
Acta Math. Univ. Comenianae
Vol. LXVI, 1(1997), pp. 33–69

33

INVARIANT OPERATORS ON MANIFOLDS WITH

ALMOST HERMITIAN SYMMETRIC STRUCTURES,

I. INVARIANT DIFFERENTIATION

A. ČAP, J. SLOVÁK and V. SOUČEK

Abstract. This is the first part of a series of three papers. The whole series aims
to develop the tools for the study of all almost Hermitian symmetric structures in

a unified way. In particular, methods for the construction of invariant operators,
their classification and the study of their properties will be worked out.

In this paper we present the invariant differentiation with respect to a Cartan
connection and we expand the differentials in the terms of the underlying linear
connections belonging to the structures in question. Then we discuss the holonomic
and non-holonomic jet extensions and we suggest methods for the construction of
invariant operators.

1. Introduction

It is well known that the theories of conformal Riemannian structures and

projective structures admit a unified exposition in terms of the so called |1|-graded

Lie algebras g = g−1 ⊕ g0 ⊕ g1, see e.g. [Kobayashi 72], and there has been a

wide discussion on geometries fitting into a similar scheme, see e.g. [Kobayashi,

Nagano 64, 65], [Ochiai 70], [Tanaka 79]. Following Cartan’s original ideas,

Cartan connections appeared there as the absolute parallelisms obtained on the

last non-trivial prolongations of the original G-structure in question, and it turned

out that they should play a role similar to that of the Levi-Civita connections in

Riemannian geometry.

In this series of papers, we shall deal with any Lie group G with |1|-graded Lie

algebra g. We denote B the subgroup with the Lie algebra b = g0 ⊕ g1. Fur-

ther there is the normal subgroup B1 ⊂ B with the Lie algebra g1 and the Lie

group B0 = B/B1 with the Lie algebra g0. The corresponding geometric struc-

tures are then reductions of the linear frame bundles P 1M on dim g−1-dimensional

manifolds M to the structure group B0, as a rule, and it turns out that the flat
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(homogeneous) models for such structures are the Hermitian symmetric spaces

G/B. Thus, following [Baston 91], we call them the almost Hermitian symmet-

ric structures, briefly the AHS structures. Similar structures were studied earlier

by [Goncharov 87].

Even much more general structures have been investigated thoroughly from the

point of view of the equivalence problem, see e.g. [Cartan 1908], [Tanaka 79],

however our present goal is different. We aim to develop a calculus for the Cartan

connections similar to the Ricci calculus for the linear (Riemannian) connections.

Thus, we first discuss the AHS structures in a more abstract form, as principal

B-bundles P equipped with an analogy to the soldering form on the linear frame

bundles. This corresponds to thinking about conformal and projective structures

as being second order structures (i.e. reductions of the second order frame bundles

P 2M). In particular, there is always a class of distinguished linear connections,

parameterized by one-forms, and we work out tools for building invariant operators

as expressions in terms of these linear connections. The kth order jet extensions of

the bundles associated to the defining principal B-bundles P fail to be associated

bundles to P in a natural way, except for the locally flat structures, however the

semi-holonomic ones always are. We construct a universal invariant differential

operator with values in the semi-holonomic jets, the iterated invariant derivative

with respect to a Cartan connection. Our approach generalizes vastly most of

the classical constructions of invariant operators in the conformal Riemannian

geometries. We shall comment more explicitly on the direct links in the text.

In the next part of the series, we show that the AHS structures, defined as

first order structures, give rise to canonical principal B-bundles equipped with the

canonical soldering forms. Moreover, we construct explicitly the canonical Cartan

connections there. Thus, the calculus developed here suggests direct methods for

the study of invariant operators on all AHS structures.

In the third part, we shall rewrite the recurrence procedure for the expansion

of the invariant differentials in terms of finite dimensional representation theory

of the invidual Lie algebras. This will help us to achieve an explicit construction

of large classes of invariant operators, even for the ‘curved cases’. In particular,

we shall show that all the operators on locally flat AHS manifolds, well known

from the theory of the generalized Verma modules as the standard operators,

have a canonical extension to all AHS manifolds. Moreover, we shall even present

universal formulae for those operators in a closed form.

There are also further applications of our development already. Let us men-

tion at least the generalization of the Eastwood’s ‘curved translation principle’

in the conformal Riemannian geometry, [Eastwood 95], worked out for all AHS

structures in [Čap 96], and the algebraic implications of our non-holonomic jet

considerations discussed in [Eastwood, Slovák]. Several links to earlier papers

and some further discussion on applications are also available in [Slovák 96].
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Our motivation comes mostly from the wide range of results on the invariant

operators on conformal Riemannian manifolds, in particular the series of papers

by T. N. Bailey, R. J. Baston, T. P. Branson, M. G. Eastwood, C. R. Graham,

H. P. Jakobsen, V. Wünsch and others, cf. the references at the end of this paper,

but our development is probably most influenced by [Baston 90, 91].

The work on this series of papers has also benefited from discussions with several

mathematicians, the authors like to mention especially the fruitful communication

with J. Bureš and M. Eastwood.

2. The Invariant Differentiation

We shall discuss the obvious operation on the frame forms of sections of asso-

ciated bundles defined by means of horizontal vector fields with respect to Cartan

connections. However, we exploit the very special properties of the structures and

connections in question, and we can iterate our derivatives. The result of such an

iterated differentiation of a section is not the frame form of a section in general

(i.e. the required equivariance properties fail), but we shall see later that the in-

variant iterated differential defines a universal differential operator with values in

semi-holonomic jet extensions of the bundles in question.

2.1. Cartan connections. Let G be a Lie group, B ⊂ G a closed subgroup,

and let g, b be the Lie algebras of G and B. Further, let P → M be a principal

fiber bundle with structure group B and let us denote by ζX the fundamental

vector field corresponding to X ∈ b. A g-valued one form ω ∈ Ω1(P, g) with the

properties

(1) ω(ζX) = X for all X ∈ b
(2) (rb)∗ω = Ad(b−1) ◦ ω for all b ∈ B
(3) ω|TuP : TuP → g is a bijection for all u ∈ P

is called a Cartan connection. Clearly, dimM = dimG − dimB = dim (G/B)

if a Cartan connection exists.

The curvatureK ∈ Ω2(P, g) of a Cartan connection ω is defined by the structure

equation

dω = −
1

2
[ω, ω] +K.

The Cartan connection ω defines for each element Y ∈ g the vector field ω−1(Y )

given by the equality ω(ω−1(Y )(u)) = Y for all u ∈ P . This defines an absolute

parallelism on P .

From now on we assume that there is an abelian subalgebra g−1 in g which

is complementary to b, so that g = g−1 ⊕ b. Then ω−1(g−1) ⊂ TP is a smooth

distribution which is complementary to the vertical subbundle, so we can consider
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ω as a generalized connection on P . Moreover ω splits as ω = ω−1 +ωb according

to the above decomposition and similarly for the curvature.

A direct computation using property (2) of Cartan connections shows that the

curvature is always a horizontal 2-form, i.e. it vanishes if one of the vectors is

vertical. Thus it is fully described by the function κ ∈ C∞(P, g∗−1 ⊗ g
∗
−1 ⊗ g),

κ(u)(X,Y ) = K(ω−1(X), ω−1(Y ))(u).

If we evaluate the structure equation on ω−1(X) and ω−1(Y ) we obtain

−[X,Y ] +K(ω−1(X), ω−1(Y )) = ω−1(X)(ω(ω−1(Y )))− ω−1(Y )(ω(ω−1(X)))

− ω([ω−1(X), ω−1(Y )])

= − ω([ω−1(X), ω−1(Y )]).

In particular, forX,Y ∈ g−1, we see that κ(u)(X,Y ) = −ω(u)([ω−1(X), ω−1(Y )]),

so the b-part of κ is the obstruction against integrability of the horizontal distri-

bution defined by ω.

In particular, on the principal fiber bundle G → G/B over the homogeneous

space G/B there is the (left) Maurer-Cartan form ω ∈ Ω1(G, g) which is a Cartan

connection and Maurer-Cartan structure equation shows that the corresponding

curvature is vanishing.

2.2. Let λ : B → GL(Vλ) be a linear representation and let P → M be a

principal fiber bundle as above. Then the sections of the associated vector bundle

Eλ →M correspond bijectively to B-equivariant smooth functions in C∞(P, Vλ).

We shall systematically use this identification without further comments. For a

classical principal connection γ on P , the covariant derivative on Eλ along a vector

field X on M can be defined as the B-equivariant function ∇γXf with the value at

u ∈ P given by the usual derivative in the direction of the horizontal lift of X to

P . For a general connection on a bundle P without any structure group, we can

apply the same definition to vector fields on P . The idea is to view the Cartan

connections as general connections, but to exploit their special properties.

Given a Cartan connection ω on P , there is the horizontal projection χω : TP →
TP defined for each ξ ∈ TuP by χω(ξ) = ξ− ζωb(ξ)(u), where ζY means the funda-

mental vector field corresponding to Y ∈ b. The covariant exterior differential with

respect to ω on vector-valued functions s ∈ C∞(P, V ), evaluated on a vector field

ξ on P , is dωs(u)(ξ) = (χω ◦ ξ)·s. By definition, the value of the covariant exterior

differential dωs(u)(ξ) with respect to ξ depends only on the horizontal projection

χω(ξ(u)), hence on ω(χω(ξ(u))) = ω−1(ξ(u)). This leads to the following

2.3. Definition. The mapping ∇ω : C∞(P, V ) → C∞(P,Hom(g−1, V )) de-

fined by ∇ωs(u)(X) = Lω−1(X)s(u) = (ω(u))−1(X)·s is called the invariant dif-

ferential corresponding to the Cartan connection ω.
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We shall often use the brief notation ∇ωXs(u), X ∈ g−1 for (∇ωs)(u)(X).

Note that the invariant differential of a B-equivariant function is not B-equiva-

riant in general, so the invariant differential of a section is not a section in general.

Also, our brief notation suggests that ∇ωX should behave like the usual covariant

derivative along a vector field, but the analogy fails in general because of the

nontrivial interaction between g−1 and b. There is however a possibility to form a

section of a bundle out of a given section and its invariant differential. This point

of view will be worked out in detail in Section 5.

2.4. Proposition (Bianchi identity). Let ω ∈ Ω1(P, g) be a Cartan connec-

tion. Then the curvature κ satisfies∑
cycl

(
[κ(X,Y ), Z]− κ(κ−1(X,Y ), Z)−∇ωZκ(X,Y )

)
= 0

for all X, Y , Z ∈ g−1, where
∑

cycl denotes the sum over all cyclic permutations

of the arguments.

Proof. LetX, Y , Z ∈ g−1 and let us write X̃, Ỹ , Z̃ for the vector fields ω−1(X),

ω−1(Y ), ω−1(Z). Now we evaluate the structure equation dω + 1
2 [ω, ω] = K on

the fields [X̃, Ỹ ] and Z̃:

−LZ̃ω([X̃, Ỹ ])− ω([[X̃, Ỹ ], Z̃])− [κ(X,Y ), Z] = −κ(κ−1(X,Y ), Z).

Using the definition of the invariant differential, we obtain

ω([[X̃, Ỹ ], Z̃]) = −[κ(X,Y ), Z] + κ(κ−1(X,Y ), Z) +∇ωZκ(X,Y ).

Forming the cyclic sum, the left hand side vanishes by the Jacobi identity for

vector fields. �

2.5. The iterated invariant differential. The invariant differential with

respect to any Cartan connection ω can be iterated, after k applications on s ∈
C∞(P, V ) we get (∇)ks = ∇ . . .∇s ∈ C∞(P,⊗kg∗−1 ⊗ V ).

Lemma. For all u ∈ P and X, Y, . . . , Z ∈ g−1, s ∈ C∞(P, V ), we have

(∇)ks(u)(X,Y, . . . , Z) = (Lω−1(Z) ◦ . . . ◦ Lω−1(Y ) ◦ Lω−1(X))s(u).

In particular, we obtain (∇)2s(u)(X,Y )− (∇)2s(u)(Y,X) = Lω−1(κ(X,Y ))s(u), the

Ricci identity.

