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SUBASSOCIATIVE ALGEBRAS

A. CEDILNIK

Abstract. An algebra is subassociative if the associator [x, y, z] of any three el-
ements x, y, z is their linear combination. In this paper we prove that any such
algebra is Lie-admissible and that almost any such algebra is proper in the sense
that there exists an invariant bilinear form A for which there holds the following
identity: [x, y, z] = A(y, z)x−A(x, y)z, which enables a close connection with asso-
ciative algebras. We discuss also the improper subassociative algebras.

1. Introduction

In certain algebras, it happens that some (sometimes all) associators [x, y, z] :=

(xy)z − x(yz) are linear combinations of their arguments. Simple, but important

examples can be found in [2, Proposition 2.1(v), (vi), (viii)]. In the same article

there is also a discussion of anticommutative algebras which meet the requirement

[x, y, y] = −[y, y, x] = F (x, y)y − F (y, y)x

with F a bilinear form. This identity holds, for example, in every central sim-

ple non-Lie Maltsev algebra over a field of characteristic 6= 2, 3 (which has finite

dimension (Filippov), more precisely, this dimension is 7 (Kuzmin)). An algebra

whith this identity should be in the style of Definition 1 called subalternative

and we expect that it has very special properties even without supposition of an-

ticommutativity. We believe these properties worthy of special research and the

first step should be the present article, where we discus subassociative algebras

(in which all associators are linear combinations of their arguments).

Throughout will be a commutative field of characteristic chr . We shall use

two special symbols: a subset S of a linear space spans the subspace lin S, and a

subset T of an algebra generates the subalgebra alg T .

Definition 1. Let H be an algebra over with multiplication (x, y) 7→ xy. H

is a subassociative algebra, if the associator of any three elements from H is

their linear combination: ∀(x, y, z) ∈ H3 ∃(α, β, γ) ∈ 3 :

(1) [x, y, z] = αx+ βx+ γz .
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Examples 2.

(i) Any associative algebra is subassociative.

(ii) 3 with the usual vector product (x, y) 7→ x ∧ y and inner product (x, y) 7→
〈x, y〉 is a subassociative algebra since

(2) (x ∧ y) ∧ z − x ∧ (y ∧ z) = 〈x, y〉z − 〈y, z〉x .

(iii) Let H be any linear space over and U, V : H → linear functionals. If we

define for every (x, y) ∈ H2

(3) xy := U(y)x+ V (x)y ,

we find out that H with this multiplication is a subassociative algebra:

(4) [x, y, z] = U(y)V (x)z − U(z)V (y)x .

(iv) We can generalize the previous case introducing two properties, noting P, Q:

if H is an algebra with the property

(P) ∀(x, y) ∈ H2 ∃(α, β) ∈ 2 : xy = αx+ βy ,

then H is a subassociative algebra of the following kind:

(Q) ∀(x, y, z) ∈ H3 ∃(π, ρ) ∈ 2 : [x, y, z] = πx+ ρz .

Definition 3. Let H be an algebra over with multiplication (x, y) 7→ xy and

suppose that there exists such a bilinear form A : H2 → that

(5) [x, y, z] = A(y, z)x−A(x, y)z

for any (x, y, z) ∈ H3. Then we call H a proper subassociative algebra.

Using (9) in the fourth section it is easy to prove the following identity con-

cerning the form A from (5):

(6) A(xy, z) = A(x, yz) .

Examples 4. The first three cases in Examples 2 are proper subassociative

algebras.

In (i): A = 0.

In (ii): A(x, y) = −〈x, y〉.
In (iii): A(x, y) = −U(y)V (x).

The case (iv) will be discussed later.

The next proposition shows how we can make a proper subassociative algebra

from any associative algebra with unit.
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Proposition 5. Let G be an associative algebra with multiplication (a, b) 7→ a∗b
and with unit e. Further let P : G→ be a linear functional and P (e) = 1. Define

in H := Ker P a new multiplication

(x, y) 7→ xy := x ∗ y −A(x, y)e ,

where A(x, y) := P (x ∗ y). Then H is a proper subassociative algebra and A the

bilinear form from Definition 3.

