Acta Math. Univ. Comenianae Vol. LXIX, 1(2000), pp. 9–17

SUBALTERNATIVE ALGEBRAS

A. CEDILNIK

ABSTRACT. An algebra is called subalternative if the associator of any three linearly dependent elements is their linear combination. We prove that in characteristic $\neq 2, 3$ any such algebra is Maltsev-admissible and can be identified with a hyperplan in certain unital alternative algebra.

1. INTRODUCTION

In [2] we discussed **subassociative algebras** in which any associator is a linear combination of its arguments. A subassociative algebra is always Lie-admissible. In any associative unital algebra G, one can make a hyperplan H, which does not contain the unit, a subassociative algebra by projecting the multiplication from G into H; any subassociative algebra in characteristic not 2, 3 can be made in this way.

The following article is a continuation of [2]. We shall generalize the previous results to **subalternative algebras**, in which any associator of linearly dependent elements is their linear combination. It is not surprising that any such algebra is Maltsev-admissible and can be constructed on a hyperplan of some alternative algebra (except of course pathological cases in characteristic 2 or 3).

In [4] there are classified anticommutative algebras (over an algebraically closed field of characteristic $\neq 2$) in which there exist bilinear forms $(x, y) \mapsto N(x, y)$ satisfying the identities: N(x, y) = N(y, x) (symmetry), N(xy, z) = N(x, yz) (invariancy), (xy)y = N(x, y)y - N(y, y)x (which is a special form of subalternativity, since (xy)y = [x, y, y] = -[y, y, x]). We will prove that the existence and the properties of such a form are consequences of subalternativity, even if the base field is not algebraically closed, which gives a still wider significance to the above mentioned classification.

Throughout the article we will suppose the conventions and definitions from [2].

Received May 14, 1998.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 17A30, 17D10.

A. CEDILNIK

2. Preliminary Facts

Definition 1. Let *H* be an algebra with a multiplication $(x, y) \mapsto xy$, over a field **F**. *H* is **subalternative algebra** if $\forall (x, y) \in H^2 \exists (\alpha, \beta, \gamma, \delta) \in \mathbb{F}^4$:

$$[x, x, y] = \alpha x + \beta y, \ [x, y, y] = \gamma x + \delta y.$$

Definition 2. A subalternative algebra H from Definition 1 is **proper** if there exists such a bilinear form $A: H^2 \to \mathbb{F}$ that the following holds:

(1)
$$[x, x, y] = A(x, y)x - A(x, x)y,$$

(2)
$$[x, y, y] = A(y, y)x - A(x, y)y,$$

$$A(x^2, y) = A(x, xy),$$

(3) A(x, y) = A(x, xy),(4) $A(xy, y) = A(x, y^2).$

Because of the identity

(5)
$$[x, y, x] = [x, x + y, x + y] - [x, x, x] - [x, x, y] - [x, y, y]$$

the associator [x, y, x] in a subalternative algebra is also a linear combination of its arguments. This implies the following proposition.

Proposition 3. An algebra H over \mathbb{F} is subalternative if and only if for any linerly dependent triple $\{x, y, z\} \subset H$, the associator [x, y, z] is a linear combination of its arguments.

Of course, any subassociative algebra is subalternative, and any proper subassociative algebra is proper subalternative.

The next proposition is obvious.

Proposition 4. Any subalternative algebra of dimension ≤ 3 is subassociative.

Propositions 5 and 6 from [2] are (mutatis mutandis) correct also for alternative and subalternative algebras.

Proposition 5. Let G be an alternative algebra with multiplication $(a, b) \mapsto a * b$ and with a unit e. Further let $P: G \to \mathbb{F}$ be a linear functional and P(e) = 1. Define in H := Ker P a new multiplication

$$(x,y) \mapsto xy := x * y - A(x,y)e,$$

where A(x, y) := P(x * y). Then H is a proper subalternative algebra and A is the bilinear form from Definition 2.

Proposition 6. Let H be a proper subalternative algebra from Definition 2, and $G := \mathbb{F}e \oplus H$, where $e \notin H$. Introduce in G a new multiplication

$$\begin{aligned} (\alpha e + x, \beta e + y) &\mapsto (\alpha e + x) * (\beta e + y) := \\ &= (\alpha \beta + A(x, y))e + \alpha y + \beta x + xy \,. \end{aligned}$$

G with this multiplication is an alternative algebra with unit e.