Proof. This is just the definition for k = 1. So let us assume that the statement

holds for k−1. If we replace s by its (k−2)-nd invariant differential, we shall deal

with the case k = 2. By the definition, ∇(∇s)(u)(X,Y ) = Lω−1(Y )(∇s)(u)(X) =

Lω−1(Y )(∇s( )(X))(u) since the invariant differential is linear in X. But the ex-

pression in the last bracket is just Lω−1(X)s. Now,

(Lω−1(Y ) ◦ Lω−1(X) −Lω−1(X) ◦ Lω−1(Y ))s = L[ω−1(Y ),ω−1(X)]s = Lω−1(κ(X,Y ))s

since g−1 is abelian. �
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2.6. Let us compare our approach with the classical covariant derivative with

respect to a linear connection γ ∈ Ω1(P 1M, gl(m)) on the linear frame bundle

P 1M . With the help of the soldering form θ ∈ Ω1(P 1M,Rm), we can build the

form ω = θ ⊕ γ ∈ Ω1(P 1M,Rm ⊕ gl(m)), a so called affine connection on M . It

is simple to check that ω is a Cartan connection in the above sense and that the

horizontal lift of a vector ξ ∈ TxM which is determined by X ∈ Rm and u ∈ P 1M

is exactly ω−1(X) ∈ Tu(P 1M). Thus the covariant differential of a section s of

an associated bundle to P 1M is given by Lω−1(X)s̃(u) where s̃ is the frame form

of s. Therefore the iterated differential (∇ω)k coincides with the classical concept

in this special case. The reason why this case is much simpler than the general

one is that Rm is an abelian ideal in Rm ⊕ gl(m) and not only a subalgebra.

3. The Second Order Structures

3.1. From now on we will assume that the groupG is connected and semisimple,

and that its Lie algebra is equipped with a grading g = g−1 ⊕ g0 ⊕ g1. Then the

following facts are well known, see [Ochiai 70]:

(1) g0 is reductive with one-dimensional center

(2) the map g0 → gl(g−1) induced by the adjoint representation is the inclu-

sion of a subalgebra

(3) the Killing form identifies g1 as a g0 module with the dual of g−1

(4) the restrictions of the exponential map to g1 and g−1 are diffeomorphisms

onto the corresponding closed subgroups of G.

By B we denote the closed (parabolic) subgroup of G corresponding to the Lie

algebra b = g0 ⊕ g1. Then there is the normal subgroup B1 in B with Lie algebra

g1. From (4) above we see that B1 is a vector group. Finally, B0 := B/B1 is a

reductive group with Lie algebra g0, and the Lie group homomorphism induced by

the inclusion of g0 into b splits the projection, so B is isomorphic to the semidirect

product of B0 and B1.

3.2. In this setting, any Cartan connection ω ∈ Ω1(P, g−1 ⊕ g0 ⊕ g1) on a

principal fiber bundle P with structure group B decomposes as ω = ω−1⊕ω0⊕ω1

and analogously does its curvature.

In order to involve certain covering phenomena, we shall slightly extend the

classical definition of a structure on a manifold M . For principal fiber bundles P1,

P2 over M with structure groups G1, G2, any morphism of principal fiber bundles

P1 → P2 over the identity on M , associated with a covering of a subgroup of G2

by G1, will be called a reduction of P2 to the structure group G1. For example,

the spin structures on Riemannian manifolds will be incorporated into our general

scheme in this way.
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Now we show that in our setting, the canonical principal bundle G → G/B

=: M can be viewed as a reduction of the second order frame bundle P 2M →M

to the structure group B.

Lemma. Let O ∈ M be the coset of e ∈ G, ϕ : g−1 → M , ϕ(X) = expX·O.

We define i : G→ P 2M , i(g) = j20 (`g◦ϕ) and i′ : B → G2
m, i′(b) = j20 (ϕ−1◦`b◦ϕ).

Then these two mappings define a reduction (in the above sense) of P 2M .

Proof. We have i(g·b) = j20(`g·b ◦ ϕ) = j20(`g ◦ ϕ)·j20(ϕ−1 ◦ `b ◦ ϕ). Since the

action of B on M is induced by conjugation, the conditions 3.1.(2) and (3) imply

that the homomorphism i′ induces an injection on the level of Lie algebras, so it

is indeed a covering of a subgroup of G2
m. �

Before we give the general definition of a B-structure on a manifold, we list

some examples.

3.3. Examples. The semisimple Lie algebras g which admit a grading of

the form g−1 ⊕ g0 ⊕ g1 can be completely classified. In fact, the classification of

these algebras in the complex case is equivalent to the classification of Hermitian

symmetric spaces, see [Baston 91] for the relation. The full classification can be

found in [Kobayashi, Nagano 64, 65] . Here we list some examples which are

of interest in geometry:

(1) Let g = sl(p+ q,R), the algebra of matrices with trace zero, g0 = sl(p,R)⊕
sl(q,R) ⊕ R and g±1 = Rpq. The grading is easily visible in a block form with

blocks of sizes p, q:

g−1 =

(
0 0

∗ 0

)
, g0 =

(
∗ 0

0 ∗

)
, g1 =

(
0 ∗
0 0

)
.

We obtain easily the formulae for the commutators. Let X ∈ g−1, Z ∈ g1,
A = (A1, A2) ∈ g0. Then

[ , ] : g0 × g−1 → g−1, [A,X] = A2·X −X·A1

[ , ] : g1 × g0 → g1, [Z,A] = Z·A2 −A1·Z

[ , ] : g−1 × g1 → g0, [X,Z] = (−Z·X,X·Z).

The corresponding homogeneous space is the real Grassmannian, the corre-

sponding structures are called almost Grassmannian. In the special case p = 1,

q = m, we obtain the classical projective structures on m-dimensional manifolds.

(2) Let g = so(m + 1, n + 1,R), g0 = co(m,n,R) = so(m,n,R) ⊕ R, g−1 =

Rm+n, g1 = R(m+n)∗. For technical reasons we choose the defining bilinear form

〈 , 〉 on Rm+n+2 given by 2x0xm+n+1 + g(x1, . . . , xm+n), where g is the standard
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pseudometric with signature (m,n) given by the matrix J. In block form with

sizes 1,m+ n, 1, we get 0 0 0

p 0 0

0 −pT J 0

 ∈ g−1,

−a 0 0

0 A 0

0 0 a

 ∈ g0,
 0 q 0

0 0 −JqT
0 0 0

 ∈ g1,
where A ∈ so(m,n,R) and aIm+n is in the center of co(m,n,R).

The commutators are

[ , ] : g0 × g0 → g0, [(A, a), (A′, a′)] = (AA′ −A′A, 0)

[ , ] : g0 × g−1 → g−1, [(A, a), p] = Ap+ ap

[ , ] : g1 × g0 → g1, [q, (A, a)] = qA+ aq

[ , ] : g−1 × g1 → g0, [p, q] = (pq − J(pq)T J, qp)

where (A, a), (A′, a′) ∈ so(m,n)⊕ R = g0, p ∈ Rm = g−1, q ∈ Rm∗ = g1.

The homogeneous spaces are the conformal pseudo-Riemannian spheres for met-

rics with signatures (m,n).

(3) The symplectic algebra sp(2n,R) admits the grading with g−1 = S2Rn,
g1 = S2Rn∗, g0 = gl(n,R). We can express this grading in the block form:(

0 X

0 0

)
∈ g−1,

(
A 0

0 −AT

)
∈ g0,

(
0 0

Z 0

)
∈ g1

The commutators are [X,Z] = X·Z ∈ gl(n,R), [A,X] = A·X + (A·X)T ∈ g−1,

[A,Z] = −(Z·A + (Z·A)T ) ∈ g1. The corresponding homogenous spaces are the

Lagrange Grassmann manifolds and the corresponding structures are called almost

Lagrangian.

(4) If we use the symmetric form

(
0 I
I 0

)
instead of the antisymmetric one in

the previous example, then we obtain the grading so(2n,R) = Λ2Rn ⊕ gl(n,R) ⊕
Λ2Rn∗ with the commutators given by [X,Z] = X·Z ∈ gl(n,R), [A,X] = A·X −
(A·X)T ∈ g−1, [A,Z] = −(Z·A− (Z·A)T ) ∈ g1. The corresponding homogeneous

spaces are the isotropic Grassmann manifolds. They can be identified with the

spaces of pure spinors, so the structures are called almost spinorial.

Some of the above examples coincide in small dimensions. Further there are

similar structures corresponding to the exceptional Lie groups and we could also

work in the complex setting or choose different real forms. For more information

on these structures, see e.g. [Baston 91].

3.4. Definition. Let G, B be as in 3.1 and let M be a manifold of dimension

m = dim(g−1). A B-structure on M is a principal fiber bundle P → M with
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structure group B which is equipped with a differential form θ = θ−1 ⊕ θ0 ∈
Ω1(P, g−1 ⊕ g0) such that

(1) θ−1(ξ) = 0 if and only if ξ is a vertical vector

(2) θ0(ζY+Z) = Y for all Y ∈ g0, Z ∈ g1
(3) (rb)

∗θ = Ad(b−1)θ for all b ∈ B, where Ad means the action on the vector

space g−1 ⊕ g0 ' g/g1 induced by the adjoint action.

The form θ is called the soldering form or displacement form. A homo-

morphism of B-structures is just a homomorphism of principal bundles, which

preserves the soldering forms.

The torsion T of the B-structure is defined by the structure equation

dθ−1 = [θ−1, θ0] + T.

In the next part of this series, we shall apply the classical theory of prolongations

of G-structures to show that in all cases, except the projective structures, each

classical first order B0-structure on M gives rise to a distinguished B-structure on

M in the above sense. The construction based on certain subtle normalizations

extends essentially the results on reductions of the second order frame bundles

P 2M due to [Ochiai 70], and it leads also to an explicit construction of the

canonical Cartan connection. An illustration of this procedure in the special case

of the conformal structures is presented in the last section of this paper. The next

lemma shows that in the Ochiai’s approach we loose all structures with non-zero

torsion T . However, the torsion is quite often the only obstruction against the

local flatness, see [Baston 91] or [Čap, Slovák 95]. For example, Ochiai deals

in fact only with spaces locally isomorphic to the homogeneous spaces for all higher

dimensional Grassmannian structures.

3.5. Lemma. Let M be an m-dimensional manifold and let P → M be a

reduction of the second order frame bundle P 2M → M to the group B over the

homomorphism i′, as in 3.2. Then there is a canonical soldering form θ on P such

that (P, θ) is a B-structure on M , and this B-structure has zero torsion.

Proof. The second frame bundle P 2M , is equipped with a canonical soldering

form a form θ(2) ∈ Ω1(P 2M,Rm⊕g1m) defined as follows. Each element u ∈ P 2
xM ,

u = j20ϕ, determines a linear isomorphism ũ : Rm ⊕ g1m → Tπ2
1(u)P

1M (in fact

T0(P
1ϕ) : T(0,e)(Rm × G1

m) → TP 1M). Now if X ∈ TuP
2M then θ(2)(X) =

ũ−1(Tπ2
1(X)), i.e. θ(2)(X) = j10(P 1ϕ−1 ◦ π2

1 ◦ c) if X = j10c. This canonical form

decomposes as θ(2) = θ−1 ⊕ θ0 where θ−1 is the pullback of the soldering form θ

on P 1M , θ−1 = (π2
1)∗θ, while θ0 is g1m-valued.

It is well known, see e.g. in [Kobayashi 72] that this is in fact a soldering form

with zero torsion, and that for any reduction as assumed the pullback of θ is again

a soldering form, which clearly has trivial torsion, too. �
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3.6. A B-structure (P, θ) is related to a rich underlying structure. First, we can

form the bundle P0 := P/B1 →M , which is clearly a principal bundle with group

B0, and P → P/B1 is a principal B1-bundle. Now consider the component θ−1 of

the soldering form. By property (3) in the definition of the soldering form it is B1-

invariant and clearly it is horizontal as a form on P → P0, so it passes down to a

well defined form in Ω1(P0, g−1), which we again denote by θ−1. One easily verifies

that this form is B0-equivariant and its kernel on each tangent space is precisely

the vertical tangent space of P0 →M . Then for each u ∈ P0, θ−1 induces a linear

isomorphism TuP0/VuP0 ' g−1 and composing the inverse of this map with the

tangent map of the projection p : P0 → M , we associate to each u ∈ P0 a linear

isomorphism g−1 ' Tp(u)M , thus obtaining a reduction P0 → P 1M of the frame

bundle of M to the group B0, where B0 is mapped to GL(m,R) ' GL(g−1) via

the adjoint action.

In particular this shows that one can view the tangent bundle TM of M as the

associated bundle P0×Ad g−1. Since P0 = P/B1, we can as well identify TM with

P ×(Ad,id) g−1. Here (Ad,id) means the adjoint action of B0 and the trivial action

of B1.