The proof is straightforward, as is the proof of the opposite proposition:

Proposition 6. Let H be a proper subassociative algebra from Definition 3,

and G := e⊕H, where e /∈ H. Introduce in G a new multiplication

(αe+ x, βe+ y) 7→ (αe+ x) ∗ (βe+ y) := (αβ +A(x, y))e+ αy + βx+ xy .

G with this multiplication is an associative algebra with unit e.

Since we shall prove that almost all subassociative algebras are proper, Propo-

sitions 5 and 6 justify the name “subassociative”.

2. Two Lemmas

In order to prove that subassociative algebras are usually proper we shall need

two lemmas.

Suppose that n ∈ + and L is a linear space over , dimL ≥ n, and let

R : Ln → L be an n-linear map with the property:

∀(x1, . . . , xn) ∈ Ln ∃(α1, . . . , αn) ∈
n : R(x1, . . . , xn) =

n∑
j=1

αjxj .

If n = 1, it is easy to see that there exists one and only one constant ρ ∈ such

that

∀x ∈ L : R(x) = ρx .

Therefore we shall suppose n ≥ 2.

Lemma 7. Let L, n,R be as before and also dimL > n or 6= 2 = {0, 1}.
Then for each j = 1, . . . , n there exists a unique multilinear map Aj : L

n−1 →
such that the equation

R(x1, . . . , xn) =
n∑
j=1

Aj(x1, . . . , x̂j , . . . , xn)xj

holds identically. Here x̂j designates the absence of j-th argument.
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Proof. Let x1, . . . , xn−1 be any n − 1 elements from L and M := lin {x1, . . . ,

xn−1}. Take xn, x
′
n /∈M .

R(x1, . . . , xn−1, xn) =
n−1∑
j=1

αjxj + αnxn ,(∗)

R(x1, . . . , xn−1, x
′
n) =

n−1∑
j=1

βjxj + βnx
′
n ;(∗∗)

n−1∑
j=1

(αj − βj)xj + αnxn − βnx
′
n = R(x1, . . . , xn−1, xn − x

′
n) .

In short, there are such δ ∈ and y ∈M that

αnxn − βnx
′
n = y + δ(xn − x

′
n) ,

(βn − δ)x
′
n = (αn − δ) xn − y .

If αn−δ = 0 or βn−δ = 0, it follows immediately: αn = βn. Suppose the opposite,

i.e. x′n = ϕxn + ψy (ϕ 6= 0) and use (∗∗):

ϕR(x1, . . . , xn−1, xn) + ψR(x1, . . . , xn−1, y) =
n−1∑
j=1

βjxj + βnϕxn + βnψy .

Considering (∗) we get: ϕαn = βnϕ and αn = βn.

(Remark. This part of the proof will be needed once again later for the first

argument of R).

But what if x′n =
n−1∑
j=1

γjxj ∈M? Then we can always write:

R(x1, . . . , xn−1, x
′
n) =

n−1∑
j=1

(βj + βnγj − αnγj)xj + αnx
′
n .

Therefore, αn is independent of xn and uniquely determined by x1, . . . , xn−1:

R(x1, . . . , xn−1, xn) =
n−1∑
j=1

αjxj +An(x1, . . . , xn−1)xn .

Again we take xn /∈ M . From the expression of R(λx1, x2, . . . ) there follows

the homogeneity of An in the first argument. Similarly we prove that An is ho-

mogeneous in the other arguments.

To prove the additivity of the form An in the first argument we will use the

equation

R(x1 + x′1, x2, . . . , xn−1, xn) = R(x1, . . . ) +R(x′1, . . . ) .
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If xn can be chosen to be linearly independent of x1, x
′
1, x2, . . . , xn−1, the additiv-

ity is obvious. Suppose then that x1, x
′
1, x2, . . . , xn−1 are linearly independent and

that dimL = n. xn = x1+λx′1 for some λ different from 0 or 1. Then the elements

x1, x
′
1 and x1 + x′1 are not in lin {x2, . . . , xn} and we can use the consideration

above the remark in the first part of the proof:

R(x1, x2, . . . , xn) = α1x1 + α2x2 + · · ·+ αn−1xn−1 +An(x1, x2, . . . , xn−1)xn ,

R(x′1, x2, . . . ) = α1x
′
1 + β2x2 + . . .+ βn−1xn−1 +An(x

′
1, x2, . . . )xn ,

R(x1 + x′1, x2, . . . ) = α1(x1 + x′1) + γ2x2 + . . .+ γn−1xn−1

+An(x1 + x′1, x2, . . . )xn .