Corollary 7. Let H be a proper subalternative algebra from Definition 2. Then for any linearly dependent triple $\{x, y, z\} \subset H$ there holds:

(6)
$$[x, y, z] = A(y, z)x - A(x, y)z,$$

(7)
$$A(xy,z) = A(x,yz).$$

Proposition 8. Improper subassociative algebra is also improper subalternative.

Proof. For the two dimensional strange subassociative algebras from [2, Tables 7 and 8], it is enough to look over the associators [p, p, q] and [q, p, p].

In the case of three dimensional strange subassociative algebras [2, Table 9], the best way to check the proposition is to use a computer.

Now, suppose that the observed algebra is improper non-strange (with a dimension > 2 and chr $\mathbb{F} = 2$). Then:

$$[x, y, z] = A'(y, z)x + B'(x, z)y + C'(x, y)z$$

identically, for certain bilinear forms A', B', C'.

$$\begin{split} [x,y,y] &= A'(y,y)x + B'(x,y)y + C'(x,y)y \\ &= A(y,y)x + A(x,y)y \end{split}$$

Then: A(x,y) = B'(x,y) + C'(x,y) = A'(x,y) by [2, (15)] for any x, y linearly independent, and then also A(y,y) = A'(y,y).

$$\begin{split} [x,x,y] &= A'(x,y)x + B'(x,y)x + C'(x,x)y \\ &= A(x,y)x + A(x,x)y \end{split}$$

This gives B'(x, y) = 0 for any x, y, which is impossible.

Remark. In fact, we proved a little more: if a subassociative algebra has a bilinear form A with the identities (1) and (2), it is proper subassociative.

From Propositions 4, 5, 8 and Corollary 7 we find the following interesting consequences:

- a) Alternative algebra of dimension ≤ 3 is associative.
- b) Unital alternative algebra of dimension ≤ 4 is associative.

For $U \subset H$, let $\operatorname{alg}_H U$ be the subalgebra of H generated by U, and for $V \subset G$ let $\operatorname{alg}_G V$ be the subalgebra of G generated by V; here H and G are the algebras from Propositions 5 and 6. Any element from $\operatorname{alg}_H\{u,v\}$ is also from $\operatorname{alg}_G\{u,v,e\}$. If $x \in \operatorname{alg}_H\{u,v\}$ then there exists such $\alpha \in \mathbb{F}$ that $\alpha e + x \in \operatorname{alg}_G\{u,v\}$. According to Artin's theorem, $\operatorname{alg}_G\{u,v\}$ is associative subalgebra of G. If x, y, z are from $\operatorname{alg}_H\{u,v\}$ and hence for certain α, β, γ also $\alpha e + x, \beta e + y, \gamma e + z$ from $\operatorname{alg}_G\{u,v\}$, then

$$0 = [\alpha e + x, \beta e + y, \gamma e + z]_G = [x, y, z]_G$$

= $[x, y, z]_H + A(x, y)z - A(y, z)x + (A(xy, z) - A(x, yz))e$.

So we have

Proposition 9. Let H be a proper subalternative algebra. Then for any $(u, v) \in H^2$, $alg_H\{u, v\}$ is a proper subassociative algebra.

3. PROPER SUBALTERNATIVE ALGEBRAS

Theorem 10. Let H be a subalternative algebra over \mathbb{F} , chr $\mathbb{F} \neq 2$, excluding also the case dim H = 2, $\mathbb{F} = \mathbb{Z}_3$. Then there exists such a bilinear form A that (1) and (2) hold.

Proof. If dim $H \leq 3$, H is subassociative and the theorem holds. Hence we shall suppose also that dim H > 3.

$$[x, z, y] + [z, x, y] = [x + z, x + z, y] - [x, x, y] - [z, z, y] \in \lim\{x, y, z\}.$$

By [2, Lemma 7] there exist three bilinear forms A_1, A_2, A_3 , such that:

$$[x, z, y] + [z, x, y] = A_1(y, z)x + A_2(x, z)y + A_3(x, y)z.$$

For z = x we get:

$$[x, x, y] = \frac{1}{2}(A_1(y, x) + A_3(x, y))x + \frac{1}{2}A_2(x, x)y$$

Analogous conclusion holds for [y, x, x]. Hence, there exist four bilinear forms A, B, C, D, such that the following identities hold:

