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SHOCK CAPTURING AND
RELATED NUMERICAL METHODS

IN COMPUTATIONAL FLUID DYNAMICS

G.-Q. CHEN

Abstract. Some developments and efforts in designing and analyzing shock cap-
turing algorithms and related numerical methods in computational fluid dynamics
are reviewed. The importance of numerical viscosity in shock capturing algorithms
is analyzed; the convergence and stability of some shock capturing algorithms are
presented; the role of shock capturing algorithms in a mathematical existence theory
is exhibited, especially for the compressible Euler equations for gas dynamics in one
dimension and in multi-dimensions with spherical symmetry. Applications of shock
capturing ideas to the compressible Navier-Stokes equations are also discussed.

1. Introduction

Shock waves are one of the most fundamental nonlinear waves in nature and arise
in supersonic or transonic flow, or from a very sudden release (explosion) of chem-
ical, nuclear, electrical, radiation, or mechanical energy in a limited space (see,
for example, Van Dyke [98], Glass [39], Courant-Friedrichs [27], and Whitham
[103]). Tracking shocks, especially when and where new shocks arise and inter-
act in the motion of fluids, is scientifically extremely important but numerically
burdensome. The main motivation in developing numerical shock capturing algo-
rithms is to treat the shock problem in fluids.
The basic equations governing the dynamics of shocks are the compressible

Euler equations, consisting of conservation laws of mass, momentum, and energy.
The compressible Euler equations in d-space dimensions are the system of d + 2
conservation laws

(1.1)




∂tρ+∇ ·m = 0,

∂tm+∇ ·
(

m⊗m
ρ

)
+∇p = 0,

∂tE +∇ ·
(

m
ρ (E + p)

)
= 0,
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with initial data

(1.2) (ρ,m, E)|t=0 = (ρ0,m0, E0)(x), x ∈ R
d,

where (ρ0,m0, E0)(x) is a given vector function of x ∈ R
d. In (1.1), τ = 1/ρ

is the deformation gradient (specific volume for fluids, strain for solids), v =
(v1, . . . , vd)� is the fluid velocity with ρv =m the momentum vector, p is the scalar
pressure, and E = 1

2
|m|2
ρ +ρe(τ, p) is the total energy with e the internal energy, a

given function of (τ, p) or (ρ, p) defined through thermodynamical relations. The
notation a⊗ b denotes the tensor product of two vectors.
The other two thermodynamic variables are the temperature θ and the entropy

S. If (ρ, S) are chosen as the independent variables, then we have the constitutive
relations:

(1.3) (e, p, θ) = (e(ρ, S), p(ρ, S), θ(ρ, S)),

governed by

(1.4) θdS = de+ pdτ = de− p

ρ2
dρ.

For a polytropic gas,

(1.5) p = Rρθ, e = cvθ, γ = 1 +
R

cv
,

and

(1.6) p = p(ρ, S) = κργeS/cv , e =
κ

γ − 1ρ
γ−1eS/cv =

θ

γ − 1 ,
where R, cv, κ are positive constants.
The system in (1.1) is complemented by the Clausius inequality:

(1.7) ∂t(ρa(S)) +∇ · (ma(S)) ≥ 0
in the sense of distributions for any a(S) ∈ C1, a′(S) ≥ 0, to identify physical
shocks.
The compressible Euler equations for an isentropic fluid take the following sim-

pler form:

(1.8)

{
∂tρ+∇ ·m = 0,

∂tm+∇ ·
(

m⊗m
ρ

)
+∇p = 0,

where the pressure is regarded as a function of the density, p = p(ρ, S0), with
constant S0. For an isentropic polytropic gas,

(1.9) p(ρ) = κ0ρ
γ , γ > 1,

where κ0 > 0 is a constant.
Observe that solutions of the system in (1.8) are a genuine approximation to

solutions of the system in (1.1) since the entropy increases along a shock to third-
order in wave strength for solutions of (1.1), while in (1.8) the entropy is constant.
Furthermore, the system in (1.8) is an excellent model for an isothermal gas with
γ = 1 and a shallow water with γ = 2.
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For the one-dimensional case, the system in (1.1) in Eulerian coordinates is

