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RADEMACHER VARIABLES IN

CONNECTION WITH COMPLEX SCALARS

J. A. SEIGNER

Abstract. We shall see that the Sidon constant of the Rademacher system equals
π/2. This is also the best constant for the contraction principle if complex scalars
are involved.

1. The Rademacher System and Its Sidon Constant

Rademacher variables are generally understood as an i.i.d sequence of random

variables taking the values −1 and +1 each with probability 1/2. We model them

as follows. Let E denote the multiplicative group of the two elements −1 and +1

in C. Let us consider the cartesian power E∞ =
∏
j∈N E and the natural maps

rj : E∞ → T, (j ∈ N),

which assign to any sequence ε = (εj)
∞
j=1 their jth coordinate εj. Here T denotes

the group of complex numbers of modulus 1.

If we equip E∞ with the coarsest topology that will make all rj continuous

we find by Tychonoff’s theorem that E∞ is compact. Moreover, if we define

multiplication in E∞ coordinate wise the rj become homorphisms.

As we are usually concerned with only finitely many Rademacher variables at a

time, and since we are interested in their distributional properties, barely, we may

equally think of r1, . . . , rn (n fixed) as to be defined on En rather than E∞. This

should cause no troubles.

In either case, it turns out that we move in a convenient setting.

Given a compact abelian group G a continuous homeomorphism χ : G → T is

called character. We say a sequence of characters X = (χ1, χ2, . . . ) is a Sidon

set, provided we can find a constant C such that however we choose a natural n

and complex numbers a1, . . . , an we have

(1)
n∑
j=1

|aj | ≤ C
∥∥∥ n∑
j=1

ajχj

∥∥∥
∞
.
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Of course, ‖ · ‖∞ is shorthand for the norm in C(G), the space of continuous

functions on G. If X is a Sidon set, we label the smallest of all admissible constants

C as

S(X ).

This is the Sidon constant of X (cf. [4]).

The system of Rademacher variables R = (r1, r2, . . . ) is an obvious example for

a Sidon set, for if we split the term
∑n
j=1 ajrj into its real and imaginary parts

we certainly get away with C = 2 in (1). We will see, that we can do slightly

better, albeit the precise value of S(R) is rather of aesthetic interest. The proof

rests upon the following fact, which is almost a blueprint of [1, Lemma 3.6, p. 21].

Lemma 1. For j = 1, . . . , n let Kj be compact topological spaces and let fj be

continuous complex functions on Kj. Suppose there exist points aj , bj ∈ Kj such

that

‖fj‖∞ = |fj(aj)| = |fj(bj)| and fj(aj) = −fj(bj).

If we define f ∈ C
(∏n

j=1Kj

)
by

f(t1, . . . , tn) =
n∑
j=1

fj(tj), (t1, . . . , tn) ∈
n∏
j=1

Kj ,

then
n∑
j=1

‖fj‖∞ ≤
π

2
‖f‖∞.

Moreover, the constant π/2 is best possible.

Proof. Let us fix some ϑ ∈ [0, 2π) for an instant. Define

tj =

{
aj , if Re (eiϑfj(aj)) > 0

bj , if Re (eiϑfj(bj)) ≥ 0
j = 1, . . . , n

and choose σj ∈ [0, 2π) such that

‖fj‖∞ = e−iσjfj(bj) = ei(π−σj)fj(aj).

Then we get

Re (eiϑfj(tj)) = max
{

Re (ei(ϑ+σj))‖fj‖∞ , Re (ei(ϑ+σj+π))‖fj‖∞
}

= ‖fj‖∞| cos(ϑ+ σj)|.

Hence,

‖f‖∞ ≥
∣∣∣eiϑ n∑

j=1

fj(tj)
∣∣∣ ≥ n∑

j=1

Re
(
eiϑfj(tj)

)
=

n∑
j=1

‖fj‖∞| cos(ϑ+ σj)|.
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Integration with respect to ϑ will settle our issue, since

2π‖f‖∞ ≥
n∑
j=1

‖fj‖∞

∫ 2π

0

| cos(ϑ+ σj)| dϑ = 4
n∑
j=1

‖fj‖∞.