(8)
$$[x, x, y] = A(x, y)x - B(x, x)y$$

(9)
$$[y, x, x] = C(x, x)y - D(y, x)x$$

12

(7) and (8) give for x = y a new identity:

(10)
$$A(x,x) + D(x,x) = B(x,x) + C(x,x)$$

From (5) if follows:

(11)
$$[x, y, x] = (A(y, x) + D(y, x) - B(y, x) - B(x, y))x + (A(x, x) - C(x, x))y.$$

If we have for some $x : x^2 = \lambda x$, the associator [x, x, x] gives us

(12)
$$B(x,x) = A(x,x).$$

Next, suppose that $x^2 \neq \lambda x$. If we use (8), (9) and (11) in Teichmüller equation E(x, x, x, x), we get:

$$0 = (3A(x,x) - B(x,x) - 2C(x,x))x^{2} + (\dots)x.$$

Therefore,

(13)
$$B(x,x) = 3A(x,x) - 2C(x,x) + C(x,x) + C(x$$

Suppose additionally that $B(x, x) \neq A(x, x)$. Then $A(x, x) \neq C(x, x)$ and from $E(x, x, x^2, x)$ it follows: $xx^2 = \alpha_1 x + \beta_1 x^2$. Then: $x^2x = [x, x, x] + xx^2 = \alpha_2 x + \beta_1 x^2$. Further: $A(x, x^2)x - B(x, x)x^2 = [x, x, x^2] = x^2 x^2 - x(\alpha_1 x + \beta_1 x^2) = x^2 x^2 - (\alpha_1 + \beta_1^2)x^2 - \alpha_1\beta_1 x$, and $x^2x^2 = \alpha_3 x + \beta_2 x^2$. alg $\{x\}$ is therefore a two dimensional algebra and hence subassociative. If it is proper subassociative, it possesses two bilinear forms A', B' for which the following identities hold: B'(u, u) = 0 and

$$[u, v, w] = A'(v, w)u + B'(u, w)v - (A'(u, v) + 2B'(u, v))w.$$

From $[x, x, x^2]$ and $[x^2, x, x]$ we get B(x, x) = A'(x, x) and C(x, x) = A'(x, x). But then we find the contradiction in (13). Hence, $alg\{x\}$ is an algebra from [2, Table 8] and $x = \pm p$. From this table and (8) and (9), the associators [p, p, p] and [p, p, q] determine $A(p, p) = 1 - \alpha$ and the associator [q, p, p] also $C(p, p) = 1 - \alpha$ and the contradiction is final.

So, (12) holds in any case. (10) gives also D(x, x) = C(x, x) and (8), (9) and (11) can be formulated with only two bilinear forms:

(14)
$$[x, x, y] = A(x, y)x - A(x, x)y,$$

(15)
$$[y, x, x] = D(x, x)y - D(y, x)x,$$

(16) [x, y, x] = (D(y, x) - A(x, y))x + (A(x, x) - D(x, x))y.

We have seen that if $x^2 \neq \lambda x$ then (13) holds and consequently A(x, x) = D(x, x). We claim that this is always true. So, suppose that $x^2 = \lambda x$ and $A(x, x) \neq D(x, x)$. Choose y linearly independent from x. From E(x, y, x, x) it follows: $yx = \alpha x + \frac{\lambda}{2}y$ (for some α). From E(x, x, y, x) it follows: $xy = \beta x + \frac{\lambda}{2}y$ (for some β). But then $[x, y, x] = \frac{\beta - \alpha}{2}\lambda x$, which is in a contradiction with (16).

The linearized form of A(x, x) = D(x, x) is

(17)
$$A(x,y) + A(y,x) = D(x,y) + D(y,x),$$

and the linearized form of (15) is

(18)
$$[y, x, z] + [y, z, x] = -D(y, z)x + (D(x, z) + D(z, x))y - D(y, x)z.$$

From E(y, x, x, x) it follows:

(19)
$$[y, x, x^2] - [y, x^2, x] = D(yx, x)x - D(y, x)x^2.$$

We add the identity (18), with $z = x^2$, to (19):

(20)
$$[y, x, x^2] = (\dots)x + (\dots)y - D(y, x)x^2.$$

From E(x, y, x, x) it follows:

(21)
$$[x, y, x^{2}] = (\dots)x - A(x, y)x^{2}$$

In the identity

$$[x + y, x + y, x^{2}] - [x, x, x^{2}] - [y, y, x^{2}] = [x, y, x^{2}] + [y, x, x^{2}]$$

we use (14) on the left side and (20) and (21) on the right side:

$$0 = \alpha x + (A(y, x) - D(y, x))x^2 + \beta y$$

If we choose $y \notin \lim\{x, x^2\}$, we find $\beta = 0$, and since β depends only to x, it then follows identically:

(22)
$$(A(y,x) - D(y,x))x^2 + \alpha x = 0.$$

Suppose that x and y are such elements that $A(y,x) \neq D(y,x)$. Then $x^2 = \lambda x$ and because of (17) also $y^2 = \mu y$. Since $A(y,\gamma x + \delta y) - D(y,\gamma x + \delta y) = \gamma(A(y,x) - D(y,x))$, we have $w^2 = \nu w$ for each $w = \gamma x + \delta y$. If dim alg $\{x,y\} = 2$, this is an algebra from [2, Table 5] (without condition $pq \neq qp$). But in this algebra A = D; hence, dim alg $\{x,y\} > 2$. Since $(x + y)^2 = \tau(x + y)$ and then $xy + yx = (\tau - \lambda)x + (\tau - \mu)y$, it must be: $z := xy \notin lin\{x,y\}$. From the associators [x, y, y], [y, x, y], [x, x, y] and [x, y, x] we get that zy, yz, xz and zx are linear combinations of x, y and z. If z and z^2 were linearly independent, it would be A(y, z) = D(y, z) and consequently $A(y, x + z) \neq D(y, x + z)$ and $(x + z)^2 = \xi(x + z)$, which means that z^2 is a linear combination of x, y and z. Therefore, dim alg $\{x, y\} = 3$ and according to [2, Theorem 12] we conclude that alg $\{x, y\}$ is proper subassociative and again A = D.

Theorem 11. Let H be a subalternative algebra with a bilinear form A for which (1) and (2) hold.

- (i) If chr $\mathbb{F} \neq 3$ or if H is a subassociative algebra, then H is a proper subalternative algebra.
- (ii) If chr $\mathbb{F} = 3$ and H is not subassociative then the following weaker identities hold:

(23)
$$A(xy,x) = A(x,yx),$$

(24)
$$A(x^2, y) + A(yx, x) = A(x, xy) + A(y, x^2).$$

Proof. As it was pointed out in Remark after Proposition 8, the subassociativity is sufficient for properness. Therefore we may suppose that dim H > 3. Denote:

$$\begin{split} R(x,y) &:= A(x^2,y) - A(x,xy) \,, \\ M(x,y) &:= A(xy,x) - A(x,yx) \,, \\ L(x,y) &:= A(yx,x) - A(y,x^2) \,. \end{split}$$

(25)
$$[x^{2}, x, y] = [x^{2}, x + y, x + y] + [x, x, yx] - [x^{2}, x, x] - [x^{2}, y, y] - x[x, y, x] - [x, x, y]x - [x, xy, x] = A(x, y)x^{2} - A(x^{2}, x)y - (R(x, y) + M(x, y))x ,$$

considering (5) and consequently

$$[x, y, x] = (A(y, x) - A(x, y))x.$$

(26)
$$[x, x^2, y] = [x, x^2 + y, x^2 + y] + [xy, x, x] - [x, x^2, x^2] - [x, y, y] - x[y, x, x] - [x, y, x]x - [x, yx, x] = A(x^2, y)x - A(x, x^2)y - (M(x, y) + L(x, y))x$$

If we put (25) and (26) into the identity

$$[x + x^{2}, x + x^{2}, y] = [x, x, y] + [x^{2}, x^{2}, y] + [x^{2}, x, y] + [x, x^{2}, y],$$

we get:

(27)
$$R(x,y) + 2M(x,y) + L(x,y) = 0.$$

A. CEDILNIK

Further,

(28)
$$[y, x^2, x] = [x^2 + y, x^2 + y, x] + [x, x, yx] - [x^2, x^2, x] - [y, y, x] - x[x, y, x] - [x, x, y]x - [x, xy, x] = A(x^2, x)y - A(y, x^2)x - (R(x, y) + M(x, y))x.$$

