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THE NUMERICAL VALUATION OF

OPTIONS WITH UNDERLYING JUMPS

G. H. MEYER

Abstract. A Black-Scholes type model for American options will be considered
where the underlying asset price experiences Brownian motion with random jumps.
The mathematical problems is an obstacle problem for a linear one-dimensional
diffusion equation with a functional source term. The problem is time discretized
and solved at each time level iteratively with a Riccati method. Some numerical
experiments for a call and put with multiple jumps are presented. Convergence of
the iteration at a given time level will be discussed for the simpler problem of a
European put where there is no free boundary.

1. Introduction

Mathematical modeling and simulation have become indispensable tools in the

financial industry. Banks, brokerage houses and investors and their consulting

services spend countless hours every day and night to simulate and predict the

movement of prices for financial assets like stocks, options and bonds. Much

of the mathematics employed in this field, particularly in academic research, is

highly sophisticated and spans the fields of analysis, probability and stochastics,

statistics, differential equations and, last but not least, numerical analysis which

is the topic of this presentation.

In general, the numerical problems solved in the field of financial mathematics

have tended to be relatively simple compared to those routinely faced in science

and engineering. Only recently have models and algorithms been proposed which

reach the state of the art in numerical analysis (see, e.g., the multigrid algorithm

for a two-factor option [2]). Evidently, numerical analysts are becoming familiar

with financial applications and the terminology associated with them.

While the numerical problems generally have been simple their algorithms have

been subject to constraints not usually found in full scale simulations in science and

engineering. Much of the numerical work in finance is carried out on small com-

puters which do not have access to sophisticated program libraries. The computer

more likely is a PC or a laptop rather than a Cray, although modern workstations

are rapidly replacing the smaller machines. A second constraint is that a large
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volume of very repetitive calculations for slightly differing financial parameters

must be carried out rapidly to help financial traders in real time. Hence there is

a requirement for fast and fine-tuned standard financial codes. And finally, there

is the ever present constraint on any algorithm that it be transparent, at least in

outline, to the user who has to interpret the numerical results.

It is the purpose of this exposition to discuss the application of the method of

lines to some mathematical models of finance which lead to diffusion problems.

Properly implemented, the method of lines places minimum demand on computer

resources other than clock speed, and since it solves the problem in terms of

financial variables, rather than some transform of them, it is straightforward to

understand and modify for the next generation of problems coming to the fore.

2. An Option with Jump Diffusion

An option in the financial world is the right, but not the obligation, to buy or

sell an asset (e.g. a share of stock in a corporation, a commodity like grain, foreign

currency, etc.) at a fixed price by a certain date in the future. The option to

buy is named a “call”, the option to sell is named a “put”. Historically, options

were traded as insurance rather than as an investment. A farmer with a put for

his harvest or a manufacturer with a call for his raw material could plan for the

financial future with some certainty regardless of the price of the commodity on

the open market at the time the option expired. On the other hand, the seller of

the option incurs the risk of having to buy or sell an asset at a loss and must be

compensated for this risk through the sales price of the option. Determining the

value of an option is a major concern of financial engineering.

The core of a widely accepted mathematical model for the value V (S, t) of on

option is the so-called Black-Scholes equation

(2.1)
1

2
σ2S2Vss + (r − ρ)SVs − rV − Vt = 0

which is based on a stochastic model for the behavior of the price S of the un-

derlying asset. In equation (2.1) t denotes the time to expiry of the option, the

coefficient σ describes the so-called volatility of the market price of the asset, r is

the risk-free interest rate available to the buyer for an alternative investment and ρ

is the rate of a continuous dividend payment. The derivation of the Black-Scholes

equation is described in detail in many financial textbooks (see, e.g. [4], [5], [9]),

but the most accessible account for a mathematician with limited exposure to the

financial world is the differential equations based approach of [11] on which most

of our comments are based.

Equation (2.1) and some generalizations are used to model a bewildering variety

of options such as European, American, Asian, barrier, compound etc. options.