The fact that π/2 is best possible will be clear by the example included in the

proof of the following theorem. �
Theorem 2. The Sidon constant of the Rademacher system equals π/2.

Proof. Given a1, . . . , an ∈ C we define fj : E → C by fj(−1) = −aj , fj(+1) =

aj . Let f : En → C be given by f(ε1, . . . , εn) =
∑n
j=1 fj(εj), then we may just as

well write

f =
n∑
j=1

ajrj ,

where r1, . . . , rn are to be understood as defined on En rather than E∞. Now, the

preceeding lemma applies and we get

n∑
j=1

|aj | ≤
π

2

∥∥∥ n∑
j=1

ajrj

∥∥∥
∞
.

As for the optimality of π/2 fix n ∈ N for an instant. Let β = ei2π/n be an n-the

root of unity. We are going to consider the function gn =
∑n
j=1 β

j−1rj on En. If

sign (a) ∈ T is defined by |a|/a (a 6= 0) and sign (0) = 1 then

|gn(ε)| = sign
(
gn(ε)

)
gn(ε) =

n∑
j=1

Re
(
βj−1 sign (gn(ε))

)
εj (ε = (ε1, . . . , εn)).

Since, obviously
∑n
j=1 Re (βj−1eiϑ)εj ≤ |gn(ε)| it follows that

‖gn‖∞ = max
εj=±1

max
0≤ϑ<2π

n∑
j=1

Re (βj−1eiϑ)εj .

Note that ϑ 7→ maxεj=±1

∑n
j=1 Re (βj−1eiϑ) is 2π/n-periodic and determine ϑn ∈

[0, 2π
n

) and ε∗1, . . . , ε
∗
n such that

‖gn‖∞ =
n∑
j=1

Re (βj−1eiϑn)ε∗j =
n∑
j=1

cos
(
ϑn +

2π(j − 1)

n

)
ε∗j .

By maximality every summand cos
(
ϑn + 2π(j−1)

n

)
ε∗j is bound to be non-negative.

Thus, in actual fact we have

‖gn‖∞ =
n∑
j=1

∣∣∣cos
(
ϑn +

2π(j − 1)

n

)∣∣∣.
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Since
∑n
j=1 |β

j−1| = n we may conclude n ≤ S(Rn)‖gn‖∞ or, equivalently,

S(Rn)
−1 ≤

‖gn‖∞
n

=
1

n

n∑
j=1

∣∣∣cos
(
ϑn +

2π(j − 1)

n

)∣∣∣ .
By continuity of the cosine we find that the right hand side tends to

∫ 1

0
| cos(2πt)|dt

= 2
π

as n→∞. We conclude S(R) = supn S(Rn) ≥ π
2 . �

2. The Contraction Principle Using Complex Scalars

The result on the Sidon constant of the Radmacher system can be applied to

the complex version of the contraction principle. It is well known, and easily

seen, that given reals a1, . . . , an and vectors x1, . . . , xn in some (real or complex)

Banach space X we always have

∥∥∥ n∑
j=1

ajxjrj

∥∥∥
LXp (En)

≤ max
j=1,...,n

|aj |
∥∥∥ n∑
j=1

xjrj

∥∥∥
LXp (En)

for 1 ≤ p ≤∞ (cf. [3, p. 91]).

If we want to extend this result to complex scalars and complex Banach spaces

the basic tool is Pe lczyński’s celebrated result on commensurate sequences [5]

which we state in a disguised form.