(1.10)




∂tρ+ ∂xm = 0,

∂tm+ ∂x

(
m2

ρ + p
)
= 0,

∂tE + ∂x

(
m
ρ (E + p)

)
= 0,

with E = 1
2
m2

ρ +ρe. The system above can be rewritten in Lagrangian coordinates
in one-to-one correspondence when the fluid flow is away from the vacuum ρ = 0:

(1.11)




∂tτ − ∂xv = 0,
∂tv + ∂xp = 0,
∂t(e+ v2

2 ) + ∂x(pv) = 0.

For the isentropic case, the system in (1.10) becomes

(1.12)

{
∂tρ+ ∂xm = 0,

∂tm+ ∂x

(
m2

ρ + p
)
= 0,

where p = p(ρ) is determined by (1.9) for a polytropic gas.
All these systems fit into the following general conservation form:

(1.13) ∂tu+∇ · f(u) = 0, u ∈ R
m, x ∈ R

d,

where f : R
m → (Rm)d is a nonlinear mapping. Besides (1.1)-(1.12), most of par-

tial differential equations arising from physical or engineering science can be also
formulated into form (1.13) or its variants, for example, with additional source
terms or equations modeling the effects of dissipation, relaxation, memory, damp-
ing, dispersion, magnetization, etc. The hyperbolicity of the system in (1.13)
requires that, for all ξ ∈ Sd−1, the matrix (ξ ·∇f(u))m×m have m real eigenvalues
λj(u, ξ), j = 1, 2, . . . ,m, and be diagonalizable.
The main difficulty to deal with (1.13) is that solutions of the Cauchy problem

(even starting from smooth initial data) generally develop singularities in a finite
time, because of the physical phenomena of focusing and breaking of waves and
the development of shock waves. For this reason, attention focuses on solutions
in the space of discontinuous functions. Therefore, one can not directly use the
classical analytic techniques that predominate in the theory of partial differential
equations of other types.
Another difficulty is nonstrict hyperbolicity or resonance, that is, there exist

some ξ0 ∈ Sd−1 and u0 ∈ R
d such that λi(u0, ξ0) = λj(u0, ξ0) for some i 	= j. In

particular, for the Euler equations, such a degeneracy occurs at the vacuum states
or from the multiplicity of eigenvalues of the system.
The correspondence of (1.7) in the context of hyperbolic conservation laws is

the Lax entropy inequality:

∂tη(u) +∇ · q(u) ≤ 0(1.14)
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in the sense of distributions for any C2 entropy-entropy flux pair (η,q) : R
m →

R
d+1,q = (q1, . . . , qd), satisfying

∇2η(u) ≥ 0, ∇qk(u) = ∇η(u)∇fk(u), k = 1, . . . , d.

In Section 2, we discuss some historic developments and recent efforts in de-
signing numerical shock capturing algorithms. In Section 3, we analyze various
ways to generate numerical viscosity, which is essential, for some successful shock
capturing algorithms to understand the essence of the algorithms; we also present
some convergence and stability results of the algorithms and some new phenomena
of solutions discovered from the numerical results by a upwind scheme. Then, in
Section 4, we exhibit some examples to show that effective numerical algorithms
can yield a mathematical existence theory to construct rigorously global entropy
solutions for the compressible Euler equations in one-dimension and in multi-
dimensions with geometric structure. In Section 5, we present two examples to
show that shock capturing ideas are also useful for establishing the global existence
of solutions of the compressible Navier-Stokes equations with large discontinuous
initial data.

