sε is represented by the plane a = 0, b = 0, k, l are the di-

mensions of the invariant subspaces of Dxf(x, y, 0) at (x, y, 0) ∈ S0 corresponding

to the part of the spectrum right resp. left to the imaginary axis (note that due

to normal hyperbolicity they have to be the same over S0 and we have k+ l = m).

Note that in Jones et al. [2], the factor b does not appear in the second term of

the third equation of (3). The possibility to reduce this term to become bilinear

in a, b allowed the authors of Jones et al. [3] to improve the estimates of Jones et

al. [2].

As in Jones et al. [2], [3] we write z = (a, b, y). We understand the norms

|a|, |b|, |y| to be Euclidean and define

|z| = |a|+ |b|+ |y|.
We assume that m(y, ε) is parallelizable over S0 ∩ Ω to U ≡ (1, 0, · · · , 0). We

can now formulate the

Exchange lemma (Jones et al. [3]). Let {Mε}, 0 < ε � 1 be a family of

(k + 1)-dimensional invariant manifolds of (3) intersecting the subspace a = 0

transversally at pε = (0, b̂ε, ŷε) of Ω∆ where pε → p0 for ε → 0 Assume that for

ε→ 0 the transversality has the following asymptotics:

There is a neighborhood V of p0 such that, for each p ∈Mε∩V , TpMε contains a

subspace Eε of codimension 1 transversal to (a′, b′, y′) such that for (δa, δb, δy) ∈ Eε
one has

(4) |δb|+ |δy| = O(ε−r)|δa|

uniformly in p ∈Mε ∩ V for some r > 0.
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Fix l > 0 and let p = (â, b̂, ŷ) ∈Mε∩V be a point whose trajectory z(t) stays in

the set Ω∩{|a| ≤ ∆} for time T ≥ l/ε. Then, Mε is uniformly O(ε−ρ/ε) C1-close

to the manifold b = 0, yi = ŷi for i > 1 at q = z(T ) for some ρ > 0.

Note that our formulation of the lemma is somewhat different to Jones et al. [3].

We include the asymptotics of the transversality for ε → 0 (which in Jones et

al. [2], [3] appears in the comments only) explicitly into the formulation of the

lemma. Further, we correct an obvious misprint — the yi, i > 1, components of

the points of the manifold Mε at q are close to their initial values at p, not to 0.

Geometrically, assumption (4) means that the angle between TpMε and {a = 0}
is larger that Cεr for some C > 0; note that

angle (TpMε, {a = 0}) = angle (Σε ∩ TpMε,Σε ∩ {a = 0}),

where Σε is the codimension 1 plane orthogonal to the 1-dimensional subspace

TpMε ∩ {a = 0}. Most efficiently, one can choose Eε = TpMε ∩ Eε. More simply,

one can take Eε as an intersection of TpMε with some fixed codimesnion 1 subspace

transversal to the flow, e.g. the tangent plane to Mε ∩ {|b| = |b̂ε|} if b̂0 6= 0.

The following simple lemma will be used several times in the proof of the the-

orem.

Lemma. Let α < 0 < β, ξ0, R. Assume that ξ(t) is nonnegative differentiable

and satisfies

ξ′(t) ≤
(
α+ ζeβ(t−T )ξ(t)

)
ξ(t) + ζeαt

for 0 ≤ t ≤ T , ε > 0 and

ξ(0) = ξ0.

Then, for sufficiently large T and sufficiently small ζ > 0 we have

ξ(t) ≤ e
α
2 t

[
ξ0 −

2ζ

α

]
.

Proof. Fix ζ, η > 0 and choose T so large that

(5) ζeβ(t−T )e
α
2 t

[
ξ0 −

2ζ

α

]
< −

α

2
for 0 ≤ t ≤ T .

While t ≥ 0 is such that

(6) α+ ζeβ(t−T )ξ(t) <
1

2
α,

we have

ξ′ ≤
α

2
ξ + ζeαt.
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Integrating this inequality, for such t we obtain

(7) ξ(t) ≤ e
α
2 t

[
ξ0 −

2ζ

α

]
Because of (5) and (7), by contradiction it follows that (6) and, hence, also (7)

remains valid for all 0 ≤ t ≤ T which proves the lemma. �

Proof of the Theorem. For the simpler C0 part of the Exchange lemma we refer

the reader to Jones et al. [3, Lemma 3.1]. In particular, we note that from Jones

et al. [3, Lemma 3.1] it follows

(8) |a(t)| = O(∆eλ̄(t−T )) and |b(t)| = O(∆e−γ̄t).