All of these names denote specific financial instruments which are reflected in the
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initial and boundary conditions for (2.1) and, possibly, in changes of the equation

(2.1) itself. Here we shall concentrate on an American put which models the price

of an option to sell an asset at a fixed price K on or before the time of expiry

of the option. This is an optimal stopping problem where the diffusion equation

(2.1) is subject to the boundary and initial conditions

(2.2)

V (Sf (t)) = K − Sf (t), Vs(Sf (t)) = −1

lim
S→∞

V (S, t) = 0

V (S, 0) = max{K − S, 0}, Sf (0) = K.

The objective is to find the current price V (S, T ) for an option which expires at

T when the current asset price is S. Time to expiry may be months to years

depending on the type of option.

Problem (2.1), (2.2) is a classical free boundary problem known as an obstacle

problem where the surface V (S, t) joins the obstacle φ(S) = max{K − S, 0} at

location S(t). The free boundary S = S(t) denotes the early exercise boundary.

When the asset price S at time t falls to the value S(t) then the option should

be exercised to maximize the expected income. The initial condition V (x, 0) is

particularly transparent. If at time of expiry (t = 0) the asset price S exceeds

K then the option will not be exercised since the asset could be sold for more on

the open market. Thus, the option has no value. On the other hand, if S < K

then there is a gain of K − S for the buyer of the option. In either case the buyer

had to pay V (S, T ) for the option which enters into the traders’ profit and loss

calculations.

The analysis of the obstacle problem (2.1), (2.2) and its numerical solution have

been the subject of numerous investigations and many effective solution algorithms

have been proposed. In particular, it has been argued [7] that the method of lines

is a competitive numerical method for American puts following the Black-Scholes

model and its generalization. Building on the discussion of [7] we would like to

illustrate here the application of the method of lines to a modification of the Black-

Scholes model where the value of the underlying asset experiences random jumps.

This situation is said to arise particularly in currency markets [1]. The resulting

numerical problem is of interest from an algorithmic view because as outlined next

it leads to a diffusion equation with a functional term.

The derivation of a Black-Scholes type equation for a diffusion model with

jumps dates back to [6] and is described, for example, in [5]. Here we shall follow

the detailed exposition of [8] and the forthcoming notes of [10]. The essential

component is the stochastic model

dS

S
= (µ− ρ)dt+ σdWt +

∫
R
γ(y)v(dt, dy)
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for the value S of the underlying asset which incorporates deterministic growth

at a rate µ, a Brownian motion drift depending on the volatility σ and random

jumps of relative size γ(y) occurring at random times with assigned measure v.

When a portfolio is hedged under appropriate assumptions on the market and on

the occurrence and size of jumps then the non-local parabolic problem arises

1

2
σ2S2Vss + (r − ρ)SVs − rV − Vt(2.3)

= −λ

∫
R

[V ((1 + γ(y))S, t)− V (S, t)− γ(y)SVs(S, t)]p(y)m(dy)

where λ is the intensity of a Poisson process describing the arrival of jumps and

where m describes the distribution of jumps of size γ(y). As in [7] all market

parameters in (2.3) may depend on t and S. At this time, only the American put

is considered so that (2.3) must be solved subject to the boundary conditions (2.2).

A detailed derivation of the valuation equation (2.3) for an American put under

appropriate financial hypotheses, its equivalence to a variational inequality, and

a characterization of its solution may be found in [8]. While the analysis of [8]

pertains to a very general jump diffusion model, the numerical simulation of op-

tions with jumps appears quite limited at this time and is usually based on the

semi-analytic solution formulas of the Black-Scholes equation [5] (which fail in gen-

eral when the volatility depends on S). We contend that the numerical methods

available for Stefan type free boundary conditions provide useful alternate solu-

tion methods which, moreover, are no longer restricted to the Black-Scholes model

with constant interest rates and volatilities. One such method is the method of

lines coupled with a sweep method for the integration of a time discrete analog of

the free boundary value problem [7]. Its application to a specific jump diffusion

process will be described where m(dy) is a counting measure so that (2.3) becomes

1

2
σ2S2Vss +

(
r − ρ− λ

m∑
i=1

πiki

)
SVs − (r + λ)V − Vt(2.4)

=− λ
m∑
i=1

πiV ((1 + ki)S, t)

where πi is the probability of a jump in the asset price S of relative size ki occurring

per unit time with probability λ. The special case of n = 1 is subject of a recent

paper [1] on American calls where an approximate analytic solution is derived

with a separation of variables technique applied to a simplified valuation equation.