2. Shock Capturing and von Neumann

The main difficulty in calculating fluid flows with shocks is that it is very hard
to predict, even in the process of a flow calculation, when and where new shocks
arise and interact; tracking the shocks, especially their interactions, is numeri-
cally burdensome (see Lax [61]). Modern numerical ideas of shock capturing for
computational fluid dynamics can date back as early as 1944 when von Neumann
first proposed a new numerical method, a centered difference scheme, to treat the
hydrodynamical shock problem, for which numerical calculations showed oscilla-
tions on mesh scale (see Lax [59]). von Neumann’s dream of capturing shocks
was first realized when von Neumann and Richtmyer [102] in 1950 introduced the
ingenious idea of adding to the hydrodynamic equations a numerical viscous term
of the same size as the truncation error. Their numerical viscosity guarantees that
the scheme is consistent with the Clausius inequality, the entropy inequality. The
shock jump conditions, i.e. the Rankine-Hugoniot jump conditions, are satisfied
provided that the equations of gas dynamics are discretized in conservation form.
Then oscillations were eliminated by the judicious use of the artificial viscosity;
solutions constructed by this method converge uniformly except in a neighbor-
hood of shocks, where they remain bounded and are spread out over a few mesh
intervals.
Related analytical idea of shock capturing, i.e. vanishing viscosity methods, is

quite old. For example, there are some hints about the idea of regarding invis-
cid gases as viscous gases with vanishingly small viscosity in the seminal paper
by Stokes [92] in 1848. Also see the important contributions of Rankine [84],
Hugoniot [53], and Rayleigh [84]. See Dafermos [29] for the details.
The main challenge in designing shock capturing numerical algorithms is that

weak solutions are not unique; and the numerical schemes should be consistent
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with the Clausius inequality, the entropy inequality. Excellent numerical schemes
should be also numerically simple, robust, fast, and low cost, and have sharp
oscillation-free resolutions and high accuracy in domains where the solution is
smooth. It is also desirable that the schemes capture contact discontinuities and
vortices, and are coordinate invariant, among others.
For the one-dimensional case, examples of success include the Lax-Friedrichs

scheme (1954), the Glimm scheme (1965), the Godunov scheme (1959) and re-
lated high order schemes (e.g. van Leer’s MUSCL (1981), Colella-Wooward’s
PPM (1984), Harten-Engquist-Osher-Chakravarthy’s ENO (1987)), and the Lax-
Wendroff scheme (1960) and its two-step version, the Richtmyer scheme (1967)
and the MacCormick scheme (1969).
For the multi-dimensional case, one direct approach is to generalize directly the

one-dimensional methods to solve multi-dimensional problems; such an approach
has lead several useful numerical methods including semi-discrete methods and
Strang’s dimension-dimension splitting methods.
Observe that multi-dimensional effects do play a significant role in the behavior

of the solution locally, and any approach that only solves one-dimensional Riemann
problems in the coordinate directions is clearly not using all the multi-dimensional
information. The development of fully multi-dimensional methods requires a good
mathematical theory to understand the multi-dimensional behavior of entropy
solutions; current efforts in this direction include to use more information about the
multi-dimensional behavior of solutions, determine the direction of primary wave
propagation and employ wave propagation in other directions, and use transport
techniques, relaxation techniques, and kinetic techniques from the microscopic
level. See Fey-Jeltsch [37], Godlewski-Raviart [45], LeVeque [65], Toro [97], and
the references cited therein.

3. Shock Capturing and Numerical Viscosity

Numerical viscosity plays an essential role in shock capturing numerical algorithms
to guarantee their stability and consistency with the Lax entropy inequality. In
this section, we analyze various ways to generate numerical viscosity from some
successful shock capturing schemes to shed light on the essence of the algorithms.
For clarity, we focus on the scalar conservation laws:

(3.1) ∂tu+∇ · f(u) = 0, u ∈ R, f : R → R
d.