Considering (27) and (28), we also get:

(29)
$$[y, x, x^2] = [y, x + x^2, x + x^2] - [y, x, x] - [y, x^2, x^2] - [y, x^2, x]$$
$$= A(x, x^2)y - A(y, x)x^2 - (M(x, y) + L(x, y))x.$$

Including (25) and (26) into E(x, x, x, y), we find:

$$(A(x^{2}, x) - A(x, x^{2}))y = (L(x, y) - 2R(x, y))x$$

Choosing x and y linearly independent we get $A(x^2, x) = A(x, x^2)$, which then implies:

$$L(x,y) = 2R(x,y).$$

Similarly we find from (28), (29) and E(y, x, x, x):

(31)
$$R(x,y) = 2L(x,y).$$

If chr $\mathbb{F} \neq 3$, from (30) and (31) we already find L = R = 0. From R(x + y, x) = 0 follows also M = 0.

In the case chr $\mathbb{F} = 3$, (30) and (31) are equivalent with (24) and further (27) with (23).

Theorem 12. Let H be a subalternative algebra over \mathbb{F} . Each of the following conditions

- (i) dim $H \leq 3$;
- (ii) *H* is subassociative;
- (iii) chr $\mathbb{F} \neq 2, 3;$
- (iv) *H* is proper subalternative;

implies that H is Maltsev-admissible.

Proof. (i) \Rightarrow (ii) \Rightarrow *H* is Lie-admissible, by [2, Theorem 13] \Rightarrow *H* is Maltsev-admissible.

From Theorems 10 and 11 the implication (iii) \Rightarrow (iv) follows. Further, G from Proposition 6 is alternative algebra, the commutator algebra G^- is Maltsev and $H^- \cong G^-/(\mathbb{F}e)^-$ is also Maltsev.

16

Theorem 13. Let H be an anticommutative subalternative algebra over \mathbb{F} with chr $\mathbb{F} \neq 2$. Then H is proper subalternative and also Maltsev algebra and for the bilinear form A from (1) and (2) the following identities hold:

$$(33) A(xy,z) = A(x,yz),$$

(34)
$$(xy)y = A(y,y)x - A(x,y)y.$$

Proof. If dim $H \leq 3$, H is subassociative and, according to [2, Theorem 13], the theorem above is correct. For dim H > 3, (1) and (2) hold for an adequate A, by Theorem 10. The anticommutativity implies flexibility [x, y, x] = 0 and (5) implies (32). (34) is a consequence of (2) and the anticommutativity. If we linearize (23), which is implied either by chr $\mathbb{F} = 3$ or by chr $\mathbb{F} \neq 3$ and (7), according to Theorem 11, we get:

$$A(xy, z) + A(zy, x) = A(x, yz) + A(z, yx).$$

Using (32) and anticommutativity, we transform this identity into

$$2A(xy,z) = 2A(x,yz)$$

which is (33), and the properness of the algebra is proved. Then, by Theorem 12, H is Maltsev-admissible and hence Maltsev.

The classification of algebras from Theorem 13 for \mathbb{F} algebraically closed is described in [4, Theorem 3.3].

A natural question for the end: is it possible and significant to generalize the theory treated in this article? We suggest two ways of thinking. Non-commutative Jordan algebras are a kind of natural generalization of alternative algebras and are defined with associator identities; hence, perhaps sub-(non-commutative Jordan) algebras are suitable research target. Secondly, an important example for motivation for further research is the color algebra ([**3**]).

References

- Cabrera Garcia M., Martinez Moreno J. and Rodriguez Palacios A., Mal'cev H^{*}-algebras, Math. Proc. Camb. Phil. Soc. 103 (1988), 463–471.
- 2. Cedilnik A., Subassociative algebras, Acta Math. Univ. Comen. 66(2) (1997), 229–241.
- 3. Elduque A., On the color algebra, Algebras Groups Geom. 5 (1988), 395–410.
- 4. _____, Alternative quadratic algebras, J. Math. Phys. **31**(1) (1990), 1–5.
- 5. Myung H. C., Malcev-Admissible Algebras, Birkhäuser, Boston, 1986.

A. Cedilnik, Biotehniška fakulteta, Univerza v Ljubljani, Večna pot 83, 1000 Ljubljana, Slovenia; e-mail:anton.cedilnik@uni-lj.si