Hence, the additivity of the form An in the first argument (and in the same way

in all other arguments) is proven and An is a multilinear form.

Suppose that n = 2. Then for a fixed x2

Qx2(x1) := R(x1, x2)− A2(x1)x2

is a linear map and there exists such an A1(x2) ∈ , uniquely determined by x2,

that Qx2(x1) = A1(x2)x1, and then

R(x1, x2) = A1(x2)x1 +A2(x1)x2 .

But since Qx2(x1) is linear in both variables, A1 is necessarily a linear functional.

So the lemma is valid for n = 2.

Let now n > 2 and suppose that the lemma is valid for all k < n. Fix again xn
and define

Qxn(x1, . . . , xn−1) := R(x1, . . . , xn−1, xn)−An(x1, . . . , xn−1)xn .

Qxn is an (n− 1)-linear map, so

Qxn(x1, . . . , xn−1) =
n−1∑
j=1

Aj(x1, . . . , x̂j , . . . , xn−1, xn)xj ,

where Aj are (n − 2)-linear forms, additionally dependent on parameter xn. To

see that Aj is also linear in this last argument it is sufficient to choose xj /∈
lin {x1, . . . , x̂j , . . . , xn−1} and to put instead of xn first λxn (λ ∈ ) and then

xn + x′n. �

Lemma 8. Let n ≥ 2 and 0 < m ≤ n. Further let L be a linear space over ,

dimL ≥ m, and R : Ln → L an n-linear map with the property:

∀(x1, . . . , xn) ∈ Ln ∃(α1, . . . , αm) ∈ m : R(x1, . . . , xn) =
m∑
i=1

αixi.
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Excluding the case where dimL = m and = 2 at the same time, there exist

such unique (n− 1)-linear forms Ai : L
n−1 → (i = 1, . . . ,m), that

(∗∗∗) R(x1, . . . , xn) =
m∑
i=1

Ai(x1, . . . , x̂i, . . . , xn)xi

holds identically.

Proof. For m = n we get Lemma 7. So, suppose that m < n. Fix xm+1, . . . , xn;

then there exist, according to Lemma 7, such unique maps Ai(x1, . . . , x̂i, . . . , xm,

xm+1, . . . , xn), linear in the first m − 1 arguments, that (∗∗∗) holds. The lin-

earity of these maps in the last n − m arguments is proved by choosing xi /∈
lin {x1, . . . , x̂i, . . . , xm}. �

Example 9. In any algebra H with the property (P) from Example 2(iv) (with

possible exception of dimH = 2 and = 2), there exist by Lemma 7 such linear

functionals U, V that (3) and (4) hold. If dimH ≥ 2, U and V are unique. In

the exceptional case when dimH = 2, = 2 and linear functionals U, V do

not exists, we can find a base {p, q}, having Table 1 as its multiplication table.

The parameters α, β, γ are arbitrary. In this case, U and V do not exist even as

nonlinear forms.

· p q

p (1 + α)p βp+ (α+ γ)q

q (α + β)p+ γq (1 + α)q

Table 1.

· p q

p αp+ βq γp+ δq

q γp+ δq εp+ ζq

Table 2.

3. Two-dimensional Subassociative Algebras

Definition 10. A subassociative algebra H is non-strange if there exist three

bilinear forms A,B,C : H2 → such that

(7) [x, y, z] = A(y, z)x+B(x, z)y + C(x, y)z

holds for each (x, y, z) ∈ H3. Otherwise H is strange.

Of course, any proper subassociative algebra is non-strange.

Since any algebra of dimension < 2 is associative, we find out, using Lemma 7,

that if H is a strange subassociative algebra then either

(i) dimH = 2, or

(ii) dimH = 3, = 2.
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In this section we will look through all two-dimensional subassociative algebras.

A sufficient condition for them to be subassociative is:

∀x ∈ H ∃α ∈ : [x, x, x] = αx .

A p q

p βγ + δ2 − αδ − βζ βε− γδ − ω

q βε− γδ + ω γ2 + δε− αε− γζ

Table 3.

B p q

p 0 ω

q −ω 0

Table 4.