3.1. Lax-Friderichs Scheme

The Lax-Friedrichs scheme for (3.1) in one dimension reads:

(3.2)
1
∆t

(
un+1
j − 1

2
(unj−1 + unj+1)

)
+

1
2∆x

(f(unj+1)− f(unj−1)) = 0,

which can be regarded as a direct discretization of (3.1) for d = 1, where unj ≡
u(j∆x, n∆t), and ∆x,∆t > 0 are the space mesh length and the time mesh length,
respectively.
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To see its numerical viscosity, we calculate its local truncation error in any
smooth region of the solution u(x, t). Using that u(x, t) is a solution of (3.1), one
has

(3.3)

1
∆t

(
u(x, t+∆t)− 1

2
(u(x−∆x, t) + u(x+∆x, t))

)

+
1
2∆x

(f(u(x+∆x, t))− f(u(x−∆, t)))

= ∂x

(
1
2
λ∆x(1 − λ2f ′(u)2)∂xu

)
+O((∆x)2),

where λ = ∆t
∆x . Therefore, if ∆x,∆t satisfy the Courant-Friedrichs-Lewy condition:

λ sup{|f ′(u)|} < 1,

then the first term in the right-hand side of (3.3) presents the dissipative effect, and
the quantity 1

2λ∆x(1 − λ2f ′(u)2) > 0 presents the strength of artificial viscosity.
The Godunov scheme has similar features with more delicate numerical viscos-

ity.
The convergence of the Lax-Friedrichs scheme and the Godunov scheme was

proved in Oleinik [81], Conway-Smoller [26], Kuznetsov [58], and Crandall-Majda
[28] for scalar conservation laws, and in Chen [9] and Ding-Chen-Luo [31, 32]
(also see Chen-LeFloch [14]) for the isentropic Euler equations. Related entropy
flux-splitting schemes were analyzed in Chen-LeFloch [15]. We also refer to Liu-Yu
[73] for the existence and behavior of continuum shock profiles for finite difference
schemes. Recent results on the (apriori or aposteriori) error estimates of these
schemes and related methods for scalar conservation laws can be found in [4, 22,
23, 24, 36, 55, 56, 80, 83, 95, 96] and the references cited therein.

3.2. Lax-Wendroff Scheme

The Lax-Wendroff scheme for (3.1) in one dimension reads:

(3.4)
un+1
j = unj − λ

2
(f(unj+1)− f(unj−1)) +

λ2

2
∆−

(
f ′

(
unj + unj−1

2

)
∆−f(unj )

)
+ λ∆−(βnj+1|∆+f

′(unj )|∆+u
n
j ),

where ∆+uj = uj+1 − uj ,∆−uj = uj − uj−1, and βn
j+ 1

2
is a smooth function of

unj and unj+1 satisfying 0 < β0 ≤ βn
j+ 1

2
≤ β1 < ∞, which presents the strength of

numerical viscosity.
To understand the role of the last term in (3.4), we calculate its local truncation

error for the case βn
j+ 1

2
= const. and f(u) = au in the region where u(x, t) is

smooth. Similar argument as in §3.1 yields
un+1
j − unj
∆t

+
f(unj+1)− f(unj−1)

2∆x
= β(∆x)2uxx +

1
6
a(∆x)2(aλ2 − 1)uxxx,

where the first term in the right-hand side presents dissipative effect, and the
second term presents dispersive effect. To ensure the convergence and stability of
this scheme, it is required that the dissipation dominate the dispersion.
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Majda-Osher [76, 77] showed the L2-stability for scalar conservation laws, the
entropy consistency for the boundedly convergent approximate solutions for the
semi-discrete cases as well as the complete-discrete scheme for the time-indepen-
dent cases of general systems endowed with a convex entropy, the efficient choices
of artificial viscosity such as the switching techniques, and the validity of the CFL
number in their analysis. We also refer to [91] for the stability of local discrete
shock profiles for the Lax-Wendroff scheme.
In Chen-Liu [16], the convergence of Lax-Wendroff type schemes with high res-

olution to weak entropy solutions for hyperbolic conservation laws was analyzed.
These schemes include the original Lax-Wendroff scheme (3.4) and its two-step ver-
sions — the Richtmyer scheme [86] and the MacCormack scheme [75]. For convex
scalar conservation laws with algebraic growth flux functions, it was proved in [16]
that these schemes converge to the weak solutions satisfying appropriate entropy
inequalities, provided the dissipation dominates the dispersion, that is, β is large
enough to control the dispersion. The proof was based on detailed Lp estimates of
the approximate solutions, H−1 compactness estimates of the corresponding en-
tropy dissipation measures, and a compensated compactness framework in Chen-
Lu [17]. Then these techniques were generalized to study the convergence problem
for the nonconvex scalar case and hyperbolic systems of conservation laws.
Another related class of second-order shock capturing schemes, MUSCL-type

schemes, was carefully analyzed in Lions-Souganidis [66], Yang [104], Osher [82],
and the references cited therein.