Lemma. Let (P, θ) be a B-structure on M , P0 := P/B1. Then there exists

a global smooth B0-equivariant section P0 → P , and if σ is any such section we

have:

(1) γ := σ∗θ0 ∈ Ω1(P0, g0) is a principal connection on P0.

(2) ω := σ∗θ is a Cartan connection on P0 with g−1-component equal to the

form θ−1 from above.

(3) The invariant differential ∇ω : C∞(P0, V ) → C∞(P0, g
∗
−1 ⊗ V ) coincides

with the usual covariant (exterior) differential dγ : Ω0(P0, V )→ Ω1(P0, V )

viewed as dγ : C∞(P0, V )B0 → C∞(P0, g
∗
−1 ⊗ V )B0 .

(4) The components of the curvature K = K−1⊕K0 of ω are just the torsion

and the curvature of the principal connection γ.

The space of all equivariant sections σ as above is an affine space modeled on the

space Ω1(M) of one-forms on M .

Proof. Starting from a principal bundle atlas for P → M , we see that we can

find a covering {Uα} of M such that the bundle p : P → P0 is trivial over any

of the sets π−1(Uα) ⊂ P0, where π : P0 → M is the projection. Since B is the

semidirect product of B0 and B1 we can choose a local B0-equivariant section sα
of P → P0 over each of these subsets.

Next, there is a smooth mapping χ : P ×P0 P → g1 determined by the equation

v = u·exp (χ(u, v)). If Uα ∩ Uβ 6= ∅ then we have a well defined smooth map

χαβ : π−1(Uα ∩ Uβ) → g1 given by χαβ(u) := χ(sα(u), sβ(u)). Since the sections

are B0-equivariant one easily verifies that χαβ(u·b) = Ad (b−1)·χαβ(u) for all b ∈
B0. Let {fα} be a partition of unity subordinate to the covering {Uα} of M . For
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u ∈ P0 define s(u) ∈ P as follows: Choose an α with π(u) ∈ Uα and put

s(u) := sα(u)·exp (
∑
β fβ(π(u))χαβ(u)).

Clearly this expression makes sense, although the χαβ are only locally defined.

Since B1 is abelian, it is easily seen that χαγ(u) = χαβ(u) + χβγ(u), whenever all

terms are defined. Now if γ is another index such that π(u) ∈ Uγ , we get:

sγ(u)·exp (
∑
β fβ(π(u))χγβ(u)) =

= sα(u)·exp (χαγ(u))·exp (
∑
β fβ(π(u))(χγα(u) + χαβ(u))) =

= sα(u)·exp (χαγ(u) + χγα(u) +
∑
β fβ(π(u))χαβ(u)),

so s(u) is independent of the choice of α, and thus s : P0 → P is a well defined

smooth global section. Moreover, for b ∈ B0

s(u·b) = sα(u)·b·exp (Ad (b)·
∑
β fβ(π(u))χαβ(u)) = s(u)·b,

so s is B0-equivariant, too.

Now if s and σ are two global equivariant sections, then u 7→ χ(s(u), σ(u)) is the

frame form of a smooth one-form on M . On the other hand if ϕ : P0 → g1 is the

frame form of a one-form, then u 7→ s(u)· exp (ϕ(u)) is again a smooth equivariant

section.

(1) and (2) are easily verified directly, and (3) was shown in 2.6. (4) follows

immediately from (3) and (2) since ω = θ−1 ⊕ γ and the torsion and curvature of

γ are by definition just dγθ−1 and dγγ, respectively. �

3.7. Induced Cartan connections. We have seen in 3.6 that the soldering

form on P → M leads via B0-equivariant sections σ : P0 → P to a distinguished

class of principal connections on the bundle P0 → M , which can be canonically

extended to Cartan connections on the latter bundle. Next we show that to any

principal connection γ from this distinguished class, i.e. to each equivariant section

σ as above, we can construct an induced Cartan connection γ̃ on P , which is σ-

related to the Cartan connection θ−1 ⊕ γ.

Lemma. For each B0-equivariant section σ : P0 → P , there is a uniquely de-

fined Cartan connection ω = θ−1 ⊕ θ0 ⊕ ω1 satisfying ω1|(Tσ(TP0)) = 0.

Proof. Using condition (4) of 3.1 we see that the section σ induces an isomor-

phism of P with P0×g1 defined by u 7→ (p(u), τ(u)) where p : P → P0 is the projec-

tion and the mapping τ : P → g1 is defined by the equality u = σ(p(u))·exp (τ(u)).

Now we define ω1 on σ(P0) by ω1|σ(P0) := dτ . Since τ ◦ σ = 0 we clearly

have ω1|(Tσ(TP0)) = 0, and obviously for any u ∈ σ(P0), ω induces a bijection

TuP → g.
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Next, since τ is identically zero on σ(P0) and τ(u·exptX) = τ(u) + tX for

X ∈ g1 it follows from 3.4.(2) that on σ(P0) the form ω = θ ⊕ ω1 reproduces the

generators of fundamental fields.

Now one easily checks that this form can be uniquely extended using the equiv-

ariancy properties which are required for a Cartan connection. �
3.8. Lemma. In the situation of 3.7, denote by p : P → P0 the projection and

let V be any representation of B0. Let u ∈ P and X, Y ∈ g−1, b = exp(τ(u)),

where τ is the mapping from the proof of 3.7, and s ∈ C∞(P0, V ). Then we have:

(1) (∇γ̃ ◦ p∗ − p∗ ◦ ∇γ)s(u)(X) = ζ[τ(u),X](σ(p(u)))·(s ◦ p).
(2) Let h ∈ B be arbitrary. The curvature κ ∈ C∞(P, g∗−1 ⊗ g

∗
−1 ⊗ g) of any

Cartan connection satisfies

κ(X,Y )(u·h) = Ad (h−1)·κ(Ad (h)·X,Ad (h)·Y )(u).

(3) The curvature K of γ̃ and the curvature R of γ satisfy dγθ−1⊕R = σ∗K.

In particular R = σ∗K0.

(4) The curvature components of an arbitrary Cartan connection satisfy

κ−1(u)(X,Y ) = κ−1(σ(p(u)))(X,Y )

κ0(u)(X,Y ) = κ0(σ(p(u)))(X,Y )− [τ(u), κ−1(σ(p(u)))(X,Y )]

κ1(u)(X,Y ) = κ1(σ(p(u)))(X,Y )− [τ(u), κ0(σ(p(u)))(X,Y )]

+
1

2
[τ(u), [τ(u), κ−1(σ(p(u)))(X,Y )]].

(5) If the B-structure has zero torsion, then the curvature of the induced Car-

tan connection γ̃ satisfies

κ−1(u)(X,Y ) = 0

κ0(u)(X,Y ) = κ0(σ(p(u)))(X,Y )

κ1(u)(X,Y ) = [κ0(σ(p(u)))(X,Y ), τ(u)].

In particular, the component κ1 vanishes on σ(P0).

Proof. By the definition of the Cartan connections, the formula

(6) Trb(γ̃−1(X)(u)) = γ̃−1(Ad (b−1)·X)(u·b)

holds for all u ∈ P , b ∈ B. Since γ = σ∗(γ̃)0, the horizontal lift of the vector

ξ ∈ TxM corresponding to X ∈ g−1 and p(u) ∈ P0 with respect to γ is just

Tp(γ̃−1(X)(σ(p(u)))), see 2.6. The definition of the tangent mapping then yields

(∇γ̃ ◦ p∗ − p∗ ◦ ∇γ)s(u)(X) = γ̃−1(X)(u)·(s ◦ p)− Tp
(
γ̃−1(X)(σ ◦ p(u))

)
·s

= Trb(γ̃−1(Ad b·X)(σ ◦ p(u)))·(s ◦ p)− Tp
(
γ̃−1(X)(σ ◦ p(u))

)
·s

= γ̃−1(X + [τ(u),X])(σ ◦ p(u))·(s ◦ p)− Tp
(
γ̃−1(X)(σ ◦ p(u))

)
·s

= ζ[τ(u),X](σ ◦ p(u))·(s ◦ p)
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where the last but one equality is obtained using the fact that for Z ∈ g1, X ∈ g−1

we have:

(7)
(Ad(expZ))·X = X + [Z,X] +

1

2
[Z, [Z,X]] +

1

6
[Z, [Z, [Z,X]]] + . . .

= X + [Z,X] +
1

2
[Z, [Z,X]].

The next claim also follows from the formula (6) and from the fact that the Lie

bracket of f -related vector fields is f -related:

κ(X,Y )(u·b) = K(γ̃−1(X), γ̃−1(Y ))(u·b)

= −γ̃([γ̃−1(X), γ̃−1(Y )](u·b))

= −Ad (b−1) ◦ γ̃(Trb
−1

·([γ̃−1(X), γ̃−1(Y )](u·b)))

= −Ad (b−1) ◦ γ̃([γ̃−1(Ad b·X), γ̃−1(Ad b·Y )](u))

= Ad (b−1)·κ(Ad b·X,Ad b·Y )(u).

(3) follows immediately from the fact that γ̃ and θ−1 ⊕ γ are σ-related.

If b ∈ g1, the horizontal part of γ̃−1(Ad b·X) is just γ̃−1(X). The curvature

of a Cartan connection is a horizontal form and so (2) implies that κ(X,Y )(u) =

Ad b−1κ(X,Y )(σ(p(u))). Now 3.8(7) implies directly the relations (4).

Once we prove that κ1|σ(P0) = 0, (5) will follow directly form (4) since in this

case κ−1 is just the torsion. But according to the definition of γ̃, the vector fields

γ̃−1(X) are tangent to σ(P0) for all X ∈ g−1. Consequently also the Lie brackets

of such fields are tangent to σ(P0) and thus γ̃1([γ̃
−1(X), γ̃−1(Y )]) = 0. �

3.9. Admissible Cartan connections. Let (P, θ) be a B-structure on M .

A Cartan connection ω on P is called admissible if and only if it is of the form

ω = θ−1 ⊕ θ0 ⊕ ω1. Thus in particular the induced connections from 3.7 are

admissible. Moreover, by definition the g−1 component of the curvature of any

admissible Cartan connection is given by the torsion of the B-structure.

Let us now consider two admissible Cartan connections ω, ω̄, so that they differ

only in the g1-component. Then there is a function Γ ∈ C∞(P, g∗−1⊗g1) such that

ω̄ = ω − Γ ◦ θ−1. Indeed, ω − ω̄ has values in g1 and vanishes on vertical vectors.

The function Γ can be viewed as an expression for the ‘deformation’ of ω into

ω̄ and in view of its properties proved below, we call it the deformation tensor.

3.10. Lemma.

(1) Γ(u·b) = Ad (b−1) ◦ Γ(u) ◦Ad (b) for all b ∈ B0

(2) Γ(u·b) = Γ(u) for all b ∈ B1

(3) ω̄−1(X)(u) = ω−1(X)(u) + ζΓ(u)·X(u) for all X ∈ g−1

(4) (κ0 − κ̄0)(u)(X,Y ) = [X,Γ(u)·Y ] + [Γ(u)·X,Y ]

(5) (κ1 − κ̄1)(u)(X,Y ) = ∇ωXΓ(u)·Y −∇ωY Γ(u)·X + Γ(u)(κ−1(X,Y ))

(6) (κ−1 − κ̄−1)(u)(X,Y ) = 0.
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Proof. By definition, (rb)∗(Γ◦θ−1) = Ad(b−1)◦ (Γ◦θ−1) and the adjoint action

is trivial if b ∈ B1. Since (rb)∗θ−1 = θ−1 for b ∈ B1 too, the second claim has been

proved. If b ∈ B0 then Γ ◦ θ−1(Tr
b·ξ)(u·b) = Ad(b−1)(Γ ◦ θ−1)(ξ)(u) and the left

hand side is Γ(u·b) ◦ Ad(b−1) ◦ θ−1(u)(ξ) by the equivariancy of θ−1. Comparing

the results, we obtain just the required formula (1).

In order to obtain (3), we compute ω̄(ω−1(X)) = X − Γ ◦ θ−1(ω
−1(X)) and so

ω̄−1(X) = ω−1(X) + ω̄−1(Γ ◦ θ(ω−1(X))) = ω−1(X) + ζΓ·X .