All commutative algebras are of this kind; they are all non–strange and even

proper (if one takes ω = 0): Tables 2, 3, 4. The form C from (7) can be computed

from A and B by the equation

(8) C = −2B −A

and the parameter ω in Table 4 is arbitrary.

The noncommutative non-strange case is given in Table 5, its form A in Table 6,

the form B in Table 4 (with arbitrary ω) and the form C is given by (8). Since

we may choose ω = 0, the algebra is proper. The algebra has the property:

∀x ∈ H : x2 = λx.

· p q

p (β + δ)p αp+ βq

q γp+ δq (α+ γ)q

Table 5. pq 6= qp

A p q

p −βδ −ω − αβ

q ω − γδ −αγ

Table 6.

There exist also 7 nonisomorphic strange algebras over the field = 2 with

Table 7 as the multiplication table, and 6 nonisomorphic strange algebras over the

field = 3 = {0,±1} with Table 8 as a multiplication table.

· p q

p γq αp+ βq

q (α+ 1)p+ (β + γ + 1)q 0

Table 7. = 2, (1 + α)(1 + β)(1 + γ) = 0

· p q

p q αp

q βp (α+ β − 1)q

Table 8. = 3, α 6= β
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4. Teichmüller Equation

The well known Teichmüller equation is valid in any algebra:

(9) w[x, y, z] + [w, x, y]z = [wx, y, z]− [w, xy, z] + [w, x, yz] .

With this equation we will discuss the non-strange algebras. Of course we may

suppose that the dimension of algebra is at least 3. Using (7) we transform (9)

into

B(x, z)wy +B(w, y)xz +B(w, z)xy + [A(x, y) + C(x, y)]wz

(E(w, x, y, z)) = [A(x, yz)−A(xy, z)]w +B(w, yz)x

+B(wx, z)y + [C(wx, y) − C(w, xy)]z

Proposition 11. Suppose that an algebra H (of any dimension) has property

(Q) from Example 2(iv). Then H is a proper subassociative algebra; the only

exceptions are given by Table 7 for γ = 0.

Proof. It is easy to see that Proposition 11 is valid for dimH < 3. Hence,

suppose that dimH ≥ 3, and, using Lemma 8, that

[x, y, z] = A(y, z)x+ C(x, y)z

for all x, y, z, which is a special case of (7) with B = 0. If there exist such x and

y that A(x, y) +C(x, y) 6= 0, we find out from E(w, x, y, z) that wz = λw+µz for

all w and z. Therefore, dimalg {x, y} = 2 and (8) gives us a contradiction. �

Now we shall prove the following identities:

[x, x, x] = 0 ,(10)

A(x, x) +B(x, x) + C(x, x) = 0 .(11)

(10) and (11) are of course equivalent identities. They surely hold for such x that

x2 = λx. Therefore assume that x2 6= λx and that (11) does not hold. From

E(x2, x, x, x) then there follows:

x2x = αx+ βx2 ,

xx2 = x2x− [x, x, x] = γx+ βx2 ,

x2x2 = x(xx2) + [x, x, x2] = δx+ εx2 .

Hence, dimalg {x} = 2 and alg {x} is an algebra from Table 2. But such algebra

is commutative and [x, x, x] = 0, which is a contradiction.

If for any x we choose a y such that y /∈ lin {x, x2}, then there follows from

E(y, x, x, x):

(12) A(x2, x) = A(x, x2) .
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From E(x, x, x, y) we also get

(13) C(x2, x) = C(x, x2) .

Suppose that x and x2 are linearly independent. Then from E(x, x, x, x) there

follows

(14) 2B(x, x) = 0 .

Now say that x2 = τx and 2B(x, x) 6= 0 and y is not colinear with x. From

E(x, y, x, x) we get: yx = αx + βy; from E(x, x, y, x) it follows: xy = γx + δy;

finally from E(x, y, x, y) we find out: y2 = εx + ζy. Hence dimalg {x, y} = 2.

But we already know that in non-strange two-dimensional algebras there is always

B(x, x) = 0, which is a contradiction. Therefore (14) holds always.

Now it is time for the main theorem.

Theorem 12. Let H be a non-strange subassociative algebra (of any dimen-

sion) over a field of characteristic chr 6= 2. Then H is a proper subassociative

algebra.