Some additional comments on this case may be found in [10]. Here we shall solve

(2.4) numerically without any simplification of the model.
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3. The Method of Lines Algorithm

Since the valuation equation is linear it is convenient to scale V and S according

to

x = S/K, u = V/K

so that (2.4) is replaced by the free boundary problem

1

2
σ2x2uxx +

(
r − ρ− λ

m∑
i=1

πiki

)
xux − (r + λ)u− ut = −λ

m∑
i=1

πiu((1 + ki)x, t).

Consistent with our earlier work on pricing options we shall approximate the time-

continuous problem with a sequence of time discrete free boundary problems for

the solution {un, sn} at time level tn. A first order time approximation leads to

1

2
σ2x2u′′ +

(
r − ρ− λ

m∑
i=1

πiki

)
xu′ −

(
r + λ+

1

∆t

)
u(3.1)

= −λ
m∑
i=1

πiu((1 + ki)x)−
1

∆t
un−1(x)

while the recommended second order method uses

1

2
σ2x2u′′ +

(
r − ρ− λ

m∑
i=1

πiki

)
xu′ −

(
r + λ+

3

2∆t

)
u(3.2)

= −λ
m∑
i=1

πiu((1 + ki)x)−
3

2∆t
un−1(x) −

1

2∆t
(un−1(x)−un−2(x))

both subject to

u(s) = 1− s, u′(s) = −1(3.3)

lim
x→∞

u(x) = 0,

u0(x) = max{1− x, 0},

where for convenience a constant time step has been assumed and the subscript n

has been suppressed.

It is well known that an American put without jumps has a continuous free

boundary s(t) on [0, T ] with

lim
t→0

s(t) = 1.

However, as discussed below, in the presence of jumps even an American put

may satisfy the condition known for an American call with continuous dividend

payment

lim
t→0

s(t) 6= 1.
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Our numerical method is fully time implicit and does not require the location of

s(0+).

Both approximations of the differential equation are written as

(3.4) Lu ≡ a(x)u′′ + b(x)u′ − c(x)u = H(x, u) + γ(x)

where the coefficients and the right hand side are read off by comparing (3.1)

or (3.2) with (3.4). We note that a(x) > 0 and c(x) = O(1/∆t) on (0,∞).

γ incorporates the history of the process.

To solve the free boundary problem for (3.4) it is, of course, possible to replace

the differential equation with a typical finite difference approximation as suggested

in [11] for the Black-Scholes equation where the jump terms are obtained from

an interpolation between bracketing mesh points. However, the sweep method

advocated in [7] does not seem to be able to account for the functional terms. It

does remain applicable if we use an iteration of the form

(3.5) Luk+1 = H(x, uk) + γ

where u0 is extrapolated from the solution at preceding time levels. The solution

uk in each iteration is found from the Riccati transformation method described

in [7] and summarized below.

For a put the infinite interval [0,∞) is truncated to [0,X] and the boundary

condition at infinity is approximated by the so-called up-and-out barrier condition

u(X) = 0.

In order to compute functional terms the solution is continued as

u(x) = 0 for x ≥ X

and

u(x) = 1− x for x ≤ s.

The solution u(x) of (3.5) is then written as

(3.6) u(x) = R(x)v(x) + w(x)

where R, w and v are found from the Riccati equation

(3.7) R′ = 1 +
b

a
R−

c

a
R2, R(X) = 0

and the linear equations

(3.8) w′ = −
c

a
Rw+

R(H + γ)

a
, w(X) = 0
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(3.9) v′ =

(
c

a
R−

b

a

)
v +

c

a
w +

(H + γ)

a
, v(s) = −1

The free boundary s is the first positive root of

(3.10) φ(x) = 1− x− [R(x)(−1) + w(x)] = 0

below the free boundary sn−1 at the preceding time level. The iteration at time

level tn terminates when max{|uk+1 − uk|, |sk+1 − sk|} < 10−6. The integration

of (3.7), (3.8) is called the forward sweep, the integration of (3.9) is the backward

sweep.