Lemma 3 (Pe lczyński [5], Pisier [6]). Let χ1, . . . , χn and ψ1, . . . , ψn be char-

acters on compact abelian groups G and H, respectively. If C ≥ 1 is such that

∥∥∥ n∑
j=1

ajψj

∥∥∥
∞
≤ C

∥∥∥ n∑
j=1

ajχj

∥∥∥
∞

for a1, . . . , an ∈ C

then we find for all s ∈ H and 1 ≤ p ≤ ∞

∥∥∥ n∑
j=1

xjψj(s)χj

∥∥∥
LXp (G)

≤ C
∥∥∥ n∑
j=1

xjχj

∥∥∥
LXp (G)

,

regardless of the choice of the Banach space X and vectors x1, . . . , xn in X.

As for the proof there is no point in going into details. Everything can be found

in Pe lczyński’s paper ([5, Theorem 1], compare [6, Théorème 2.1]). Three notes

may be helpful.

• Here, LXp (G) is the space of Bochner-p-integrable X-valued functions on G

(with respect to the Haar measure). Of course,
∑n
j=1 xjϕj : G −→ X is

continuous, so we need not bother about integrability.
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• The claim remains true also for Orlicz spaces LXφ (G) with literally the same

proof as in [5], since all that is employed is Young’s inequality.

• We suggest to call the best constant C in the inequality above relative

Sidon constant of Ψn = (ψ1, . . . , ψn) vs. Xn = (χ1, . . . , χn) for the fol-

lowing reason. If ψ1, . . . , ψn are Steinhaus variables, i.e. ψj : Tn → T is the

projection on the jth coordinate, then∥∥∥ n∑
j=1

ajψj

∥∥∥
∞

=
n∑
j=1

|aj |

and we find that the best constant C equals S(Xn).

Corollary 4. The best constant in the principle of contraction for complex

scalars is π/2.

Proof. We have to proof the inequality∥∥∥ n∑
j=1

ajxjrj

∥∥∥
LXp (En)

≤
π

2

∥∥∥ n∑
j=1

xjrj

∥∥∥
LXp (En)

whenever a1, . . . , an are complex scalars of modulus ≤ 1. Just as in the real case

(cf. [3, pp. 95]), we may argue by convexity to see that the function

(a1, . . . , an) 7→
∥∥∥ n∑
j=1

ajxjrj

∥∥∥
LXp (En)

takes its maximum on {a : ‖a‖∞ ≤ 1} ⊂ `n∞ in an extreme point, say in s =

(s1, . . . , sn) where |s1| = · · · = |sn| = 1. If ψ1, . . . , ψn are Steinhaus variables the

lemma implies ∥∥∥ n∑
j=1

xjψj(s)rj

∥∥∥
LXp (En)

≤ C
∥∥∥ n∑
j=1

xjrj

∥∥∥
LXp (En)

with C = S(Rn)↗ π/2 (n→∞).

As for the question of optimality it is useful to note that if we restrict our

attention to scalars aj of modulus 1 the inequalities∥∥∥ n∑
j=1

ajrjxj

∥∥∥
LXp (En)

≤ Cn
∥∥∥ n∑
j=1

rjxj

∥∥∥
LXp (En)

for |a1| = · · · = |an| = 1(2)

and ∥∥∥ n∑
j=1

rjxj

∥∥∥
LXp (En)

≤ Cn
∥∥∥ n∑
j=1

ajrjxj

∥∥∥
LXp (En)

for |a1| = · · · = |an| = 1(3)

are equivalent, leading to the same constant Cn.
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Let us consider a second set of n Rademacher variables which we would like to

interpret as vectors xj in X = C(En) given by xj(ε̃1, . . . , ε̃n) = ε̃j.

An inspection on the proof of Theorem 2 reveals that

1

n

∥∥∥ n∑
j=1

e2πij/nxj

∥∥∥
∞

tends to 2/π as n→∞. The key observation is that for arbitrary complex num-

bers aj ∥∥∥ n∑
j=1

ajxj

∥∥∥
∞

= max
ε̃j=±1

∣∣∣ n∑
j=1

aj ε̃j

∣∣∣ = max
ε̃j=±1

∣∣∣ n∑
j=1

ajεj ε̃j

∣∣∣
however we choose ε1, . . . , εn ∈ {−1,+1}. Accordingly,∥∥∥ n∑

j=1

e2πij/nrjxj

∥∥∥
LXp (En)

=
∥∥∥ n∑
j=1

e2πij/nxj

∥∥∥
∞
.

