ACTA MATHEMATICA UNIVERSITATIS COMENIANAE 
 
Vol. 66,   2   (1997) 
pp.   151-201
 
NONDEGENERATE INVARIANT BILINEAR FORMS ON NONASSOCIATIVE ALGEBRAS 
 
M. BORDEMANN 
Abstract. 
A bilinear form $f$ on a nonassociative algebra $A$ is said to be invariant iff $f(ab,c) = f(a,bc)$ for all $a,b,c \in A$. Finite-dimensional complex semisimple Lie algebras (with their Killing form) and certain associative algebras (with a trace) carry such a structure. We discuss the ideal structure of $A$ if $f$ is nondegenerate and introduce the notion of $T$-extension of an arbitrary algebra $B$ (i.e. by its dual space $B$) where the natural pairing gives rise to a nondegenerate invariant symmetric bilinear form on $A:= B\oplus B$. The $T$-extension involves the third scalar cohomology $H^3(B,\field)$ if $B$ is Lie and the second cyclic cohomology $HC^2(B)$ if $B$ is associative in a natural way. Moreover, we show that every nilpotent finite-dimensional algebra $A$ over an algebraically closed field carrying a nondegenerate invariant symmetric bilinear form is a suitable $T$-extension. As a Corollary, we prove that every complex Lie algebra carrying a nondegenerate invariant symmetric bilinear form is always a special type of Manin pair in the sense of Drinfel'd but not always isomorphic to a Manin triple. Examples involving the Heisenberg and filiform Lie algebras (whose third scalar cohomology is computed) are discussed. 
AMS subject classification. 
15A63, 17B30, 17B56, 18G60; Secondary 16D25, 17A01, 17A30 
Keywords. 
   Download:         Adobe PDF         Compressed  Postscript
         Compressed  Postscript   
     
      
 Acta Mathematica Universitatis Comenianae
 Institute of Applied
Mathematics 
Faculty of Mathematics,
Physics and Informatics
 Comenius University
842 48 Bratislava, Slovak Republic  
Telephone: + 421-2-60295111 Fax: + 421-2-65425882 
 
e-Mail: amuc@fmph.uniba.sk
   Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE