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SUBALTERNATIVE ALGEBRAS

A. CEDILNIK

Abstract. An algebra is called subalternative if the associator of any three linearly

dependent elements is their linear combination. We prove that in characteristic
6= 2, 3 any such algebra is Maltsev-admissible and can be identified with a hyperplan
in certain unital alternative algebra.

1. Introduction

In [2] we discussed subassociative algebras in which any associator is a linear
combination of its arguments. A subassociative algebra is always Lie-admissible.
In any associative unital algebra G, one can make a hyperplan H, which does not
contain the unit, a subassociative algebra by projecting the multiplication from G

into H; any subassociative algebra in characteristic not 2, 3 can be made in this
way.

The following article is a continuation of [2]. We shall generalize the previous
results to subalternative algebras, in which any associator of linearly dependent
elements is their linear combination. It is not surprising that any such algebra is
Maltsev-admissible and can be constructed on a hyperplan of some alternative
algebra (except of course pathological cases in characteristic 2 or 3).

In [4] there are classified anticommutative algebras (over an algebraically closed
field of characteristic 6= 2) in which there exist bilinear forms (x, y) 7→ N(x, y) sat-
isfying the identities: N(x, y) = N(y, x) (symmetry), N(xy, z) = N(x, yz) (invari-
ancy), (xy)y = N(x, y)y − N(y, y)x (which is a special form of subalternativity,
since (xy)y = [x, y, y] = −[y, y, x]). We will prove that the existence and the
properties of such a form are consequences of subalternativity, even if the base
field is not algebraically closed, which gives a still wider significance to the above
mentioned classification.

Throughout the article we will suppose the conventions and definitions from [2].
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2. Preliminary Facts

Definition 1. Let H be an algebra with a multiplication (x, y) 7→ xy, over a
field IF. H is subalternative algebra if ∀(x, y) ∈ H2 ∃(α, β, γ, δ) ∈ IF4:

[x, x, y] = αx+ βy, [x, y, y] = γx+ δy.

Definition 2. A subalternative algebra H from Definition 1 is proper if
there exists such a bilinear form A : H2 → IF that the following holds:

[x, x, y] = A(x, y)x−A(x, x)y ,(1)

[x, y, y] = A(y, y)x−A(x, y)y ,(2)

A(x2, y) = A(x, xy) ,(3)

A(xy, y) = A(x, y2) .(4)

Because of the identity

(5) [x, y, x] = [x, x+ y, x+ y]− [x, x, x]− [x, x, y]− [x, y, y]

the associator [x, y, x] in a subalternative algebra is also a linear combination of
its arguments. This implies the following proposition.

Proposition 3. An algebra H over IF is subalternative if and only if for any
linerly dependent triple {x, y, z} ⊂ H, the associator [x, y, z] is a linear combina-
tion of its arguments.

Of course, any subassociative algebra is subalternative, and any proper subas-
sociative algebra is proper subalternative.

The next proposition is obvious.

Proposition 4. Any subalternative algebra of dimension ≤ 3 is subassociative.

Propositions 5 and 6 from [2] are (mutatis mutandis) correct also for alternative
and subalternative algebras.

Proposition 5. Let G be an alternative algebra with multiplication (a, b) 7→
a∗ b and with a unit e. Further let P : G→ IF be a linear functional and P (e) = 1.
Define in H := KerP a new multiplication

(x, y) 7→ xy := x ∗ y −A(x, y)e ,

where A(x, y) := P (x ∗ y). Then H is a proper subalternative algebra and A is the
bilinear form from Definition 2.
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Proposition 6. Let H be a proper subalternative algebra from Definition 2,
and G := IFe⊕H, where e /∈ H. Introduce in G a new multiplication

(αe+ x, βe+ y) 7→ (αe+ x) ∗ (βe+ y) :=

= (αβ +A(x, y))e+ αy + βx+ xy .

G with this multiplication is an alternative algebra with unit e.

Corollary 7. Let H be a proper subalternative algebra from Definition 2.
Then for any linearly dependent triple {x, y, z} ⊂ H there holds:

[x, y, z] = A(y, z)x−A(x, y)z ,(6)

A(xy, z) = A(x, yz) .(7)

Proposition 8. Improper subassociative algebra is also improper subalterna-
tive.

Proof. For the twodimensional strange subassociative algebras from [2, Tables 7
and 8], it is enough to look over the associators [p, p, q] and [q, p, p].

In the case of threedimensional strange subassociative algebras [2, Table 9], the
best way to check the proposition is to use a computer.

Now, suppose that the observed algebra is improper non–strange (with a di-
mension > 2 and chr IF = 2). Then:

[x, y, z] = A′(y, z)x+B′(x, z)y + C ′(x, y)z

identically, for certain bilinear forms A′, B′, C ′.

[x, y, y] = A′(y, y)x+B′(x, y)y + C ′(x, y)y

= A(y, y)x+A(x, y)y

Then: A(x, y) = B′(x, y) + C ′(x, y) = A′(x, y) by [2, (15)] for any x, y linearly
independent, and then also A(y, y) = A′(y, y).

[x, x, y] = A′(x, y)x+B′(x, y)x+ C ′(x, x)y

= A(x, y)x+A(x, x)y

This gives B′(x, y) = 0 for any x, y, which is impossible. �

Remark. In fact, we proved a little more: if a subassociative algebra has a
bilinear form A with the identities (1) and (2), it is proper subassociative.

From Propositions 4, 5, 8 and Corollary 7 we find the following interesting
consequences:
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a) Alternative algebra of dimension ≤ 3 is associative.
b) Unital alternative algebra of dimension ≤ 4 is associative.

For U ⊂ H, let algH U be the subalgebra of H generated by U , and for V ⊂ G
let algG V be the subalgebra of G generated by V ; here H and G are the algebras
from Propositions 5 and 6. Any element from algH{u, v} is also from algG{u, v, e}.
If x ∈ algH{u, v} then there exists such α ∈ IF that αe+x ∈ algG{u, v}. According
to Artin’s theorem, algG{u, v} is associative subalgebra of G. If x, y, z are from
algH{u, v} and hence for certain α, β, γ also αe+x, βe+y, γe+z from algG{u, v},
then

0 = [αe+ x, βe+ y, γe+ z]G = [x, y, z]G
= [x, y, z]H +A(x, y)z −A(y, z)x+ (A(xy, z)−A(x, yz))e .

So we have

Proposition 9. Let H be a proper subalternative algebra. Then for any
(u, v) ∈ H2, algH{u, v} is a proper subassociative algebra.

3. Proper Subalternative Algebras

Theorem 10. Let H be a subalternative algebra over IF, chr IF 6= 2, excluding
also the case dimH = 2, IF = ZZ3. Then there exists such a bilinear form A that
(1) and (2) hold.

Proof. If dimH ≤ 3, H is subassociative and the theorem holds. Hence we
shall suppose also that dimH > 3.

[x, z, y] + [z, x, y] = [x+ z, x+ z, y]− [x, x, y]− [z, z, y] ∈ lin{x, y, z} .

By [2, Lemma 7] there exist three bilinear forms A1, A2, A3, such that:

[x, z, y] + [z, x, y] = A1(y, z)x+A2(x, z)y +A3(x, y)z.

For z = x we get:

[x, x, y] =
1
2

(A1(y, x) +A3(x, y))x+
1
2
A2(x, x)y .

Analogous conclusion holds for [y, x, x]. Hence, there exist four bilinear forms
A,B,C,D, such that the following identities hold:

[x, x, y] = A(x, y)x−B(x, x)y ,(8)

[y, x, x] = C(x, x)y −D(y, x)x .(9)
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(7) and (8) give for x = y a new identity:

(10) A(x, x) +D(x, x) = B(x, x) + C(x, x) .

From (5) if follows:

[x, y, x] = (A(y, x) +D(y, x)−B(y, x)−B(x, y))x+(11)

+ (A(x, x)− C(x, x))y .

If we have for some x : x2 = λx, the associator [x, x, x] gives us

(12) B(x, x) = A(x, x) .

Next, suppose that x2 6= λx. If we use (8), (9) and (11) in Teichmüller equation
E(x, x, x, x), we get:

0 = (3A(x, x)−B(x, x)− 2C(x, x))x2 + (. . . )x .

Therefore,

(13) B(x, x) = 3A(x, x)− 2C(x, x) .

Suppose additionally that B(x, x) 6= A(x, x). Then A(x, x) 6= C(x, x) and from
E(x, x, x2, x) it follows: xx2 = α1x + β1x

2. Then: x2x = [x, x, x] + xx2 = α2x +
β1x

2. Further: A(x, x2)x−B(x, x)x2 = [x, x, x2] = x2x2−x(α1x+β1x
2) = x2x2−

(α1 +β2
1)x2−α1β1x, and x2x2 = α3x+β2x

2. alg{x} is therefore a twodimensional
algebra and hence subassociative. If it is proper subassociative, it possesses two
bilinear forms A′, B′ for which the following identities hold: B′(u, u) = 0 and

[u, v, w] = A′(v, w)u+B′(u,w)v − (A′(u, v) + 2B′(u, v))w .

From [x, x, x2] and [x2, x, x] we get B(x, x) = A′(x, x) and C(x, x) = A′(x, x).
But then we find the contradiction in (13). Hence, alg{x} is an algebra from [2,
Table 8] and x = ±p. From this table and (8) and (9), the associators [p, p, p] and
[p, p, q] determine A(p, p) = 1 − α and the associator [q, p, p] also C(p, p) = 1 − α
and the contradiction is final.

So, (12) holds in any case. (10) gives also D(x, x) = C(x, x) and (8), (9) and
(11) can be formulated with only two bilinear forms:

[x, x, y] = A(x, y)x−A(x, x)y ,(14)

[y, x, x] = D(x, x)y −D(y, x)x ,(15)

[x, y, x] = (D(y, x)−A(x, y))x+ (A(x, x)−D(x, x))y .(16)
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We have seen that if x2 6= λx then (13) holds and consequently A(x, x) = D(x, x).
We claim that this is always true. So, suppose that x2 = λx and A(x, x) 6= D(x, x).
Choose y linearly independent from x. From E(x, y, x, x) it follows: yx = αx+ λ

2 y

(for some α). From E(x, x, y, x) it follows: xy = βx+ λ
2 y (for some β). But then

[x, y, x] = β−α
2 λx, which is in a contradiction with (16).

The linearized form of A(x, x) = D(x, x) is

(17) A(x, y) +A(y, x) = D(x, y) +D(y, x) ,

and the linearized form of (15) is

(18) [y, x, z] + [y, z, x] = −D(y, z)x+ (D(x, z) +D(z, x))y −D(y, x)z .

From E(y, x, x, x) it follows:

(19) [y, x, x2]− [y, x2, x] = D(yx, x)x−D(y, x)x2 .

We add the identity (18), with z = x2, to (19):

(20) [y, x, x2] = (. . . )x+ (. . . )y −D(y, x)x2 .

From E(x, y, x, x) it follows:

(21) [x, y, x2] = (. . . )x−A(x, y)x2 .

In the identity

[x+ y, x+ y, x2]− [x, x, x2]− [y, y, x2] = [x, y, x2] + [y, x, x2]

we use (14) on the left side and (20) and (21) on the right side:

0 = αx+ (A(y, x)−D(y, x))x2 + βy

If we choose y /∈ lin{x, x2}, we find β = 0, and since β depends only to x, it then
follows identically:

(22) (A(y, x)−D(y, x))x2 + αx = 0 .

Suppose that x and y are such elements that A(y, x) 6= D(y, x). Then x2 =
λx and because of (17) also y2 = µy. Since A(y, γx + δy) − D(y, γx + δy) =
γ(A(y, x)−D(y, x)), we have w2 = νw for each w = γx+ δy. If dim alg{x, y} = 2,
this is an algebra from [2, Table 5] (without condition pq 6= qp). But in this
algebra A = D; hence, dim alg{x, y} > 2. Since (x + y)2 = τ(x + y) and then
xy + yx = (τ − λ)x + (τ − µ)y, it must be: z := xy /∈ lin{x, y}. From the
associators [x, y, y], [y, x, y], [x, x, y] and [x, y, x] we get that zy, yz, xz and zx

are linear combinations of x, y and z. If z and z2 were linearly independent,
it would be A(y, z) = D(y, z) and consequently A(y, x + z) 6= D(y, x + z) and
(x + z)2 = ξ(x + z), which means that z2 is a linear combination of x, y and z.
Therefore, dim alg{x, y} = 3 and according to [2, Theorem 12] we conclude that
alg{x, y} is proper subassociative and again A = D. �
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Theorem 11. Let H be a subalternative algebra with a bilinear form A for
which (1) and (2) hold.

(i) If chr IF 6= 3 or if H is a subassociative algebra, then H is a proper subal-
ternative algebra.

(ii) If chr IF = 3 and H is not subassociative then the following weaker identi-
ties hold:

A(xy, x) = A(x, yx) ,(23)

A(x2, y) +A(yx, x) = A(x, xy) +A(y, x2) .(24)

Proof. As it was pointed out in Remark after Proposition 8, the subassociativity
is sufficient for properness. Therefore we may suppose that dimH > 3.

Denote:

R(x, y) := A(x2, y)−A(x, xy) ,

M(x, y) := A(xy, x)−A(x, yx) ,

L(x, y) := A(yx, x)−A(y, x2) .

[x2, x, y] = [x2, x+ y, x+ y] + [x, x, yx]− [x2, x, x]− [x2, y, y](25)

− x[x, y, x]− [x, x, y]x− [x, xy, x]

= A(x, y)x2 −A(x2, x)y − (R(x, y) +M(x, y))x ,

considering (5) and consequently

[x, y, x] = (A(y, x)−A(x, y))x .

[x, x2, y] = [x, x2 + y, x2 + y] + [xy, x, x]− [x, x2, x2]− [x, y, y](26)

− x[y, x, x]− [x, y, x]x− [x, yx, x]

= A(x2, y)x−A(x, x2)y − (M(x, y) + L(x, y))x

If we put (25) and (26) into the identity

[x+ x2, x+ x2, y] = [x, x, y] + [x2, x2, y] + [x2, x, y] + [x, x2, y] ,

we get:

(27) R(x, y) + 2M(x, y) + L(x, y) = 0 .



16 A. CEDILNIK

Further,

[y, x2, x] = [x2 + y, x2 + y, x] + [x, x, yx]− [x2, x2, x]− [y, y, x](28)

− x[x, y, x]− [x, x, y]x− [x, xy, x]

= A(x2, x)y −A(y, x2)x− (R(x, y) +M(x, y))x .

Considering (27) and (28), we also get:

[y, x, x2] = [y, x+ x2, x+ x2]− [y, x, x]− [y, x2, x2]− [y, x2, x](29)

= A(x, x2)y −A(y, x)x2 − (M(x, y) + L(x, y))x .

Including (25) and (26) into E(x, x, x, y), we find:

(A(x2, x)−A(x, x2))y = (L(x, y)− 2R(x, y))x .

Choosing x and y linearly independent we get A(x2, x) = A(x, x2), which then
implies:

(30) L(x, y) = 2R(x, y) .

Similarly we find from (28), (29) and E(y, x, x, x):

(31) R(x, y) = 2L(x, y) .

If chr IF 6= 3, from (30) and (31) we already find L = R = 0. From R(x+ y, x) = 0
follows also M = 0.

In the case chr IF = 3, (30) and (31) are equivalent with (24) and further (27)
with (23). �

Theorem 12. Let H be a subalternative algebra over IF. Each of the following
conditions

(i) dimH ≤ 3;
(ii) H is subassociative;
(iii) chr IF 6= 2, 3;
(iv) H is proper subalternative;

implies that H is Maltsev-admissible.

Proof. (i) ⇒ (ii) ⇒ H is Lie-admissible, by [2, Theorem 13] ⇒ H is Maltsev-
admissible.

From Theorems 10 and 11 the implication (iii) ⇒ (iv) follows. Further, G from
Proposition 6 is alternative algebra, the commutator algebra G− is Maltsev and
H− ∼= G−/(IFe)− is also Maltsev. �
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Theorem 13. Let H be an anticommutative subalternative algebra over IF

with chr IF 6= 2. Then H is proper subalternative and also Maltsev algebra and for
the bilinear form A from (1) and (2) the following identities hold:

A(x, y) = A(y, x) ,(32)

A(xy, z) = A(x, yz) ,(33)

(xy)y = A(y, y)x−A(x, y)y .(34)

Proof. If dimH ≤ 3, H is subassociative and, according to [2, Theorem 13],
the theorem above is correct. For dimH > 3, (1) and (2) hold for an adequate
A, by Theorem 10. The anticommutativity implies flexibility [x, y, x] = 0 and (5)
implies (32). (34) is a consequence of (2) and the anticommutativity. If we linearize
(23), which is implied either by chr IF = 3 or by chr IF 6= 3 and (7), according to
Theorem 11, we get:

A(xy, z) +A(zy, x) = A(x, yz) +A(z, yx) .

Using (32) and anticommutativity, we transform this identity into

2A(xy, z) = 2A(x, yz) ,

which is (33), and the properness of the algebra is proved. Then, by Theorem 12,
H is Maltsev-admissible and hence Maltsev. �

The classification of algebras from Theorem 13 for IF algebraically closed is
described in [4, Theorem 3.3].

A natural question for the end: is it possible and significant to generalize the
theory treated in this article? We suggest two ways of thinking. Non-commutative
Jordan algebras are a kind of natural generalization of alternative algebras and
are defined with associator identities; hence, perhaps sub-(non-commutative Jor-
dan) algebras are suitable research target. Secondly, an important example for
motivation for further research is the color algebra ([3]).
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