3.3. Spectral Viscosity Methods

We now discuss the spectral viscosity in the spectral viscosity methods, formulated
in Chen-Du-Tadmor [11], for (3.1) subject to initial data

(3.5) u(x, 0) ≡ u0(x) ∈ L∞(T d[0, 2π]),

and augmented with the Lax entropy inequality (1.14).
We approximate the spectral/pseudo-spectral projection of the exact entropy

solution, PNu(·, t), using an N -trigonometric polynomial, uN(x, t) =∑
|ξ|≤N ûξ(t)eiξ·x, which is governed by the semi-discrete approximation

(3.6) ∂tuN(x, t) +∇ · PN f(uN (x, t)) = εN

d∑
j,k=1

∂2
jkQ

j,k
N (x, t) ∗ uN (x, t).

Together with one’s favorite ODE solver, (3.6) gives a fully discrete method for
the approximate solutions of (3.1) and (3.5).
The left-hand side of (3.6) is the standard Fourier approximation of (3.1). Al-

though this part of the approximation is spectrally accurate with the conservation
law (3.1), it lacks entropy dissipation, which is inconsistent with the entropy
condition (1.14). Consequently, the standard Fourier approximation of (3.1) sup-
ports spurious Gibbs oscillations (once shocks are formed), which prevent strong
convergence to the entropy solution of (3.1). To suppress these oscillations, with-
out sacrificing the overall spectral accuracy, we augmented the standard Fourier
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approximation on the right-hand side of (3.6) by spectral viscosity, which con-
sists of the following three ingredients:

• A vanishing viscosity amplitude, εN , of size
εN ∼ N−θ, θ < 1.

• A viscosity-free spectrum of size mN >> 1,

mN ∼ N
θ
2

(logN)
d
2
, θ < 1.

• A family of viscosity kernels, Qj,kN (x, t) =
∑N

|ξ|=mN
Q̂j,kξ (t)e

iξ·x, 1 ≤ j, k ≤
d, activated only on high wavenumbers |ξ| ≥ mN , which can be conveniently
implemented in the Fourier space as

εN

d∑
j,k=1

∂jkQ
j,k
N ∗ uN (x, t) ≡ −εN

N∑
|ξ|=mN

< Q̂ξξ, ξ > ûξ(t)eiξ·x,

〈
Q̂ξξ, ξ

〉
≡

d∑
j,k=1

Q̂j,kξ (t)ξjξk.

The viscosity kernels Qj,kN (x, t) are assumed to be spherically symmetric, that is,
Q̂j,kξ = Q̂j,kp , for all |ξ| = p, with monotonically increasing Fourier coefficients,
Q̂j,kp , that satisfy

|Q̂j,kp − δjk| ≤ Const. m
2
N

p2
, for all p ≥ mN .

The main purpose of the spectral viscosity is to achieve a compromise between
two conflicting requirements. It is known (cf. Gottlieb-Orszag [47]) that the use
of the spectral/pseudo-spectral projections yields a spectrally small error in the
sense that

(3.7) ‖(I − PN )f(uN)(·, t)‖L2 ≤ Const.N−s‖∂sxuN (·, t)‖L2 , for all s ≥ 0.
The additional spectral viscosity is also spectrally small, since

εN‖
d∑

j,k=1

∂jkQ
j,k
N ∗ uN (·, t)‖L2 ≤ Const.N− sθ

2 ‖∂sxuN(·, t)‖L2 , for all s ≥ 2.