To establish the C1 extension we have to prove that the tangent plane of TqMε

tends to the subspace b = 0, yi = 0, i > 1 for ε → 0 with rate e−ρ/ε. In other

words,

|δb|+
∑
i>1

|δyi| = O(e−ρ/ε)(|δa|+ |δy1|)

for all δz = (δa, δb, δy) ∈ TqMε. The space TqMε is spanned by vectors δz(T ) such

that δz(t) = (δa(t), δb(t), δy(t)) are solutions of the linearized equation

δa′ = Λ(z(t), ε)δa+DzΛ(z(t), ε)δza(t)

δb′ = Γ(z(t), ε)δb+DzΓ(z(t), ε)δzb(t)(9)

δy′ = ε[h(z(t), ε)δab+ h(z(t), ε)aδb+Dzh(z(t), ε)δzab]

satisfying δz(0) ∈ TpMε.

The idea of the proof is simple. The vectors δz(T ) with δz(0) ∈ Eε form a k-

dimensional subspace Nε of TqMε. Because of the estimate (4) and the exponential

stretching of δa(t), the δa-components of the vectors of Nε dominate the remaining

components by a factor proportional to eρ/ε. Therefore, Nε has a complement

vector in TqMε with δa = 0. Integrating (9) backwards we see that for this vector

δa(t) remains O(e−ρ/ε)-small compared to the remaining components of δz(t) for

all 0 ≤ t ≤ T . Integrating (9) once more forward we find that, if δz ∈ TqMε and

δa = 0 then δy1 dominates the remaining components of δz by a factor proportional

to eρ/ε. A combination of this estimate with the estimate on the vectors of Nε
concludes the proof.

We now give the details of the proof. As indicated by its outline, unlike in Jones

et al. [2], [3], we will estimate uniformly the ratio of the norms of components of

individual tangent vectors from several linear subspaces of solutions of (9). In

order to facilitate these estimates we introduce a y-dependent norm of the a and

b components as follows:
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We define

‖a‖y =

∫ 0

−∞
e−λ0t|eΛ(0,0,y,0)ta| dt(10)

‖b‖y =

∫ ∞
0

e−γ0t|eΓ(0,0,y,0)tb| dt

Because of the uniform convergence of the integrals the norm

‖z‖ = ‖a‖y + ‖b‖y + |y|

depends smoothly on y and is uniformly equivalent to |z|.
For a solution δz(t) = (δa(t), δb(t), δy(t)) of (9) along the solution z(t) =

(a(t), b(t), y(t)) of (3) in Ω∆ we have uniformly

(11) ‖δb(t+τ)‖y(t+τ)−‖δb(t)‖y(t) = ‖δb(t+τ)‖y(t)−‖δb(t)‖y(t)+O(ετ)‖δb(t)‖y(t).

Further, we have (the arguments of Γ(0, 0, y, 0) dropped)

‖δb(t+ τ)‖y(t) − ‖δb(t)‖y(t)(12)

≤ ‖eτΓδb(t)‖y(t) − ‖δb(t)‖y(t) + ‖τ(Γ(z(t), ε)− Γ)‖y(t)‖δb(t)‖

+ τ‖Γ(z(t), ε)‖(‖δa(t)‖y(t) + ‖δb(t)‖y(t) + |δy(t)|)(‖b(t)‖) + o(τ).

From (10)–(12) it follows

d

dt
‖δb(t)‖y(t) ≤ γ̄‖δb(t)‖y(t) +O(|b(t)|)(‖δa(t)‖y(t) + |δy(t)|y(t))

where

(13) γ̄ = γ0 + sup
Ω∆

[|Γ(a, b, y, ε)− Γ(0, 0, y, 0)|+O(∆)‖Γ(z, ε)‖] + 0(ε) < 0

provided ∆ and ε are sufficiently small. Similarly one proves

d

dt
‖δa(t)‖y(t) ≥ λ̄‖δa(t)‖y(t) −O(|a(t)|)(‖δb(t)‖y(t) + |δy(t)|y(t))(14)

d

dt
‖a(t)‖y(t) ≥ λ̄‖a(t)‖y(t),

d

dt
‖b(t)‖y(t) ≤ γ̄‖b(t)‖y(t).(15)

for γ̄ < 0 possibly larger than in (13) and some λ̄ > 0.1

Since we see no danger of confusion we drop the subscript of the norm ‖ ‖ in

the sequel.

1Note that by employing (15) the proof of the C0-exchange lemma ( Jones et al. [2, Propo-
sition 3.1], [3, Lemma 3.1]) can be slightly simplified as well.
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We continue the proof by two estimates on the vectors of TpMε. We assume that

∆ has been chosen so small that (12), (15) holds with γ̄ < 0 < λ̄ for sufficiently

small ε > 0.

First, we prove

(16)
‖δb‖

|δa|+ |δy|
= O(ε−2r−2)

for each 0 6= δz = (δa, δb, δy) ∈ TpMε.