In order to verify (4) and (5), let us compute (we use just the definition of the

frame form of the curvature)

(κ− κ̄)(X,Y ) = ω̄([ω̄−1(X), ω̄−1(Y )])− ω([ω−1(X), ω−1(Y )])

= (ω − Γ ◦ θ)([ω−1(X) + ζΓ·X , ω
−1(Y ) + ζΓ·Y ])− ω([ω−1(X), ω−1(Y )])

= ω([ζΓ·X , ω
−1(Y )]) + ω([ω−1(X), ζΓ·Y ]) + ω([ζΓ·X , ζΓ·Y ]) + Γ(κ−1(X,Y ))

− Γ ◦ ω−1([ζΓ·X , ω
−1(Y )])− Γ ◦ ω−1([ω

−1(X), ζΓ·Y ])− Γ ◦ ω−1([ζΓ·X , ζΓ·Y ]).

We have to notice that the fields ζΓ·X(u) = ω−1(Γ(u)·(X))(u) are defined by means

of the fundamental field mapping, but with arguments varying from point to point

in P . To resolve the individual brackets, we shall evaluate the curvature K of ω

on the corresponding fields:

dω(ω−1(Γ·X), ω−1(Y )) =

= Lω−1(Γ·X)ω(ω−1(Y ))−Lω−1(Y )ω(ω−1(Γ(X)))− ω([ω−1(Γ(X)), ω−1(Y )])

= −[ω(ω−1(Γ(X))), ω(ω−1(Y ))] +K(ω−1(Γ(X)), ω−1(Y )).

Since K is a horizontal 2-form it evaluates to zero and ω(ω−1(Y )) = Y is constant.

Thus we obtain

ω([ω−1(Γ(X)), ω−1(Y )]) = [Γ·X,Y ]−Lω−1(Y )Γ·X.

Now we can decompose this equality into the individual components.

ω−1([ω
−1(Γ(X)), ω−1(Y )] = 0

ω0([ω
−1(Γ(X)), ω−1(Y )] = [Γ·X,Y ]

ω1([ω
−1(Γ(X)), ω−1(Y )] = −∇ωY Γ·X.

It remains to evaluate the structure equation on the fields ζΓ·X , ζΓ·Y . Since g1 is

abelian and K(ζΓ·X , ζΓ·Y ) = 0, we obtain

ω([ω−1(Γ(X)), ω−1(Γ(Y ))]) = Lω−1(Γ(X))Γ·Y −Lω−1(Γ(Y ))Γ·X.

But the Lie derivatives of Γ depend only on the value of the vector field in the

point in question. However, we have already proved that Γ is B1-invariant and

consequently the derivative is zero. Now we can insert the expressions for the

brackets into the above expression for the difference κ− κ̄ and we get exactly the

required formulae. �
In particular (1) and (2) show that Γ is always a pullback of a tensor on M .

This fact is of basic importance for our approach.
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4. Formulae for the Iterated Invariant Differential

As before, we shall consider sections s ∈ C∞(P0, Vλ)
B0 of associated bundles

induced by representations of B0 and we shall view them as equivariant mappings

p∗s ∈ C∞(P, Vλ)
B. We shall develop a recurrence procedure which expands the

iterated differentials of such sections with respect to any admissible connection in

terms of the underlying linear connections. This expression splits the invariant

derivatives into the equivariant part (thus a section) and the obstruction parts

(which collects the failure to B1-invariance). Thus, after having the canonical

Cartan connections, this will provide us with a direct method of constructing

invariant operators.

4.1. In view of the results of the preceding section, the comparison of the

iterated covariant differential with respect to the principal connection γ = σ∗ω0

on P0, with the invariant differential ∇ω with respect to the admissible Cartan

connection ω becomes quite algorithmic. Indeed we can write

(∇ω)k ◦ p∗ − p∗ ◦ (∇γ)k = ∇ω ◦ ((∇ω)k−1 ◦ p∗ − p∗ ◦ (∇γ)k−1)

+ (∇ω ◦ p∗ − p∗ ◦ ∇γ) ◦ (∇γ)k−1

= ∇ω ◦ ((∇ω)k−1 ◦ p∗ − p∗ ◦ (∇γ)k−1)

+ (∇ω ◦ p∗ −∇γ̃ ◦ p∗) ◦ (∇γ)k−1 + (∇γ̃ ◦ p∗ − p∗ ◦ ∇γ)(∇γ)k−1.

Thus, we have to start an induction procedure. Let us remind, that the de-

formation tensor Γ ∈ C∞(P, g∗−1 ⊗ g1) transforming γ̃ into ω is a pullback of a

tensor on M , see Lemma 3.10. We shall work in the setting of 3.6-3.10 with

s ∈ C∞(P0, Vλ)
B0 , where Vλ is the representation space for λ : B0 → GL(Vλ). In

particular, we know from Lemmas 3.8, 3.10 that for u ∈ P , X, Y ∈ g−1

∇ωX(p∗s)(u)−∇γ̃X(p∗s)(u) = ζΓ(u).X(u).(p∗s) = 0

(∇γ̃ ◦ p∗ − p∗ ◦ ∇γ)s(u)(X) = ζ[τ(u),X](σ(p(u))).(p∗s) = λ([X, τ(u)])(s(p(u))).

Consequently, the middle term in the above inductive formula vanishes and the

last one yields always the induced action of the bracket on the target space of the

iterated covariant differential (∇γ)k−1. In particular, we have already deduced the

general formula for the first order operators:

4.2. Proposition. Let ω be an admissible Cartan connection, γ be the linear

connection corresponding to an equivariant section σ : P0 → P . For all X ∈ g−1,

s ∈ C∞(P0, Vλ)
B0 , u ∈ P we have

(∇ω ◦ p∗ − p∗ ◦ ∇γ)s(u)(X) = λ([X, τ(u)])(s(p(u))).

In particular, the difference is zero if evaluated at points with τ(u) = 0.

In order to continue to higher orders, we need to know how to differentiate the

expressions which will appear. Thus let us continue with two technical lemmas.
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4.3. Lemma. Let X ∈ g−1, Z ∈ g1, u ∈ P . Then

Lγ̃−1(X)τ(u) = 1
2 [τ(u), [τ(u),X]](1)

Lω−1(Z)τ(u) = Z(2)

Proof. The definition of τ can be written as τ(σ(p(u))) = 0, τ ◦ rexpZ(u) =

τ(u) + Z, Z ∈ g1. Thus in order to get (1), we can compute for u = σ(p(u)).b

∇γ̃Xτ(u) = Tτ.(γ̃−1(X)(u)) = Tτ ◦ Trb.γ̃−1(Adb.X)(σ(p(u)))

= T (τ ◦ rb)(γ̃−1(X + [τ(u),X] + 1
2 [τ(u), [τ(u),X]])(σ(p(u))))

= Tτ(γ̃−1(X + [τ(u),X])(σ(p(u)))) + 1
2Tτ(γ̃

−1([τ(u), [τ(u),X]])(σ(p(u))))

= 1
2 [τ(u), [τ(u),X]].

Next let us compute ζZ .τ(u) for Z ∈ g1.

Tτ(ζZ)(u) = ∂
∂t

∣∣
0

(
τ(u.exp tZ

)
= ∂

∂t

∣∣
0

(
τ(u) + tZ

)
= Z

i.e. (2) holds. �

4.4. Lemma. Let f : P → Vλ be a mapping defined by

f(u) = f̃(p(u))(τ(u), . . . , τ(u)),

where f̃ : P0 → ⊗kg∗1 ⊗ Vλ is g0-equivariant with respect to the canonical action λ̃

on the tensor product. Then

∇ωY f(u) = λ([Y, τ(u)])(f(u))

− 1
2

∑k
i=1(p

∗f̃)(u)(τ(u), . . . , [τ(u), [τ(u), Y ]], . . . , τ(u))

− (p∗(∇γY f̃))(u)(τ(u), . . . , τ(u))

+
∑k
i=1(p

∗f̃)(u)(τ(u), . . . ,Γ(u)·Y, . . . , τ(u)).

Moreover, all the terms in the above expression for ∇ωf : P → g∗−1 ⊗ Vλ satisfy

the assumptions of this lemma with the corresponding canonical representation on

⊗tg∗1 ⊗ g
∗
−1 ⊗ Vλ, where t is the number of τ ’s entering the term in question.

Proof. Let us compute using the chain rule, Proposition 4.2, Lemma 4.3 and 4.1

(∇ωY f)(u) = (∇ωY (p∗f̃)(u))(τ(u), . . . , τ(u))

+
∑k
i=1(p

∗f̃)(u)(τ(u), . . . ,∇ωY τ(u), . . . , τ(u))
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= (p∗(∇γY f̃)(u))(τ(u), . . . , τ(u))

+ (λ̃([Y, τ(u)])(p∗f̃)(u))(τ(u), . . . , τ(u))

+ 1
2

∑k
i=1(p

∗f̃)(u)(τ(u), . . . , [τ(u), [τ(u), Y ]], . . . , τ(u))

+
∑k
i=1(p

∗f̃)(u)(τ(u), . . . ,Γ(u)·Y, . . . , τ(u))

= p∗(∇γY f̃)(u)(τ(u), . . . , τ(u)) + λ([Y, τ(u)])(f(u))

−
∑k
i=1(p

∗f̃)(u)(τ(u), . . . , [[Y, τ(u)], τ(u)], . . . , τ(u))

+ 1
2

∑k
i=1(p

∗f̃)(u)(τ(u), . . . , [[Y, τ(u)], τ(u)], . . . , τ(u))

+
∑k
i=1(p

∗f̃)(u)(τ(u), . . . ,Γ(u)·Y, . . . , τ(u)).

It remains to prove that the resulting expressions satisfy once more the assump-

tions of the lemma. Let us show the argument on the first term f1(u)(Y ) :=

λ([Y, τ(u)])f(u). We have f1(u)(Y ) = f̃1(p(u))(τ(u), . . . , τ(u))(Y ) with f̃1 : P0 →
⊗k+1g∗1⊗g

∗
−1⊗Vλ, f̃1(p(u))(Z0, . . . , Zk, Y ) = λ([Y,Z0])(f̃(p(u))(Z1, . . . , Zk)). The

evaluation of f̃1 on Z0 and Y can be written as the composition

(id ⊗ λ) ◦ (f̃ ⊗ ad ): P0 × g1 ⊗ g−1 → ⊗
kg∗1 ⊗ Vλ

of equivariant mappings, so f̃1 is equivariant as well. Similarly one can write

down explicitly the terms in the second and the third part of the expression. The

equivariancy of the terms with Γ follows from 3.10. �

4.5. The second order. Now we have just to apply the above Lemma to

the first order formula. Let us write λ(k) for the canonical representation on

⊗kg∗−1 ⊗ Vλ.

((∇ω)2 ◦ p∗ − p∗(∇γ)2)s(u)(X,Y )

= ∇ωY (λ([ , τ(u)]) ◦ (p∗s)(u))(X) + (λ(1)([Y, τ(u)])(p∗∇γs)(u))(X)

= λ([X,Γ(u).Y ])(p∗s(u)) + λ(1)([Y, τ(u)])(λ([ , τ(u)])(p∗s)(u))(X)

− 1
2λ([X, [τ(u), [τ(u), Y ]]])(p∗s)(u) + λ([X, τ(u)])(p∗(∇γY s))(u)

+ (λ(1)([Y, τ(u)])(p∗(∇γs))(u))(X)

Altogether we have got

4.6. Proposition. For each admissible Cartan connection ω, B0-equivariant

section σ and for each B0-equivariant function s : P0 → Vλ

((∇ω)2 ◦ p∗ − p∗ ◦ (∇γ)2)s(u)(X,Y ) = λ([X,Γ(u)·Y ])(p∗s(u))

+ λ(1)([Y, τ(u)])(λ([ , τ(u)])(p∗s)(u))(X)

− 1
2λ([X, [τ(u), [τ(u), Y ]]])(p∗s)(u) + λ([X, τ(u)])(p∗(∇γY s))(u)

+ (λ(1)([Y, τ(u)])(p∗(∇γ)s)(u))(X)

holds for all u ∈ P . In particular, vanishing of τ yields

((∇ω)2 ◦ p∗ − p∗ ◦ (∇γ)2)s(u)(X,Y ) = λ([X,Γ(u)·Y ])(p∗s(u)).
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4.7. The third order. Exactly in the same way, we use the second order

formula to compute the next one. Let us write briefly ad 2
τ(u)X := [τ(u), [τ(u),X]].