Proof. In view of Proposition 11 it is enough to prove that B = 0 when

dimH ≥ 3. (14) tells us that B(x, x) = 0 for any x ∈ H. From E(x, x, x, y)

and E(y, x, x, x) there follows that if x2 6= λx then B(x, y) = B(y, x) = 0. So, if

B(x, y) 6= 0 for some x, y, then x2 = λx and y2 = µy.

Hence, let us suppose that B(x, y) 6= 0 for x, y linearly independent. 0 =

B(x+y, x+y) = B(x, y)+B(y, x), thereforeB(y, x) = −B(x, y) 6= 0. B(x, x+y) =

B(x, y) 6= 0 ⇒ (x+ y)2 = ν(x+ y), which gives us:

(∗) xy + yx = αx+ βy .

E(x, y, y, x) implies

(∗∗) xy − yx = γx+ δy .

(∗) and (∗∗) are enough for the conclusion: dim alg {x, y} = 2. alg {x, y} is there-

fore an algebra from Table 5, of course without the condition pq 6= qp. We can

take x = p, y = q and B(p, q) = ω 6= 0.

Furthermore, let r be another element from H, r /∈ alg {p, q}. Then E(p, p, q, r)

gives us: [A(p, q) + B(p, q) + C(p, q)]pr = −ωpr ∈ lin {p, q, r}. E(q, q, p, r) gives:

qr ∈ lin {p, q, r}, E(r, q, p, p) gives: rp ∈ lin {p, q, r}, E(r, p, q, q) proves: rq ∈
lin {p, q, r}, and finally E(r, q, r, p) gives r2 ∈ lin {p, q, r}.

Hence, lin {p, q, r} = alg {p, q, r} is a 3-dimensional subalgebra. Say, pr =

κ1p+ λ1q + µ1r, qr = κ2p+ λ2q + µ2r.

[p, p, r] = C(p, p)r + · · · = βδr + · · ·

= p2r − p(pr) = µ1(β + δ − µ1)r + · · ·
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and: µ1(β + δ − µ1) = βδ, or

(∗∗∗) (µ1 − β)(δ − µ1) = 0 .

[p, q, r] = C(p, q)r + · · · = (αβ − ω)r + · · ·

= (pq)r − p(qr) = (µ1α+ µ2β − µ1µ2)r + · · ·

and: αβ − ω = µ1α+ µ2β − µ1µ2, or

ω = (µ1 − β)(µ2 − α) ,

which gives together with (∗∗∗): µ1 = δ.

[q, p, r] = C(q, p)r + · · · = (γδ + ω)r + · · ·

= (qp)r − q(pr) = γδr + · · · ,

which is a contradiction. �

So, we found out that the subassociative algebras are the following:

(i) proper algebras, which are in a direct connection with the associative

algebras, by Propositions 5 and 6;

(ii) strange algebras of dimension 2 (over = 2 and 3);

(iii) strange algebras of dimension 3 (over = 2), and

(iv) improper non-strange algebras (of dimension > 2 and of characteristic 2).

5. Strange 3-dimensional Algebras

Perhaps the best way to determine all strange 3-dimensional subassociative

algebras (over 2) is to use a computer. There are 227 different multiplication

tables. It is easy to find all (that is 5) algebras with the property (P). In any other

algebra we can find such a base {a1, a2, a3} that a1a2 = a3. There are “only” 224

multiplication tables of this kind. If aiaj = λ1
ija1+λ2

ija2+λ3
ija3 (i, j = 1, 2, 3), the

multiplication table is determined with these binary digits λkij , which constitute a

number in the binary system:

λ1
11λ

2
11λ

3
11λ

1
13λ

2
13λ

3
13λ

1
21λ

2
21λ

3
21λ

1
22λ

2
22λ

3
22λ

1
23λ

2
23λ

3
23λ

1
31λ

2
31λ

3
31λ

1
32λ

2
32λ

3
32λ

1
33λ

2
33λ

3
33

Its decadic form is a code of an algebra. A capable computer can eliminate isomor-

phic algebras; the result is 5+801.163 = 801.168 nonisomorphic three-dimensional

algebras over 2. With a computer we select 156 subassociative algebras, from

those we select 60 improper algebras and among them there are 22 strange alge-

bras; their codes are in Table 9.
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438 2454 65904 67920 79449

81529 107352 107480 108121 109432

110201 524598 590320 592336 632537

658224 756720 1115232 8692568 8693337

9219833 9741896

Table 9.

It is easy to check that in any of these algebras the identity [x, x, x] = 0 holds

which means that all these algebras are Lie-admissible. Also, none of these algebras

is anticommutative (in the sense ∃x : x2 6= 0).

6. Improper Non-strange Algebras

In this section we will discuss improper nonstrange algebras. Therefore we will

suppose that such an algebra H has dimH > 2 and that chr = 2.

Suppose that for certain x, y we have

A(x, y) +B(x, y) + C(x, y) 6= 0 .

Of course, because of (11) x and y are linearly independent.

From E(x, x, y, x) there follows : x2 = λ1x+ µ1y,

from E(y, x, y, y) : y2 = λ2x+ µ2y,

from E(x, x, y, y) : xy = λ3x+ µ3y,

from E(x, y, x, y) : B(x, y)yx = λ4x+ µ4y and

from E(y, x, y, x) : [A(x, y) + C(x, y)]yx = λ5x+ µ5y.

Hence: alg {x, y} = lin {x, y} and alg {x, y} is an algebra from Table 2 or Table 5.

Then A = C and B(x, y) 6= 0. We can take x = p, y = q, B(p, q) = ω 6= 0.

Let r /∈ alg {p, q} be another element.

E(p, p, q, r)⇒ pr ∈ lin {p, q, r} ;

E(p, q, q, r)⇒ qr ∈ lin {p, q, r} ;

E(r, p, p, q)⇒ rp ∈ lin {p, q, r} ;

E(r, p, q, q)⇒ rq ∈ lin {p, q, r} .

Put pr = κ1p+ λ1q+µ1r, rq = κ2p+λ2q+µ2r. With the direct computation we

get:

[p, r, q] = (. . . )p+ (. . . )q .

But since

[p, r, q] = A(r, q)p+ ωr + C(p, r)q ,

we find the wrong conclusion ω = 0.
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Therefore we have proved the following identity:

(15) A(x, y) +B(x, y) + C(x, y) = 0 .

Noting that B = 0 in the case where H is a proper subassociative algebra of

dimension> 2 and that we may choose B = 0 for nonstrange algebras at dimension

≤ 2 we can say that (15) is the general equation for any non-strange subassociative

algebra over a field of any characteristic.

We have now the tool for the last theorem.

Theorem 13. Any subassociative algebra is Lie-admissible: [x, y, z]+[z, x, y]+

[y, z, x] = [y, x, z] + [z, y, x] + [x, z, y] for all x, y, z. Any anticommutative (x2 = 0

for all x) subassociative algebra is proper.

Proof. The non-strange algebras are Lie-admissible because of (15). A straight-

forward computation shows that the strange algebras from Table 8 are Lie-admis-

sible. The strange algebras from Table 7 and these of dimension 3 fulfill the

identity [x, x, x] = 0 which in characteristic 2 suffices for Lie-admissibility.

It is easy to check that strange anticommutative algebras do not exist. Sup-

pose now that H is an anticommutative and improper non-strange subassociative

algebra. Since the characteristic is 2, H is also commutative.

0 = [x, y, x] = (A(y, x) + C(x, y))x+B(x, x)y

Then: B(x, x) = 0 and C(x, y) = A(y, x) for all x, y ∈ H.

Suppose that B(x, y) = A(x, y)+A(y, x) 6= 0 for certain x, y, which means that

x and y are linearly independent.

x(xy) = [x, x, y] = A(y, x)x+A(x, x)y ,

y(xy) = A(y, y)x+A(x, y)y .

Therefore x and y generate an algebra of dimension ≤ 3. The case dimalg {x, y} =

2 is not possible, by (8). Therefore, this subalgebra has Table 10 as its multipli-

cation table.

· x y z

x 0 z αx+ βy

y z 0 γx+ δy

z αx+ βy γx+ δy 0

Table 10.

A(y, x) = α and A(x, y) = δ, hence α 6= δ. But writing down [z, z, x] and [z, z, y]

we find a contradiction. �
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For chr 6= 2, it is a trivial fact that anticommutative Lie-admissible algebra is

Lie. We do not know if the anticommutative subassociative algebra is Lie also in

the case chr = 2; however, it is at least Maltsev (i.e.: x2 = 0, [xz, x, y] = [x, y, z]x,

for all x, y, z).
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