Each δz ∈ Eε can be written in the form

(17) δz = αδ̃z + βz′

with δ̃z = (δ̃a, δ̃b, δ̃y) ∈ Eε such that ‖δ̃a‖ = 1 and z′ = (a′, b′, y′) from (3). By

linearity, it suffices to prove the result for the case 0 ≤ α ≤ 1, β = 1− α.

Since ‖δ̃a‖ = 1, by assumption we have

(18) |δ̃y| ≤ Kε−r, ‖δ̃b‖ ≤ Kε−r.

In addition, we have

(19) kε ≤ |y′| ≤ Kε, |b′| ≤ K

and, by (8) and (9),

(20) ‖a′‖ = O(‖â‖) ≤ O(e−λ̄/ε̄)

for some K > 1 > k.

Hence, we have
‖δb‖

‖δa‖+ |δy|
≤
K(1 + ε−r)

D

with D = α+ |αδ̃y + (1− α)y′| − ‖a′‖.
If α ≥ εr+2, (16) follows immediately from (20).

If α ≤ εr+2, from (18)–(20) it follows

D ≥
(
1− εr+2

)
kε− εr+2Kε−r −O(e

−λ̄
ε ) ≥

1

2
kε−O(ε2).

Hence (16) holds in this case as well.

As the second initial estimate we prove that for each δz = (δa, δb, δy) ∈ TpMε

such that

(21) ‖δa‖ = O(e−
λ1
ε )(‖δb‖+ |δy|)
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for some λ1 ∈ (0, λ̄) we have

(22)
∑
i>1

|δyi| = O(e−
λ2
ε )|δy1|

for some 0 < λ2 < λ1.

To carry out the proof we express δz as

δz = δ̃z + ρz′

with δ̃z ∈ Eε, z′ from (3) and ρ ∈ R. By (4) and (21) we have

‖δ̃b‖+ |δ̃y| ≤ O(ε−r)‖δ̃a‖ ≤ O(ε−r)(‖δa‖+ |ρ||a′|)

≤ O(ε−r)(‖δa‖+ |ρ|O(e−λ̄/ε))

≤ O(ε−r)O(e−λ1/ε)(‖δb‖+ |δy|+ |ρ|)

≤ O(e−λ3/ε)(‖δ̃b‖+ |δ̃y|+ |ρ|),

hence

|δ̃y| ≤ ‖δ̃b‖+ |δ̃y| ≤
(
1−O(e−λ3/ε)

)−1
O(e−λ3/ε)|ρ| = O(e−λ3/ε)|ρ|

for some 0 < λ3 < λ1. Thus we have

δy = ρy′ + δ̃y = ερ
[
U +O(e−λ3/ε)

]
,

which implies (22).

Using the lemma we now turn (14), (16) and (22) into estimates for the tangent

vectors along the trajectory of p and eventually for the vectors of TqMε.

For a solution δz(t) = (δa(t), δb(t), δy(t)) of (9) with 0 6= δz(0) ∈ Eε we denote

µ(t) :=
‖δb(t)‖+ |δy(t)|

‖δa(t)‖
.

We have

µ′ =
1

‖δa‖
(‖δb‖′ + |δy|′)− µ

‖δa‖′

‖δa‖
(23)

≤
1

‖δa‖
[(γ̄ +O(∆))‖δb‖+O(‖b‖)(‖δb‖+ |δy|) +O(‖b‖) · ‖δa‖]

+
1

‖δa‖
ε [O(‖b‖)(‖δa‖+ ‖δb‖+ |δy|) +O(‖a‖)‖δb‖]

+
µ

‖δa‖

[
(−λ̄+O(∆))‖δa‖+O(‖a‖)(|δy|+ ‖δb‖)

]
≤ (α+O(‖a‖)µ)µ+O(‖b‖)

where α := γ̄ − λ̄+O(∆) < 0 for ∆ sufficiently small.
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From (4), (8) and the Lemma we conclude

(24)
‖δb(t)‖+ |δy(t)|

‖δa(t)‖
= O(ε−re

α
2 t), for 0 ≤ t ≤ T,

provided (δa(0), δb(0), δy(0) ∈ Eε and ε is sufficiently small (so T ≥ l/ε is suffi-

ciently large). In particular, we have

(25)
‖δb‖+ |δy|

‖δa‖
≤ O(e−λ4/ε)

for some λ4 > 0 and every (δa, δb, δy) ∈ Nε, where Nε = {δz(T ) : δz(t) is a

solution of (8) with z(0) ∈ Eε.
In a similar way, we estimate

ν(t) :=
‖δb(t)‖

‖δa(t)‖+ |δy(t)|

for δz(0) = (δa(0), δb(0), δy(0)) ∈ TpMε. As for µ, for ν we obtain the differential

inequality (23). Applying the Lemma, from this inequality and (16) we obtain

(26)
‖δb(t)‖

‖δa(t)‖+ |δy(t)|
= O(ε−2r−2e

α
2 t)

for 0 ≤ t ≤ T and

(27) ‖δb‖ = O(e−λ5/ε)(‖δa‖+ |δy|)

for some λ5 > 0 and all (δa, δb, δy) ∈ TqMε.