Furthermore, we shall write the arguments Xi on the places where they have to be

evaluated, the order of the evaluation is clear from the context. In fact, whenever

λ(k) appears, the arguments X1, . . . ,Xk are evaluated after this action. We obtain

((∇ω)3 ◦ p∗ − p∗(∇γ)3)s(u)(X1,X2,X3) =

= ∇ωX3
(2nd order difference) + ζ[τ(u),X3](σ(p(u)))·(p∗(∇γ)2s)(X1,X2)

= λ(2)([X3, τ(u)])λ([X1,Γ(u)·X2])(p
∗s)(u)

+ λ([X1, (∇
γ
X3

Γ)(u)·X2])(p
∗s(u))

+ λ([X1,Γ(u)·X2])((p
∗∇γX3

s)(u))

+ λ(2)([X3, τ(u)])λ
(1)([X2, τ(u)])λ([X1, τ(u)])(p

∗s)(u)

− 1
2λ

(1)([X2, τ(u)])λ([X1, ad2
τ(u)X3])(p

∗s)(u)

− 1
2λ

(1)([X2, ad 2
τ(u)X3])λ([X1, τ(u)])(p

∗s)(u)

+ λ(1)([X2, τ(u)])λ([X1, τ(u)])(p
∗∇γX3

s)(u)

+ λ(1)([X2,Γ(u)·X3]) ◦ λ([X1, τ(u)])(p
∗s)(u)

+ λ(1)([X2, τ(u)]) ◦ λ([X1,Γ(u)·X3])(p
∗s)(u)

− 1
2λ

(2)(X3, τ(u))λ([X1, ad 2
τ(u)X2])(p

∗s)(u)

+ 1
4λ([X1, [ad 2

τ(u)X3, ad τ(u)X2]])(p
∗s)(u)

+ 1
4λ([X1, [τ(u), [ad 2

τ(u)X3,X2]]])(p
∗s)(u)

− 1
2λ([X1, ad 2

τ(u)X2])(p
∗∇γX3

s)(u)

− 1
2λ([X1, [Γ(u)·X3, [τ(u),X2]]])(p

∗s)(u)

− 1
2λ([X1, [τ(u), [Γ(u)·X3,X2]]])(p

∗s)(u)

+ λ(2)([X3, τ(u)])λ([X1, τ(u)])(p
∗∇γX2

s)(u)

− 1
2λ([X1, ad 2

τ(u)X3])(p
∗(∇γX2

s))(u)

+ λ([X1, τ(u)])p
∗(∇γX3

∇γX2
s)(u)

+ λ([X1,Γ(u)·X3])(p
∗(∇γX2

s))(u)

+ λ(2)([X3, τ(u)])λ
(1)([X2, τ(u)])(p

∗∇γX1
s)(u)

− 1
2λ

(1)([X2, ad2
τ(u)X3])(p

∗∇γX1
s)(u)

+ λ(1)([X2, τ(u)])(p
∗(∇γX3

∇γX1
s)(u))

+ λ(1)([X2,Γ(u)·X3])(p
∗(∇γX1

s)(u))

+ λ(2)([X3, τ(u)])(p
∗(∇γ)2s(u))(X1,X2)
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where the horizontal rules indicate the relation to the individual terms in the

second order difference. Collecting the terms without τ we obtain the universal

formula for the third order correction terms.

4.8. Proposition. For each admissible Cartan connection ω, B0-equivariant

section σ for each function s : P0 → Vλ and for all u ∈ σ(P0) we have

((∇ω)3 ◦ p∗ − p∗ ◦ (∇γ)3)s(u)(X,Y, Z) = λ([X, (∇γZΓ)(p(u))·Y ])(s(p(u)))

+ λ([X,Γ(p(u))·Y ])((∇γZs)(p(u))) + λ([X,Γ(p(u))·Z])((∇γY s)(p(u)))

+ (λ(1)([Y,Γ(p(u))·Z])((∇γs(p(u))))(X).

4.9. Higher orders. We have seen that the computation of the full formulae

goes quickly out of hands, but it is algorithmic enough to be a good task for

computers.

Algorithm. The difference F ks := (∇ω)k(p∗s) − p∗((∇γ)ks) is given by the

recursive formula

F 0s(u) = 0

F ks(u)(X1, . . . ,Xk) = λ(k−1)([Xk, τ(u)])(F
k−1s(u))(X1, . . . ,Xk−1)

+ Sτ (F
k−1s(u))(X1, . . . ,Xk−1)

+ S∇(F k−1s(u))(X1, . . . ,Xk−1)

+ SΓ(F k−1s(u))(X1, . . . ,Xk−1)

+ λ(k−1)([Xk, τ(u)])(p
∗((∇γ)k−1s)(u))(X1, . . . ,Xk−1).

This expression expands into a sum of terms of the form

aλ(t1)(β1) . . . λ
(ti)(βi)p

∗(∇γ)js

where a is a scalar coefficient, the β` are iterated brackets involving some arguments

X`, the iterated invariant differentials (∇γ)rΓ evaluated on some arguments X`,

and τ . Exactly the first tj arguments X1, . . . ,Xtj are evaluated after the action of

λ(tj)(βj), the other ones appearing on the right are evaluated before. The individual

transformations in Sτ , S∇ and SΓ act as follows.

(1) The action of Sτ replaces each summand aλ(t1)(β1) . . . λ
(ti)(βi)p

∗(∇γ)js
by a sum with just one term for each occurrence of τ where this τ is

replaced by [τ, [τ,Xk]] and the coefficient a is multiplied by −1/2.

(2) S∇ replaces each summand in F k−1 by a sum with just one term for each

occurrence of Γ and its differentials, where these arguments are replaced

by their covariant derivatives ∇γXk , and with one additional term where

(∇γ)js is replaced by ∇γXk((∇
γ)js).

(3) SΓ replaces each summand by a sum with just one term for each occurrence

of τ where this τ is replaced by Γ(u)·Xk.
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If we want to compute the correction terms in order k, then during the expansion

of F k−` we can omit all terms which involve more then ` occurrences of τ .1

Proof. The algorithm is fully based on Lemma 4.4 and the initial discussion in

4.1. The last term uses just the equivariancy of the (k−1)st covariant differential.

All the other terms correspond exactly to the four groups of terms in Lemma

4.4. Since we have proved already in 4.4 that an application of this lemma brings

always sums of terms with the required equivariancy properties, it remains only

to verify that the rules deduced in 4.4 yield exactly our formulae.

The first two terms are just in the form derived in 4.4. The third one is obtained

by the differentiation of the induced mapping f̃ defined on P0. But this means that

we have to differentiate it like a matrix valued function, i.e. we can first evaluate

in τ ’s and then differentiate them as constants. Since the whole expression is

multilinear in the arguments involving Γ, the final form of the transformation

follows from the chain rule. The fourth term is also precisely that one from 4.4.�

4.10. Let us now consider the sections s ∈ C∞(P, Vλ)
B for an irreducible

B-representation λ as before, another irreducible B-representation space Vµ, and

a linear zero order operator Φ ∈ Hom(⊗kg∗−1 ⊗ Vλ, Vµ)
B0 . Our formula for the

iterated invariant differential yields

Φ ◦ (∇ω)ks = Φ ◦ (∇γ)ks+D0(γ,Γ)s+D1(γ,Γ, τ)s+ · · ·+Dk(γ,Γ, τ)s

where Dj collects just those terms which involve precisely j occurrences of τ .

We call D0 the correction term while Dj , j > 1, are called the obstruction

terms of degree j (they are j-linear in τ). Let us underline, that the correction

terms and the obstruction terms are built by the universal recursive formula based

on 4.4, by means of the same linear mapping Φ. Their values depend on the

initial choice of the equivariant section σ : P0 → P , however they turn out to

be universal polynomial expressions in ∇γ , Γ and τ (but τ itself depends on the

chosen σ). Of course, the composition D = Φ ◦ (∇ω)k is a differential operator

transforming C∞(P, Vλ)
B into C∞(P, Vµ)

B if and only if all obstruction terms

vanish independently of the choice of σ.

Lemma. The obstruction terms D1, . . . , Dk vanish for all choices of equivari-

ant sections σ : P0 → P if and only if the first degree obstruction term D1 vanishes

for all choices of σ.

1Some formulae were computed using MAPLEV3. The number of terms in low order formulae
are

Order 1 2 3 4 5 6
Full formula 1 5 24 134 900 7184
Correction terms 0 1 4 16 67 328
Linear obstruction terms 1 2 8 30 153 830
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Proof. Let us consider a B0-homomorphism Φ: ⊗kg∗−1⊗Vλ → Vµ. The obstruc-

tion terms vanish for all choices of σ if and only if Φ ◦ (∇ω)k(p∗s) is B1-invariant

for all s ∈ C∞(P0, Vλ)
B0 . This is equivalent to the vanishing of the derivative

ζZ(u)·(Φ◦ (∇ω)k)(p∗s) for all Z ∈ g1 and u ∈ P . Let us fix u0 ∈ P and the section

σ : P0 → P with u0 ∈ σ(P0), set γ = σ∗θ0, and let Γ be the (unique) deformation

tensor corresponding to γ̃ and ω. Then each of the obstruction terms is expressed

as

Dj(γ,Γ, τ)s(u) = fj(u) = f̃j(p(u))(τ(u), . . . , τ(u))

where fj(p(u)) ∈ Sjg∗1 ⊗ V is a homogeneous polynomial mapping with values in

Vµ. Of course, f̃j ◦p are constant in the g1 directions and according to our choices

τ(u0) = 0. Now we can compute

ζZ(u0)·(Φ ◦ (∇ω)k(p∗s))

= ζZ(u0)·p
∗(Φ ◦ (∇γ)ks+ f̃0) +

k∑
j=1

ζZ(u0)·((f̃j ◦ p)(τ, . . . , τ))

= (f̃1 ◦ p)(Z)

where the last equality follows from Lemma 4.3. Thus if the first degree obstruction

terms vanishes for all choices of σ, then Φ◦(∇ω)k(p∗s) is B1-invariant as required.�

4.11. Remark. The above calculus for admissible connections gives a unified

way how to compute the variation of an expression given in terms of covariant

derivatives with respect to γ0 and its curvature tensor, caused by the replacement

of γ0 by another connection γ from the distinguished class. Let σ0 and σ be the

B0-equivariant sections corresponding to the connections γ0 and γ. Then there is

the one form Υ ∈ C∞(P0, g1)
B0 defined by σ(u) = σ0(u). exp Υ(u), see 3.6. Now,

we can use the calculus for the admissible Cartan connections to compare the

induced connections γ̃0 and γ̃ and it turns out that the above expansions in terms

of the covariant derivatives and τ ’s yield exactly the variations of the covariant

parts. We shall only comment on these topics here, the details are worked out in

[Slovák 96].

The relation between the covariant derivatives is

∇γs(u)(X) = ∇γ0s(u)(X) + λ([X,Υ(u)]) ◦ s(u), X ∈ g−1, u ∈ P0

while the change of the deformation tensors Γ0 and Γ transforming γ̃0 and γ̃ into

another fixed admissible Cartan connection ω (e.g. the canonical one) is

Γ(u)(X) = Γ0(u)(X)−∇γ0Υ(u)(X)− 1
2 [Υ(u), [Υ(u),X]], X ∈ g−1, u ∈ P0.

For the proof see [Slovák 96, Theorem 1].
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The covariant part of the expansion of (∇ω)ks in terms of the connection γ0 is

(∇γ0)ks +D0(γ0,Γ0)s. In terms of the other connection γ, the evaluation on the

section σ0 yields

(∇ω)kp∗s(σ0(u)) = (∇γ0)ks(u) +D0(Γ0, γ0)s(u) + 0

= (∇γ)ks(u) +D0(Γ, γ)s(u) +D1(Γ, γ,Υ)s(u) + · · ·+Dk(Γ, γ,Υ)s(u).

Thus, the difference of the covariant parts (i.e. the variation of this expression un-

der the change of the underlying connection) is exactly the sum of the obstruction

terms with Υ substituted for τ . The striking consequence of this observation is

that the covariant parts of the expansions of the iterated differentials do not involve

any derivatives of the Υ’s in their variations under the change of the connection.

Moreover, we can apply our formulae to any linear combination D =
∑k
`=1A` ◦

(∇ω)` where the zero order operators A` may be allowed to depend on the curva-

ture of the canonical Cartan connection ω and its iterated invariant derivatives.

Such an expression defines a natural differential operator if and only if all the

obstruction terms vanish. A more detailed discussion based on our recurrence

procedure and 3.10, 3.8, 3.6 shows that we can find all differential operators built

of the covariant derivatives and the curvatures of the underlying connections γ

and independent on the particular choice of γ in this way, see [Slovák 96, The-

orem 2].