On the other hand

1

n

∥∥∥ n∑
j=1

rjxj

∥∥∥
LXp (En)

=
1

n

∥∥∥ n∑
j=1

xj

∥∥∥
∞

= 1.

Combining these, the best constants Cn in∥∥∥ n∑
j=1

rjxj

∥∥∥
LXp (En)

≤ Cn
∥∥∥ n∑
j=1

ajrjxj

∥∥∥
LXp (En)

for |a1| = · · · = |an| = 1 satisfy lim inf
n→∞

Cn ≥ π/2. By the equivalence of (2) and

(3) our proof is complete. �

3. Concluding Remark

Rademacher variables also are involved when `n1 is to be embedded into `∞ or a

suitable `N∞ (N ≥ n).

Let us recall the real situation. If we take N = 2n we may identify `N∞ with

`∞(En). If the unit vectors in `∞(En) are labelled eε (ε ∈ En), we can define

vectors uj in `∞(En) via

uj =
∑
ε∈En

rj(ε)eε.

Then, for reals a1, . . . , an we certainly have

n∑
j=1

|aj | = max
εj=±1

∣∣∣ n∑
j=1

ajεj

∣∣∣ = ∥∥∥ n∑
j=1

ajuj

∥∥∥
∞
,
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which amounts to saying that

`n1 → `∞(En), ej 7→ uj (j = 1, . . . , n)

is an isometric embedding.

If we look at our previous discussion, the same mapping reinterpreted as acting

between the corresponding complex spaces will have operator norm arbitrarily

close to π/2 as n→∞ — and not any better.

Nevertheless, the universal character of `∞ still allows us to embed `n1
ı
−→Wn ↪→

`∞ with dim(Wn) = n and ‖ı‖ ‖ı−1‖ ≤ 1 + δ for arbitrarily small δ > 0.

Again, isometry is possible if we invoke Kronecker’s theorem on diophantine

approximation (for a proof and related discussions consult e.g. [2, Chapt. XXIII,

pp. 371–391]).

Theorem 5 (Kronecker 1884). Let β1, . . . , βn be in R such that the set

1, β1, . . . , βn

is linearly independent over the field Q. Given arbitrary ξ1, . . . , ξn in R and δ > 0

there exist a natural number m and integers k1, . . . , kn such that∣∣∣ξj −mβj − kj ∣∣∣ < δ (j = 1, . . . , n).

We employ this result for our purposes.

Since ∣∣eia − eib∣∣ ≤ |a− b| (a, b ∈ R)

we see that∣∣∣exp (2πiαj)− exp (2πimβj)
∣∣∣ = ∣∣∣exp

(
2πiαj

)
− exp

(
2πi(mβj + kj)

)∣∣∣ ≤ 2πδ.

We conclude that the sequence of vectors {xm}∞m=1 in Cn defined by

xm =
n∑
j=1

exp(2πimβj)ej ∈ Cn (m ∈ N)

is dense in Tn.

Put

wj =
(
e2πimβj

)∞
m=1

∈ `∞. (j = 1, . . . , n)

Given complex numbers a1, . . . , an, by density we get∥∥∥ n∑
j=1

ajwj

∥∥∥
∞

= sup
m∈N

∣∣∣ n∑
j=1

aje
2πimβj

∣∣∣ = sup
‖(ξj)n1 ‖∞=1

∣∣∣ n∑
j=1

ajξj

∣∣∣ = n∑
j=1

|aj |.

Finally, if Wn = span{w1, . . . , wm} we get the desired isometry ı

`n1
ı
→Wn ⊂ `∞

ej 7→ wj (j = 1, . . . , n).
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4. López J. and Ross K., Sidon Sets, Lecture notes in pure and applied mathematics, vol. 13,
Marcel Dekker, Inc., New York, 1975.
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