For the numerical integration of the sweep equations a fixed but not necessarily

constant mesh is imposed on [0,X]. The Riccati equation (3.7) for a time inde-

pendent volatility and interest rate and constant time step is time and iteration

independent. Hence it is integrated only once and stored. Similarly, all time and

iteration independent information needed for the evaluation of the right hand side,

such as interpolation weights for the functional terms, is precomputed and stored.

In each iteration at a given time level the linear equation for w is integrated and

the algebraic sign of φ is monitored on (0, sn−1). If it changes sign then s is the

zero of the Lagrange interpolant through the closest four nodal values of φ. The

first step of the integration of v goes from s to the next largest fixed mesh point

and then proceeds along the regular mesh. All integrations are carried out with

the trapezoidal rule. The resulting algebraic equations are quadratic for the Ric-

cati equation and linear for w and v and hence can be solved analytically. The

root of the cubic interpolant of φ is found with Newton’s method.

4. A numerical Example

To illustrate the performance of the numerical method we shall recompute some

data of Table 1 in [7] in the presence of jumps. Specifically, let us consider the

Black-Scholes model with two jumps

1

2
σ2x2uxx + (r − ρ− λ(π1k1 + π2k2))xux − (r + λ)u− ut(4.1)

= −λ(π1u((1 + k1)x, t) + π2u((1 + k2)x, t))

where k1k2 < 0. Fig. 4.1 shows the free boundaries obtained with the implicit Euler

method (3.1) for a case without jumps (λ = 0) and with jumps (λ = .1). Fig. 4.2

shows u, u′ ≡ v and u′′ ≡ v′ (given by the right-hand-side of equation (3.9)). The

plotted curves correspond to a linear interpolation of the nodal values. No further

smoothing was employed.

We remark that very exaggerated jump conditions were chosen simply to obtain

clearly different early exercise boundaries. Even so, only two iterations per time
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Figure 4.1. Early exercise boundary for an American put with r = .12, ρ = 0,

σ = .4, T = .5. Upper curve: no jumps. Lower curve: λ = .5, k1 = .5, π1 = .5,

k2 = −.5, π2 = .5, ∆x = .001, ∆t = .5/400, X1 = 2.5.
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Figure 4.2. Value and two “Greeks” for the put with jumps of Fig. 4.1. Upper

curve: “gamma” ≡ u′′(x). Middle curve: value of the option ≡ u(x). Lower curve:

“delta” ≡ u′(x).

step were required to meet our convergence criterion of |sk+1 − sk|, |uk+1 − uk| ≤
10−6.

A necessary condition for the existence of an early exercise boundary, both for

a put and call is

u′′(s) ≥ 0
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since otherwise u cannot lie above the obstacle max{0, 1 − x} (for a put) or

max{0, x− 1} (for a call). We find from (3.1) that at the free boundary s

1

2
σ2s2u′′(1) =

(
r − ρ− λ

np∑
i=1

πi(kis− u(1 + ki)s)

)

− λ
nm∑
j=1

πj (kjs− u((1 + kj)s) + (r + λ)(1− s))

where the first sum on the right collects all positive jumps {ki > 0} and the second

sum accounts for negative jumps {kj ≤ 0}. This expression can be rewritten

algebraically as

1

2
σ2s2u′′(s) = r − ρs−

np∑
i=1

πi[u((1 + ki)s)− (1− (1 + ki)s)]

Since for a put u(x) > max{0, 1−x} for x > s we cannot conclude that u′′(s) > 0

under all circumstances. On the other hand, since u((1+k)s)− (1− (1 +k)s)→ 0

as s → 0 it follows that lims→0 u
′′(s) > 0. Hence there would appear to be a

free boundary s(t) such that limt→0 s(t) 6= 1 as in an American call with a small

dividend. Numerical experiments with r = .0001, ρ = 0, σ = .4 and a single

positive jump of size k1 = .5 with probability λ = .1 consistently lead to the

estimate limt→0 s(t) = .666 and a smooth subsequent evolution of s(t).