Thus, our procedure extends the methods due to Wünsch and Günther (de-

veloped originally for conformal Riemannian manifolds of dimensions m ≥ 4) to

all AHS structures. More discussion on various links to classical methods can be

found in [Slovák 96].

5. Invariant Jets and Natural Operators

In this section we discuss the concepts of natural bundles and natural operators

on manifolds equipped with B-structures. We show how to interpret invariant

derivatives with respect to Cartan connections as sections of bundles, and how

to naturally construct operators from them. Since there are canonical Cartan

connections on the AHS structures, this will lead to natural operators.

5.1. Natural bundles and operators. We shall writeMfm(G) for the cat-

egory of m-dimensional manifolds with almost Hermitian symmetric structures

corresponding to the Lie group G with Lie algebra g = g−1⊕ g0⊕ g1 as defined in

3.4. The morphisms in the categoryMfm(G) are just principal bundle homomor-

phisms which cover locally invertible smooth maps between the bases and preserve

the soldering forms.

For each representation λ : B → GL(Vλ) and each object (P,M, θ) ∈ Mfm(G)

there is the associated vector bundle EλM to the principal bundle P →M defining
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the B-structure on M . This construction is functorial, we obtain the so called

natural vector bundle Eλ on Mfm(G). Classically, one is mainly interested in

representations of the first order part B0, which are trivially extended to the

whole B. We will devote special attention to this case, too.

A natural operator D : Eλ → Eµ between two natural vector bundles is a

system of operators DM : C∞(EλM)→ C∞(EµM) such that for all morphisms f

covering a smooth map f : M → N and sections s1, s2 ∈ C∞(EλM), the right-

hand square commutes whenever the left-hand one does

EλM M EµM

EλN N EµN

s1

Eλf

��

Ds1

f

��
Eµf

��
s2 Ds2

Notice, that the latter definition implies the locality of all operatorsDM . A gen-

eral approach to natural bundles and operators is developed in [Kolář, Michor,

Slovák 93].

These general definitions of natural bundles and natural operators work well for

each category of manifolds with structures of a fixed type, however, in our cases

the naturality requirements are very weak. The reason is, that there are nearly no

morphisms on general manifolds with AHS structures. Thus, a stronger restriction

of the class of operators under study is specified by most authors. Mostly one is

interested in operators built from the distinguished linear connections and their

curvatures by means of the covariant derivatives which are independent of any

particular choice. Such operators are usually called invariant and obviously they

are natural in the above sense.

5.2. The homogeneous case. There is the subcategory Mfflat
m (G) ⊂

Mfm(G) of spaces locally isomorphic to the homogeneous space M = G/B. We

can apply the same definition of the natural operators to this subcategory. Due to

the homogeneity of the objects, each natural operator onMfflat
m (G) is completely

determined by DG/B and the latter is in turn determined by its action on germs

of sections in one point of G/B. The action of the automorphisms of G/B on the

corresponding structure bundle G → G/B is given by the left multiplication by

the individual elements of G. The sections of the bundles Eλ(G/B) are identified

with B-equivariant Vλ-valued functions on G and the induced action of the auto-

morphisms is just the composition of these functions with the left multiplications

by the inverse element. Thus the operators DG/B with the invariance properties

of our natural operators are exactly the so called translational invariant operators,

cf. [Baston 90].

This observation suggests another problem on the invariant operators: What

are the invariant operators whose restrictions to the locally flat spaces coincide

with a given natural operator onMfflat
m (G)?
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The invariant derivatives are manifestly natural operations depending on the

Cartan connection, but they do not map sections of bundles to sections of bundles.

However, we shall build a modification of the standard jet prolongation and this

will lead to operators depending naturally on a Cartan connection which will play

the role of the universal invariant kth order operators.

5.3. The jet prolongation of a representation. As noted above, we would

like to view the invariant derivatives of a section of a natural bundle again as

sections of natural bundles. For the individual derivatives this is impossible, but

we can define some sort of jets. The general idea is to use the invariant differential

to identify the standard first jet prolongation of a natural bundle Eλ with the

associated bundle induced by an appropriate B-representation. In fact, this can

be done in the general setting, where g = g−1⊕b is any Lie algebra, which linearly

splits into the direct sum of an abelian subalgebra g−1 and a subalgebra b. So we

return to the setting of chapter 2 for the next three subsections.

Assume that we have given a principal B-bundle P → M with a Cartan con-

nection ω = ω−1 ⊕ ωb ∈ Ω1(P, g). Moreover assume that λ : B → GL(Vλ) is a

representation of B and s ∈ C∞(P, Vλ) is a smooth map, and consider the smooth

map (s,∇ωs) : P → Vλ ⊕ (g∗−1 ⊗ Vλ). Then for each Z ∈ b, we obtain

ζZ ·(s,∇
ω
Xs) = (Lω−1(Z)s,Lω−1(Z) ◦ Lω−1(X)s)

= (ζZ ·s,∇
ω
X(ζZ ·s) + Lω−1([Z,X])·s),

where we have essentially used the horizontality of the curvature of any Cartan

connection. Assume now that s ∈ C∞(P, Vλ)
B is equivariant. Then ζZ ·s =

−λ(Z) ◦ s and we get

−ζZ·(s,∇
ω
Xs) = (λ(Z) ◦ s, λ(Z) ◦ (∇ωXs)−∇

ω
[Z,X]−1

s+ λ([Z,X]b) ◦ s),

where we have split [Z,X] = [Z,X]−1 + [Z,X]b according to the decomposition

of g.

Thus we define the space J 1(Vλ) := Vλ ⊕ (g∗−1 ⊗ Vλ) and the mapping λ̃ : b ×
J 1(Vλ)→ J 1(Vλ) by the formula

λ̃(Z)(v, ϕ) = (λ(Z)(v), λ(Z) ◦ ϕ− ϕ ◦ ad−1(Z) + λ(ad b(Z)( ))(v))

where ad−1(Z) : g−1 → g−1 is the map X 7→ [Z,X]−1 and λ(ad b(Z)( ))(v) : g−1

→ Vλ is defined by λ(ad b(Z)( ))(v)(X) = λ([Z,X]b)(v).

Lemma. The mapping λ̃ is an action of b on J 1(Vλ). For each b-equivariant

element s ∈ C∞(P, Vλ), the mapping (s,∇ωs) : P → J 1(Vλ) is b-equivariant with

respect to this action.
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Proof. For Z, W ∈ b and (v, ϕ) ∈ J 1(Vλ) we compute:

λ̃(W )λ̃(Z)(v, ϕ) = (λ(W )λ(Z)(v), λ(W ) ◦ λ(Z) ◦ ϕ− λ(W ) ◦ ϕ ◦ ad−1(Z)

+ λ(W ) ◦ λ(ad b(Z)( ))(v) − λ(Z) ◦ ϕ ◦ ad−1(W ) + ϕ ◦ ad−1(Z) ◦ ad−1(W )

− λ(ad b(Z)( ))(v) ◦ ad−1(W ) + λ(ad b(W )( ))(λ(Z)(v))).

Now when forming the commutator of λ̃(W ) and λ̃(Z) the second and fourth term

in the second component do not contribute, so we get

(λ̃(W )λ̃(Z)− λ̃(Z)λ̃(W ))(v, ϕ) = (λ([W,Z])(v), λ([W,Z]) ◦ ϕ+ Φ),

where Φ is the linear map defined by

Φ(X) = λ(W )λ([Z,X]b)(v) − λ(Z)λ([W,X]b)(v) + ϕ([Z, [W,X]−1]−1)

− ϕ([W, [Z,X]−1]−1)− λ([Z, [W,X]−1]b)(v) + λ([W, [Z,X]−1]b)(v)

+ λ([W,X]b)λ(Z)(v) − λ([Z,X]b)λ(W )(v).

Now using the Jacobi identity and the fact that b is a subalgebra while g−1 is

abelian, one immediately verifies that

[[W,Z],X]−1 = [W, [Z,X]−1]−1 − [Z, [W,X]−1]−1

[[W,Z],X]b = [W, [Z,X]b]− [Z, [W,X]b]

+ [W, [Z,X]−1]b − [Z, [W,X]−1]b.

Using this one immediately sees that

Φ(X) = −ϕ([[W,Z],X]−1) + λ([[W,Z],X]b)(v).

The rest of the lemma is a consequence of our definition. �

Thus we can consider the mapping s 7→ (s,∇ωs) as a section of the associated

bundle to P induced by the b-module J 1Vλ.

In fact, the action λ̃ coincides with the canonical action of b on the standard

fiber of the usual first jets of sections of Eλ(G/B) (which also could be used as a

geometrical argument for the proof of the above Lemma). Thus our construction

can be understood as identifications of the standard first jet prolongations J1EλM

with the associated bundles P ×B J 1Vλ, determined by the Cartan connection ω.

The section (s,∇ωs) of this bundle is then called the invariant one-jet of the

section s of EλM .

5.4. The second jet prolongation of a representation. Observe that it is

easy to extend J 1( ) to a functor on the category of b-representations. In fact for a
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homomorphism f : V → W of b-modules we just define J 1(f) : J 1(V )→ J 1(W )

by J 1(f)(v, ϕ) := (f(v), f ◦ ϕ). One easily computes directly that J 1(f) is a

module homomorphism.

Second, it is clear that by projecting onto the first component we get a module

homomorphism J 1(V ) → V , and actually these homomorphisms constitute a

natural transformation between J 1( ) and the identity functor.

Next, let us consider J 1(J 1(V )). There are two natural homomorphism from

this space to J 1(V ): First, we have the above mentioned natural projection,

and second, there is the first jet prolongation of the projection J 1(V ) → V ,

and we define J 2(V ) to be the submodule of J 1(J 1(V )) on which these two

homomorphisms coincide. The underlying vector space of J 1(J 1(V )) is just (V ⊕
(g∗−1⊗V ))⊕g∗−1⊗ (V ⊕ (g∗−1⊗V )) ∼= V ⊕ (g∗−1⊗V )⊕ (g∗−1⊗V )⊕ (g∗−1⊗g

∗
−1⊗V ),

and under this identification J 2(V ) is just the submodule of those elements where

the two middle components are equal. One immediately verifies that J 2( ) is

again a functor and that projecting out the first two components gives a natural

transformation to J 1( ).

5.5. Higher jet prolongations. We can iterate the above procedure as fol-

lows: Suppose we have already constructed functors J i( ) for i ≤ k such that

J i(V ) is a submodule in J 1(J i−1(V )) and such that for each i there is a natu-

ral transformation J i( ) → J i−1( ) induced by the projection J 1(J i−1(V )) →
J i−1(V ), i.e. by the natural transformation from J 1( ) to the identity.

Then consider J 1(J k(V )) for some module V . We have two natural homomor-

phisms J 1(J k(V )) → J 1(J k−1(V )), namely the natural projection J 1(J k(V ))

→ J k(V ) followed by the inclusion of the latter space into J 1(J k−1(V )) and

the first jet prolongation of the natural map J k(V ) → J k−1(V ), and we define

J k+1(V ) to be the submodule where these two module homomorphisms coin-

cide. Moreover for a module homomorphism f : V → W we define J k+1(f) as

the homomorphism induced by J 1(J k(f)). Finally, from the obvious projection

J k+1(V )→ J k(V ) we clearly get a natural transformation J k+1( )→ J k( ).

Also by induction, it is easy to see that as a vector space we always have

J k(V ) ∼= ⊕ki=0(⊗
ig∗−1 ⊗ V ). Moreover starting from Lemma 5.3 it is again clear

by induction that for any B-equivariant function s : P → V and any Cartan con-

nection ω on P , the mapping

jkωs := (s,∇ωs, . . . , (∇ω)ks) : P → J k(V )

is equivariant, too. This map is called the invariant k-jet of s with respect

to ω.

5.6. The AHS case. Since g = g−1 ⊕ g0 ⊕ g1, there are a few simplifications

in the construction of the jet prolongations. First of all for A ∈ g0 we clearly
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have ad b(A) = 0, while for Z ∈ g1 we have ad−1(Z) = 0, so the action on the

first jet prolongation becomes easier for each case. In particular, we see that in

fact the action of g0 is just the tensorial one. Thus, the isomorphism J k(V ) ∼=
⊕ki=0(⊗

ig∗−1 ⊗ V ) is not only an isomorphism of vector spaces but also of g0-

modules.

Moreover, in this case we have the additional information that the group B is

the semidirect product of the contractible subgroup B1 and the subgroup B0. If

we start with a B-representation and form the first jet prolongation of the corre-

sponding b-representation, then this will always integrate to a B-representation.