Since TqMε has dimension k + 1 and, because of (25), has a k-dimensional

subspace projecting to the subspace a = 0 isomorphically, there exists a nonzero

vector (0, β, η) ∈ TqMε.

Using the Lemma backwards in a similar way as it was used forwards to obtain

(24) and (26) one concludes that if δz(t) = (δa(t), δb(t), δy(t)) is a solution with

δz(T ) = (0, β, η) ∈ TqMε then

(28) ‖δa(t)‖ = O(eβ(t−T ))(‖δb(t)‖+ |δy(t)|)

for some β > 0 and

(29)
‖δa(0)‖

‖δb(0)‖+ |δy(0)|
= O(e−λ1/ε)

for some λ1 > 0.
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By (22), for δz(0) ∈ TpMε satisfying (29) we have

(30)
∑
i>1

|δyi(0)| = O(e−λ2/ε)‖δy1(0)‖

Further, for δz(0) satisfying (29), from (27) it follows

‖δa(t)‖ = O(eβ(t−T ))(‖δb(t)‖+ |δy(t)|)

= O(eβ(t−T ))
[
O(ε−2r−2e

α
2 t)(‖δa(t)‖+ |δy(t)|) + |δy(t)|

]
hence

(1− r(t))‖δa(t)‖ = O(eβ(t−T ))
[
O(ε−2r−2e

α
2 t) + 1

]
|δy(t)|

where r(t) = O(eβ(t−T )ε−2r−2e
α
2 t) ≤ 1

2 for ε sufficiently small (hence T ≥ l/ε

large). Thus,

(31) ‖δa(t)‖ = O(eβ1(t−T ))|δy(t)|

for some β1 > 0 and, by (24),

(32) ‖δb(t)‖ =
[
O(ε−2r−2e

α
2 t)
]
|δy(t)|.

From (31), (32) we obtain

|δy|′ = O(ε)[O(‖b‖)‖δa‖+O(‖a‖)‖δb‖+O(‖a‖‖b‖)|δy|](33)

= O(ε)
[
O(eγ̄t)O(eβ1(t−T )) +O(eλ̄(t−T ))(O(ε−2r−2e

α
2 t)

+ O(eγ̄t)O(eλ̄(t−T )))
]
|δy|

= O(e−λ6/ε)|δy|

Since the integral of the square bracket of (33) is bounded on 0 ≤ t ≤ T indepen-

dently of ε > 0, integrating we obtain

(34) |δy(t)| = O(|δy(0)|)

Substituting (34) into (33) and integrating once more we conclude

|δy(T )− δy(0)| = O(ε−λ6/ε)|δy(0)|.

Therefore, we have

δy(T ) = (1 +O(e−λ6/ε))δy(0)

and by (30)

(35)
∑
i>1

|ηi| = O(e−λ7/ε)|η1|
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for some λ7 > 0. Summarizing, we conclude that any vector (δa, δb, δy) ∈ TqMε

satisfies

(36) ‖δb‖ ≤ O(e−λ5/ε)(‖δa‖+ |δy|)

by (27) and can be written as

(37) (δa, δb, δy) = (δ̃a, δ̃b, δ̃y) + q(0, β, η)

with q ∈ R, where (δ̃a, δ̃b, δ̃y) ∈ Nε satisfies

(38) ‖δ̃b‖+ |δ̃y| = O(e−λ4/ε)‖δ̃a‖,

by (25) and η satisfies

(39)
∑
i>1

|ηi| ≤ O(e−λ7/ε)|η1|.

Denote ρ = min {λ4, λ5, λ7}. From (37) and (38) it follows

|qη1| ≤ |δy1|+ |δ̃y1| ≤ |δy1|+O(e−ρ/ε)‖δ̃a‖(40)

= |δy1|+O(e−ρ/ε)‖δa‖.

Using (40), from (36)–(39) we obtain

‖δb‖+
∑
i>1

|δyi| ≤ O(e−ρ/ε)‖δa‖+
∑
i>1

|δ̃yi|+ |q|
∑
i>1

|ηi|

≤ O(e−ρ/ε)[‖δa‖+ |qη1|]

≤ O(e−ρ/ε)[‖δa‖+ |δy1|].

This completes the proof. �
Remark. After this paper was finished the author got acquainted with the

PhD. thesis of Tin [5] in which the Exchange Lemma is extended to manifolds

Mε of dimension higher than k + 1. Our proof seems to extend to the latter case

without problems.
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