When the method of lines is applied to an American call with jumps then the

boundary data for (4.1) become

u(0, t) = 0, u(s(t), t) = s− 1, ux(s(t), t) = 1.

The sweeps are now carried out in reversed directions. (3.7), (3.8) are integrated

from 0 to the free boundary s(t), the function (3.10) becomes

φ(x) ≡ x− 1− [R(x)(+1) + w(x)] = 0

and the equation (3.9) is integrated backward from s to 0. To avoid the (numerical)

degeneracy at x = 0 the coefficient of uxx is approximated by

σ(x) = max{10−6, 1/2σ2x2}.

Alternatively, a down-and-out barrier condition can be imposed. No further

changes are necessary.

For comparison a method of lines code for calls with jumps was applied to the

simulation reported in [1]. The following data are representative

We know little about the data cited in [1]. However, the method of lines data

are unchanged when the space and time step are varied.
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case 1: r = .06, ρ = .1 S Finite Approx MOL

Difference Method

case 1: r = .06, ρ = .1 80 1.15 1.16 1.15

90 3.45 3.47 3.46

100 7.65 7.65 7.67

110 13.77 13.75 13.80

120 21.48 21.42 21.52

case 2: r = .06, ρ = .02 80 1.40 1.40 1.41

90 4.02 4.02 4.04

100 8.60 8.60 8.64

110 15.05 15.05 15.12

120 22.93 22.92 23.03

MOL: ∆x = .001, ∆t = .25/400.

Table 4.1. Comparison of MOL call values with data reported in [1]. Strike price

K = 100, σ = .4, T = .25, λ = 1, k = −.1.

5. Comments on Convergence

Since at every time level we propose to solve the functional differential equation

(3.4) iteratively the question of convergence of the iteration arises. We remark

that such iteration is commonly applied to functional differential equations (see,

e.g. the collection of papers on boundary value problems for functional differential

equations [3]) for which convergence is established by fixed point methods common

in the theory of ordinary differential equations. However, for our elliptic operator

a technique of proof borrowed from finite elements appears simpler to apply.

We cannot yet treat the free boundary problem for the American put with

jumps but we can consider the simpler problem of the European put with a single

jump. This problem does not have a free boundary. It has the following structure

Lu ≡ a(x)u′′ + b(x)u′ − c(x)u = H(x, u(φ(x)) + γ(x), x ∈ I(5.1)

u(x) = ψ(x), x ∈ Ic

where I is the open interval (x0, x1) contained in [X0,X1] and Ic denotes its

complement in [X0,X1]. We assume that

φ : I → [X0,X1]

describes a positive jump (φ(x) ≥ x) or a negative jump (φ(x) ≤ x).

Throughout this discussion we shall assume that all data functions are smooth.

In addition we impose the hypotheses:

a(x) > 0, x ∈ Ī

c(x) ≥ c0 > 0, x ∈ I

|H(x, u)−H(x, v)| ≤ L|u− v|, x ∈ I
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and

ψ ∈ H1[X0,X1].

For a given f ∈ H1[X0,X1] let T denote the mapping

u = Tf

where u is the solution of

Lu = H(x, f(φ(x)) + γ(x), x ∈ I

u(x0) = ψ(x0), u(x1) = ψ(x1)

u = ψ, x ∈ Ic.

Since H is continuous in x, and a and c are strictly positive on Ī it follows that

this two point boundary value problem has a unique classical solution and that

u ∈ H1[X0,X1]. In particular, if we define

S =
{
f ∈ H1[X0,X1], f = ψ, x ∈ Ic

}
then T maps S into S.

Convergence of our numerical method for the European put follows if T is

contractive in L2[X0,X1]. To handle the convection term bu′ in (5.1) let w denote

a solution of

(5.2) (a(x)w)′′ − (b(x)w)′ − 2αc(x)w = 0, x ∈ I

where α ∈ (0, 1) is a constant. We shall make the assumption that boundary or

initial data for (5.2) can be chosen such that

(5.3) w is positive on I and w′ > 0 on I for positive jumps (φ(x) ≥ x).