This is due to the fact that the restriction to g1 integrates by contractibility of B1,

while the action of g0 is the tensor product of the original action with the adjoint

action, and both of these integrate.

Therefore in this case, for each representation λ : B → GL(Vλ) we obtain

the jet prolongations J k(λ) : B → GL(J k(Vλ)). This in turn implies that for

each natural bundle Eλ on Mfm(G) there is the natural bundle J k(Eλ). By

the construction, this bundle coincides with the so called kth semi-holonomic jet

prolongation of Eλ.

5.7. There is now a simple procedure how to use the invariant jets with respect

to a Cartan connection for the constructions of differential operators. Suppose that

λ : B → GL(Vλ), is a representation of B, and suppose that for some k and another

such representation µ on Vµ, there is a B-equivariant (even nonlinear) mapping

Φ: J k(Vλ) → Vµ. Now, for each P → M with a Cartan connection ω, we can

define a k-th order differential operator DM : C∞(EλM)→ C∞(EµM) by putting

DM (s)(u) := Φ(jkωs(u)) ∀s ∈ C∞(P, V )B, u ∈ P.

The associated bundles EλM , EµM are functorial in P →M , and so by the con-

struction the operators defined in this way intertwine the actions of all morphisms

of the B-structures on the sections, which preserve the Cartan connections. In

particular, if there is a canonical Cartan connection, which is preserved under the

action of all morphisms, then the operator constructed in this way will be natural.

More generally, one can also interpret these operators as natural operators which

also depend on the Cartan connections, but we will not work out this point of

view here.

5.8. Let us discuss in more detail now, how to find the b-module homomor-

phisms Φ: J kVλ → Vµ for irreducible representations λ and µ of B0 on Vλ
and Vµ, viewed as irreducible representations of b. Let us recall that J k(V ) =

⊕ki=0(⊗
ig∗−1 ⊗ V ) as g0-module.
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Lemma. Let π : J k(Vλ)→ ⊗kg∗−1⊗Vλ be the g0-homomorphism corresponding

to the decomposition of J k(Vλ) and let Φ: J kVλ → Vµ be a g0-module homomor-

phism whose restriction to ⊗kg∗−1 ⊗ V ⊂ J kVλ does not vanish. Then Φ is a

b-module homomorphism if and only if it factors through π and Φ vanishes on the

image of ⊗k−1g∗−1 ⊗ Vλ ⊂ J
k(Vλ) under the action of b1.

Proof. Let I be a generator of the center of g0. Then by Schur’s lemma I
acts by a scalar on every irreducible representation of g0. Moreover, for the ad-

joint representation these scalars are just given by the grading. Now the action

of g0 on each of the components πki (J
k(Vλ)) is the tensorial one, so I acts by

different scalars on each of them. Moreover, any g0-module homomorphism Φ

defined on the top part of J k(Vλ) is a b-module homomorphism if and only if Φ is

g1-invariant. �

5.9. Lemma. The action of an element Z ∈ g1 on Y1 ⊗ · · · ⊗ Yk−1 ⊗ vk−1 ∈
⊗k−1g∗−1 ⊗ Vλ ⊂ J

kVλ yields

k−1∑
i=0

(∑
α

Y1 ⊗ · · · ⊗ Yi ⊗ ηα ⊗
(
[Z, ξα].(Yi+1 ⊗ · · · ⊗ Yk−1 ⊗ vk−1)

))
∈ ⊗kg∗−1 ⊗ Vλ

where ηα and ξα are dual bases of g1 and g−1 with respect to the Killing form and

the dot means the canonical action of the element in g0 on the argument.

Proof. The statement follows easily from the definition of J kVλ by induction

on the order k. �

5.10. Remark. A reformulation of the preceding Lemma reads: A g0-module

homomorphism Φ: ⊗k g∗−1 ⊗ V →W can be considered as a b-module homomor-

phisms J k(Vλ)→ Vµ if and only if

Φ

( k∑
i=1

λ(i−1)([Z,Xi])ψ(X1, . . . ,Xi−1,Xi+1, . . . ,Xk)

)
= 0

for all elements ψ ∈ ⊗k−1g∗−1 ⊗ V , all X1, . . . ,Xk ∈ g−1, and all Z ∈ g1.
This expression can be also found among the obstruction terms in the expansion

of the kth iterated invariant differential (∇ω)k. Indeed, the linear obstruction

terms involve in particular the terms with highest order derivatives of the section,

i.e. those of order k − 1 in s, and a simple check shows that they are of the above

form. Let us call this part the algebraical obstruction term. Now, the above

Lemma implies that if this algebraical obstruction vanishes ‘algebraically’, i.e.

before substitution of the values of the invariant jets, then all other obstruction

terms vanish as well and we have got a natural operator in this way.
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Once we have a correspondence between the b-module homomorphisms of the

jets and the natural operators, we should try to extend the algebraic methods

leading to the well known classification of all linear natural operators on the locally

flat spaces to the general setting. We shall come back to this point in the third

part of this series. A more straightforward generalization of the Verma module

technique can be found in the forthcoming paper [Eastwood, Slovák].

An important observation is, that not all operators are created in such an

algebraic way, there are also examples of operators where the algebraic obstruction

does vanish only after the substitution of the invariant jets. The simplest example

is the second power of the Laplacian on four dimensional conformal Riemannian

manifolds. A more detailed discussion on such cases can be found in [Eastwood,

Slovák].

6. Remarks on Applications

6.1. Let us indicate now in more detail how the theory developed so far applies

to the study of natural operators. The simplest possibility is the one discussed in

the end of the previous section:

(1) Starting with irreducible representations λ and µ of B, we consider all the

compositions Φ ◦ (∇ω)k, where Φ: ⊗k g∗−1 ⊗ Vλ → Vµ is g0-equivariant

and linear.

(2) Such an expression yields a differential operator on sections if and only

if Φ ◦ (∇ω)ks is B1-invariant for each s ∈ C∞(P, Vλ)
B . In view of the

expansion of the iterated differential in terms of the underlying connec-

tions, this is equivalent to the vanishing of the linear obstruction terms

after substitution of the invariant jets. Moreover, the algebraic vanishing

of the algebraic obstruction terms suffices, see 4.10 and 5.10.

(3) There are the canonical Cartan connections ω on all manifolds with AHS

structures and so the differential operators obtained in (2) using these are

natural.

(4) If we choose a linear connection γ in the distinguished class, then there is

the unique deformation tensor Γ transforming the induced Cartan connec-

tion γ̃ into the canonical one. Thus the formulae from Section 4 express

the natural operators by means of the covariant derivatives and curvatures

of the linear connection γ.

The general construction of the canonical connection ω and the deformation ten-

sors Γ are postponed to the next part of the series. However, in order to have some

concrete examples, we present the computations in the conformal Riemannian case

below.
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6.2. Conformal Riemannian structures. The existence of the principal

bundle P → M with a canonical Cartan connection is well known in the confor-

mal case, see [Kobayashi 72]. But we prefer to present an explicit construction

here to illustrate the links of our concepts and formulae to the the classical ap-

proach.

Let us start with a manifold M of dimension m ≥ 3 equiped with a con-

formal class of Riemannian metrics or equivalently with a reduction of the first

order frame bundle P 1M to the group B0 = CSO(m) ' SO(m) o R. Any met-

ric in the conformal class has its Levi-Cività connection, which is torsion free.

There is a bijective correspondence between torsion-free connections on M and

GL(m)-equivariant sections of P 2M → P 1M , see [Kobayashi 72, Proposi-

tion 7.1]. Our group B can be viewed as a subgroup of G2
m, see Lemma 3.2. It

turns out that the orbit of the images of the Levi-Cività connections under the

group B coincide, and actually give a reduction of P 2M to the group B, and thus

a torsion free B-structure on M by 3.5.

If we start with a reduction ϕ : P0 → P 1M in the sense of 3.2 to the group

B0 = Spin(m)o R then one can still construct a subbundle P̃ of P 2M as above,

and P := ϕ∗P̃ is again a torsion free B-structure with the induced soldering form.

Thus we can include the Spin representations in our approach.

To obtain a canonical Cartan connection on such B-structures we proceed as

follows: The values of the g0-component κ0 of the curvature function κ of a Cartan

connection ω can be viewed as elements in g∗−1⊗g
∗
−1⊗g

∗
−1⊗g−1, cf. 3.1(2). There

are three possible evaluations in the target space. The evaluation over the last

two entries is just the trace in g0, the other two possibilities coincide up to a sign

since κ is a two form.

Definition. The trace of the curvature κ0 is the composition of κ0 with the

evaluation over the first and the last entry. A normal Cartan connection

ω ∈ Ω1(P, g) is an admissible connection with a trace-free curvature κ0.

The general obstruction to the existence of a normal Cartan connection is in

certain cohomology group, we shall not discuss this point here, cf. [Ochiai 70],

[Baston 90]. But we shall use the formula 3.10(4) for the deformation of the

curvature in order to compute explicitly the necessary deformation tensor Γ for a

given admissible connection. It turns out that the result is uniquely determined

by the initial data.

6.3. We have to use a coordinate notation for the values of Γ and κ0 in order

to handle the proper evaluations in the trace. So let ei be the standard basis

of the vector space g−1, e
i the standard dual basis in g∗−1 and eij the standard

basis of g∗−1 ⊗ g−1. Note that the bases ei and ei are in fact dual with respect

to the Killing form, up to a fixed scalar multiple. Then Γ(u)(ei) =
∑
j Γji(u)·ej ,
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κ0(u)(ei, ej) =
∑
k,lK

k
lij(u)·e

l
k. In the sequel, we shall not always indicate ex-

plicitly sums over repeated indices. If we restrict the manipulations with these

symbols to permutations of indices, contractions and similar invariant tensorial

operations, our computations will be manifestly independent of the choice of the

basis. In particular, the trace of κ0 is expressed by the functions Ki
lij.

The brackets of the generators of so(m,R), m > 2, are computed easily from

the block-wise representation in 3.3:

[ei, e
j ] = eji − e

i
j + δji Im, [eij, ek] = δikej

where Im stands for the unit matrix. Now we evaluate the formula for the defor-

mation κ̄0 − κ0 =: δ(Kk
lij) of the curvature caused by a choice of Γ, see 3.10(4).

[Γ·ej , ei]− [Γ.ei, ej] =
∑
p Γpj(−e

p
i + eip − δ

i
pIm)−

∑
p Γpi(−e

p
j + ejp − δ

j
pIm)

= (−Γkjδ
l
i + Γljδ

i
k − Γijδ

l
k + Γkiδ

l
j − Γliδ

j
k + Γjiδ

l
k)e

k
l

Thus, the deformation of the trace achieved by Γ is

δ(Kl
klj) = (m− 3)Γkj + Γjk + δkj

∑
i Γii

δ(Kk
kij) = m(Γji − Γij)∑

j δ(K
i
jij) = 2(m− 1)

∑
i Γii.

We need the third ‘contraction’ for technical reasons.

Now, assume first we have two normal Cartan connections and let Γ be the

corresponding deformation tensor. Since the torsion is zero, the Bianchi identity

shows that for any normal Cartan connection, not only the trace defined in 6.2

but also the trace inside g0 vanishes. Thus the resulting deformation of all three

contractions above must be zero. So in particular,
∑
i Γii = 0 and the functions

Γij are symmetric in i, j. But then the first equation yields 0 = (m− 2)Γlj . Thus

if there is a normal Cartan connection, it is unique.

Let γ be the Riemannian connection of an arbitrary metric from the conformal

class on M . Then it induces an admissible connection γ̃ on P , see 3.8. Moreover,

the g0-component of the curvature of the induced connection is just the pullback

of the Riemannian curvature to P . Let us try to deform γ̃ by means of symmetric

functions Γij .

The deformation is expressed above in the form Tr(κ0 − κ̄0), where κ̄0 is the

‘new one’. Thus we have just to solve the above equations with respect to Γ with

δ(Kk
lij) replaced by −Rklij, the Riemannian curvature. We obtain easily

(1) Γij =
−1

m− 2

(
Rij −

δij

2(m− 1)
R

)
,

where Rij and R are the pullbacks of the Ricci tensor and the scalar curvature to

P (expressed in the frame form, i.e. as functions on P ). Let us notice that the

above deformation tensor Γ is exactly the so called ‘rho-tensor’ used extensively

in conformal geometry because of its ‘beautiful transformation properties’.

Altogether we have reproved, even for conformal Spin structures:
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6.4. Theorem. Let M be a connected smooth manifold, dimM ≥ 3, with a

conformal structure P0 → M . Then there is a unique normal Cartan connection

ω on P →M which is expressed by means of any Riemannian connection γ from

the conformal class by the formula ω = γ̃ − Γ ◦ θ−1 with Γ defined by 6.3(1).

6.5. Operators on locally flat manifolds. Now we can apply the canonical

normal Cartan connections in the construction from 5.7. In view of the next

lemma, this procedure yields at least all natural operators ‘visible’ on the locally

flat manifolds.

Let us fix two representations λ and µ of B0 and let Eλ and Eµ be the corre-

sponding natural bundles on the manifolds with the conformal (Spin) structures.

Further let us consider the locally flat structures P → P0 → M . This means,

we assume that there are (locally defined) connections in the distinguished class

with vanishing curvature, or equivalently, P → M is locally isomorphic to the

homogeneous space G→ G/B.

Lemma. Suppose that the family of operators DM : C∞(EλM) → C∞(EµM)

is a natural operator on the category of locally flat conformal (Spin) structures

and let Π ◦ (∇γ)k be its expression in the (locally defined) flat connection γ in the

distinguished class on M . Then the operator D̃ = Π ◦ (∇ω)k defined by means of

the invariant differential with respect to the unique normal Cartan connection ω

on P → M transforms B-equivariant functions into B-equivariant functions and

equals to DM .

Proof. Since the operator D is natural, DM : C∞(PM,Vλ) → C∞(PM,Vµ)

commutes with the induced action of the morphisms which is given by the com-

position with the inverses. On the other hand, D̃ commutes with these actions

as well and since the structure in question is locally flat, the automorphisms of

P → M act transitively. Thus, if we show that D̃ coincides on PM with DM in

one point of PM , then they must coincide globally. But if we choose a flat local

connection γ and the corresponding (local) B0-equivariant section σ : P0 → P ,

then the unique normal Cartan connection ω equals to the induced admissible

Cartan connection γ̃, in particular the corresponding deformation tensor Γ is zero.

Thus, according to the preceding section, the iterations of the invariant derivative

with respect to ω and the pullbacks of the iterations of the covariant derivative

with respect to γ coincide on σ(P0). In particular, the operator D̃ transforms

sections into sections. �

6.6. Remark. By virtue of the general theory of natural operators on Rie-

mannian manifolds, the naturality assumption in the previous lemma means just

that the operator D is defined by a universal expression in terms of the under-

lying Riemannian connections in the conformal class, see e.g. [Kolář, Michor,
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Slovák 93]. Thus our result shows that the ‘conformally invariant operators’ in

the usual sense (see e.g. [Branson 82], [Wünsch 86], [Baston, Eastwood 90])

are all obtained by our procedure, at least in the conformally flat case. Moreover,

if we allow more general linear combinations of the iterated invariant differential

(involving the iterated invariant differentials of the Weyl curvature in dimensions

m ≥ 4, or the invariant differentials of the Cotton-York tensor for m− 3), then we

can achieve all the invariant operators mentioned above, cf. Remark 4.11.

Furthermore, the lemma is not restricted to linear operators, on the contrary,

the same arguments apply if the expression for the operator DM is a polynomial

in the covariant derivatives.

6.7. Examples. To illustrate the use of the general formulae, let us consider

now some special cases. As before, we shall restrict the attention here to the

conformal case.

Consider an irreducible representation λ : B0 → GL(Vλ) and let us write λ′ for

its restriction to the semisimple part of B0. Each λ is given by λ′ and the scalar

action of the center. On the Lie algebra level this means λ(Im)(v) = −w·v. The

scalar w is called the conformal weight of λ.

According to the above discussion, if there is a g0-homomorphism Φ : ⊗kg∗−1 ⊗
Vλ → Vρ onto an irreducible representation Vρ such that Φ ◦ (∇ω)k is a natural

operator then the formulae obtained in Section 4 yield its expression by means of

a universal formula in terms of the underlying linear connections. Recall that we

denoted by Γ the deformation tensor determined by a choice of a metric in the

conformal class.

We shall look first at the second order operators. For each irreducible represen-

tation Vλ of B0, the tensor product g∗−1⊗Vλ decomposes uniquely into irreducible

representations Vρ (i.e. there are no multiplicities in the decomposition), see e.g.

[Fegan 76]. Let us write Id =
∑
ρ π

λρ for this decomposition.

Let Vλ be an irreducible representation of g0 and let πλρσ be a projection of

⊗2g∗−1 ⊗ Vλ onto an irreducible representation Vσ given by πλρσ(Z1 ⊗ Z2 ⊗ s) =

πρσ[Z1⊗(πλρ(Z2⊗s))]. Lemma 5.9 gives a possibility to prove that πλρσ ◦(∇ω)2 is

a natural operator for certain choices of λ, ρ and σ, and Proposition 4.6 is saying

that the natural operator can be written (using the underlying linear connections)

as πλρσ{(∇γ)2+λ([X,Γ.Y ])}s. This is a universal formula valid for any dimension,

any representation and any projection (even for the other structures, not only for

the conformal one).

Choosing a specific representation, the formula can be simplified further. Let

us consider now for simplicity the case of an even dimension m = 2k and let

ei, i = 1, . . . ,m be weights of the representation g1.

1. Let us discuss a simple example — second order operators acting on functions

(having possibly a conformal weight). Hence let λ′ = 0 be the heighest weight of
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the trivial representation Vλ′ = C and w its conformal weight. The tensor product

⊗2g∗−1 ⊗ Vλ decomposes into three irreducible parts, namely S2
0(g∗−1) (symmetric

traceless tensors), the trivial representation and Λ2(g∗−1). Let π1, π2, π3 denote the

corresponding projections.

We can use now the algebraic conditions discussed in 5.9. So ξα, resp. ηα are

dual bases in g−1, resp. g1. We have to consider elements of the form∑
α

{ηα ⊗ [Z, ξα]·(Y ⊗ v) + Y ⊗ ηα ⊗ [Z, ξα]·v}

=
∑
α

{ηα ⊗ ([[Z, ξα], Y ]⊗ v) + wηα ⊗ Y ⊗ ξα(Z)v + wY ⊗ ηα ⊗ ξα(Z)v} .

Using [[Z, ξα], Y ] = −〈Z, Y 〉ηα + ξα(Z)Y + ξα(Y )Z and
∑
α ξα(Z)ηα = Z, we get

(w + 1)[Z ⊗ Y ⊗ v + Y ⊗ Z ⊗ v]− 〈Z, Y 〉

(∑
α

ηα ⊗ ηα ⊗ v

)
.

The traceless piece of the sum is the traceless part of the first summand, while the

trace part of the sum is(
2

m
(w + 1)− 1

)
〈Z, Y 〉

(∑
α

ηα ⊗ ηα ⊗ v

)
.

Consequently, π1◦(∇ω)2 is an invariant operator for w = −1, π2◦(∇ω)2 is invariant

for w = m−2
2 and π3 ◦ (∇ω)2 is invariant for any value of w.

We can now compute the form of those three invariant operators.

2. Let λ′ = 0, w = −1, let ρ′ = e1, σ′ = 2e1, so πλρσ = π1. Note that [ek, e
i] =

eik − e
k
i + δikIm; the semisimple part of g0 is acting trivially and

λ([X,Γ.Y ])s = (−w)〈ΓY,X〉s.

Hence the invariant operator can be written as

π1[(∇
γ
a∇

γ
b + Γab)s] = [∇γ(a∇

γ
b)0

+ Γ(ab)0 ]s,

where the brackets indicate the symmetrization and the subscript 0 means the

trace free part.

3. Let λ′ = σ′ = 0, ρ′ = e1;w = m−2
2 then λ([X,Γ.Y ])s = 2−m

2

∑
ij ΓijX

jY i.

The corresponding projection π2 is here just the trace and we can express the

operator π2 ◦ (∇ω)2 in a more standard form using

Tr

{
2−m

2

[
−1

m− 2

(
Rab −

δab

2(m− 1)
R

)]}
=

m− 2

4(m− 1)
R,
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where we used formula 6.3.(1). Hence we get the conformally invariant Laplace

operator

π2 ◦ (∇ω)2 = gab∇γa∇
γ
b +

m− 2

4(m− 1)
R.

This is an example of a so called nonstandard operator.

4. Let λ′ = 0, ρ′ = e1, σ′ = e1+e2. Then πλρσ is the projection to Λ2(g∗−1)⊗V0;

i.e. the antisymmetrization. The tensor Γ is symmetric, so

π3 ◦ (∇ω)2 = ∇γ[a∇
γ
b].

Hence we have got a zero order operator in this case given by the action of the

curvature. In this case, however, it is the trivial operator, due to the fact that the

action of g0 on V0 is trivial. But it shows a possibility that for more complicated

representations Vλ, (e.g. for one forms), we could get in such a way nontrivial zero

order action by the curvature.

5. To have a more complicated example, let us consider a simple third order

operator. Take λ′ = 0, ρ′ = e1, σ′ = 2e1 and τ ′ = 3e1. The projection πλρστ

is uniquely defined by iterated projections to factors having the corresponding

highest weights. The projection πλρστ is the projection to the traceless part of the

third symmetric power.

We can now repeate the computation described in Example 1. The projection

πλρστ factorizes through the projection to S3(g∗−1) ⊗ Vλ, hence the order of the

factors is irrelevant, moreover πλρστ kills all trace terms. Hence all elements used

in Lemma 5.9 have the form

3(w + 2)Z ⊗ Y1 ⊗ Y2 ⊗ v.

The choice w = −2 anihilates them all and for this value of conformal weight, we

get a conformally invariant operator.

Proposition 4.8 describes the form of the correction terms. Due to the fact that

action of the orthogonal group is trivial, we get for the first term

λ([X, (∇γZΓ)·Y ])s = 2(∇γ(aΓbc)0)s.

The next two terms λ([X,Γ·Y ])(∇γZs)+λ([X,Γ·Z])(∇γY s) lead (due to symmetriza-

tion) to the term 4Γ(ab∇
γ
c)0
s. The last term

(λ(1)([Y,Γ·Z])(∇γs))(X)

can be written as λ([Y,Γ·Z])(∇γs)(X) +∇γ [X, [Y,Γ·Z]]s.

Using [X, [Y,Γ·Z]] = 〈X,Y 〉Γ·Z − 〈X,Γ·Z〉Y − 〈Γ·Z, Y 〉X, we see that the first

term on the right hand side will disappear due to the projection to the traceless
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part and the other two will cancel the contribution coming from the previous term

λ(. . . ). Hence we get the operator

∇γ(a∇
γ
b∇

γ
c)0
s+ 4Γ(ab∇

γ
c)0
s+ 2(∇γ(aΓbc)0)s.

The examples shown above illustrate possibilities of our approach to construct

and to compute the form of invariant operators. To make computation effective

for a general representations, it is necessary to use appropriate Casimir operators.

In the next part of the series, we shall use this approach to describe explicitely the

broad family of the so called standard operators for all AHS structures.

References

Bailey T. N. and Eastwood M. G., Complex paraconformal manifolds: their differential geometry
and twistor theory, Forum Math. 3 (1991), 61–103.

Bailey T. N., Eastwood M. G. and Gover A. R., Thomas’s structure bundle for conformal,
projective and related structures, Rocky Mountain J. 24 (1994), 1191–1217.

Bailey T. N., Eastwood M. G. and Graham C. R., Invariant theory for conformal and CR
geometry, Annals of Math. 139 (1994), 491–552.

Baston R. J., Verma modules and differential conformal invariants, J. Differential Geometry 32
(1990), 851–898.

, Almost Hermitian symmetric manifolds, I: Local twistor theory; II: Differential invari-
ants, Duke Math. J. 63 (1991), 81–111, 113–138.

Baston R. J. and Eastwood M. G., Invariant operators, Twistors in mathematics and physics,
Lecture Notes in Mathematics 156, Cambridge University Press, 1990.

Boe B. D. and Collingwood D. H., A comparison theory for the structure of induced representa-
tions I., J. of Algebra 94 (1985), 511–545.

, A comparison theory for the structure of induced representations II., Math. Z. 190
(1985), 1–11.

Branson T. P., Conformally covariant equations on differential forms, Communications in PDE
7 (1982), 392–431.

, Differential operators canonically associated to a conformal structure, Math. Scand. 57
(1985), 293–345.

, Second-order conformal covariants I., II., Kobenhavns universitet matematisk institut,

Preprint Series, No. 2, 3, (1989).
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