(5.4) w is positive on I and w′ < 0 on I for negative jumps (φ(x) ≤ x).

In either case it follows that w(x)/w(φ(x)) ≤ 1. If both positive and negative

jumps occur then (5.3), (5.4) must be replaced by a bound on w(x)/w(φ(x)) which

would enter into the estimates given below.

We define an equivalent norm on L2[X0,X1] induced by the inner product

〈f, g〉 =

∫ X1

X0

f(x)g(x)c(x)w(x) dx

where c and w are continued as constants over Ic. Then for f, g ∈ S and u = Tf

and v = Tg it follows from∫ X1

X0

(Lu− Lv)(u− v)w dx =

∫ x1

x0

(H(x, f(φ(x)) −H(x, g(φ(x))(u − v)w dx
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and u = v on Ic that∫ X1

X0

(u− v)′2(aw) dx+ (1− α)‖u− v‖2

= −

∫ x1

x0

H(x, f(φ(x))−H(x, g(φ(x))(u − v)w dx.

Standard estimates now yield

(1− α+ λ1)‖u− v‖2 ≤ L

∫ X1

X0

|f(φ(x)) − g(φ(x))| |u− v|w dx

where λ1 is the smallest eigenvalue of the Sturm-Liouville problem

(awu′)′ + λcwu = 0,

u(x0) = u(x1) = 0 .

Since 0 < w(x)/w(y) ≤ 1 for y = φ(x) and dy = φ′(x) dx we find that

L

∫ X1

X0

|f(y)− g(y)| |u− v|w dx ≤
L

cm

∫ X1

X0

|f(y)− g(y)|c(y)w(x)dx‖u − v‖

≤
L

cm
√
|φ′|m

‖f − g‖‖u− v‖

where |φ′|m = min |φ′|. We can conclude that T is a contraction whenever

(5.5) δ ≡
L

cm
√
|φ′|m(1− α+ λ1)

< 1.

For any continuous initial guess u0 we observe that Tu0 ∈ S so that convergence

is global. Moreover, it follows from our discussion that the sequence {uk} is in

fact a sequence of equicontinuous functions on [X0,X1] so that uk converges to a

classical solution of (5.1) as k→∞.

When the above considerations are applied to the Black-Scholes model for a

European put with a negative jump then the following specific data arise

a(x) =
1

2
σ2x2

b(x) = r − ρ− λk

c(x) =

(
r + λ+

1

∆t

)
γ(x) = −

1

∆t
un−1(x)
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with a jump term of the form

H(x, u(φ(x)) = −λu((1 + k)x) where k > −1.

The problem is defined on the interval [0,∞) which for the computation is trun-

cated to [ε,X1] with 0 < ε� 1 and X1 � 1. The boundary data for the European

put (see [11])

u(ε) = e−rtn and u(X1) = 0

are continued as constants over Ic in [0,∞). The existence of an appropriate

weight function w follows for ∆t so small that

2α

(
r + λ+

1

∆t

)
− (r − λk) > 0

because then initial conditions w(ε) = 1, w′(ε) > 0 or w(X1) = 1, w′(X1) < 0

both guarantee a monotone w. Hence the contraction constant (5.5) is valid which

in this case is

δ ≤
∆t

(1− α)(1 + ∆t(r + λ))
.

We see that the contraction constant is of order ∆t uniformly with respect to ε

and X1. It seems reasonable to expect that the free boundary of the American

put does not greatly influence this conclusion and hence that the rapid conver-

gence observed in numerical experiments was to be expected. We remark that in

this setting the Riccati equation (3.6) has a non-positive solution R(x) which is

bounded below by −m
√

∆tx for sufficiently large m > 0 because R′(x) < −m
√

∆t

whenever R(x) = −m
√

∆tx implies that R(x) cannot cross the line y = −m
√

∆tx.

Moreover, if 0 ≤ un−1 ≤ 1 and 0 ≤ uk−1 < 1 then 0 ≤ w ≤ 1 and 0 ≤ uk ≤ 1

uniformly with respect to ε. Hence neither the analysis nor the algorithm break

down as ε → 0 nor does the functional term influence the stability of the time

implicit discretization of the European put problem.
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