Thus, on the one hand, the spectral viscosity is small enough to retain the formal
spectral accuracy of the overall approximation; and, on the other hand, the spectral
viscosity is sufficiently large to enforce the correct amount of entropy dissipation
that is missing in the standard Fourier method, that is, εN = 0. In fact, the
smallest scale of the spectral viscosity approximation (3.6) is order εN . It follows
that, because of the presence of the spectral viscosity in (3.6), the spectral decay of
the truncation error on the left of (3.7) is independent of the smoothness of the
underlying solution. The spectral viscosity, although spectrally small, is only an
Lp-bounded perturbation of the standard vanishing viscosity. This fact yields that
the spectral viscosity solution remains uniformly bounded and that its weak limit
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is a measure-valued solution consistent with the entropy condition (1.14). Hence,
DiPerna’s uniqueness theorem [34] combining with the finiteness of propagation
speed implies that uN converges to the unique entropy solution of (3.1) and (3.5).
An alternative, independent convergence proof of the spectral viscosity method
was derived from its total-variation boundedness, provided the total variation of
the initial data is bounded. An L1-convergence rate estimate of the usual optimal
order one-half was also achieved in Chen-Du-Tadmor [11].

3.4. Upwind Schemes

In this section, we show through a simple upwind scheme in [5, 6] that upwind
schemes not only generate numerical viscosity to capture shocks, contact discon-
tinuities, and vortices, but also have led the discovery of a new type of nonlinear
hyperbolic waves, called smoothed Delta shocks in [5, 7], which had been missing
in mathematical fluid dynamics.
To illustrate the ideas clearly, we first formulate such a scheme for the two-

dimensional linear scalar equation:

(3.8) ∂tu+ a∂xu+ b∂yu = 0, a, b are constants.

If a difference scheme un+1
i,j = Luni,j satisfies that

un+1
i,j is a convex combination of uni,j , u

n
i−1,j , u

n
i,j−1, u

n
i−1,j−1, a > 0, b > 0,

or

un+1
i,j is a convex combination of uni,j , u

n
i+1,j , u

n
i,j−1, u

n
i+1,j−1, a < 0, b > 0,

or

un+1
i,j is a convex combination of uni,j , u

n
i−1,j , u

n
i,j+1, u

n
i−1,j+1, a > 0, b < 0,

or

un+1
i,j is a convex combination of uni,j , u

n
i+1,j , u

n
i,j+1, u

n
i+1,j+1, a < 0, b < 0.

We call the scheme an upwind averaging scheme based on four points.
For the case a > 0 and b > 0, the first-order upwind averaging scheme based

on four points can be formulated as

un+1
i,j = uni,j − aλx(uni,j − uni−1,j)− bλy(uni,j − uni,j−1)

+ abλxλy(uni,j − uni−1,j − uni,j−1 + uni−1,j−1), 0 < aλx, bλy ≤ 1,
where λx = ∆t

∆x and λy = ∆t
∆y . Then the second-order upwind scheme can be

formulated as

un+1
i,j = uni,j − aλx∆xuni− 1

2 ,j
− 1
2
aλx(1− aλx)∆x−[φ

x,−
i+ 1

2 ,j
∆xuni+ 1

2 ,j
]

− bλy∆yuni,j− 1
2
− 1
2
bλy(1 − bλy)∆y−[φ

y,−
i,j+ 1

2
∆yuni,j+ 1

2
]

+
1
2
αabλxλy∆x∆yuni− 1

2 ,j− 1
2
, 0 < aλx, bλy ≤ 1,

(3.9)
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where ∆xui+ 1
2 ,j

= ui+1,j − ui,j, ∆yui,j+ 1
2
= ui,j+1 − ui,j , φ

x,−
i+ 1

2 ,j
= φ(rx,−

i+ 1
2 ,j
),

φy,−
i,j+ 1

2
= φ(ry,−

i,j+ 1
2
), rx,−

i+ 1
2 ,j

=
∆xu

i+ 3
2 ,j

∆xu
i+ 1

2 ,j

, ry,−
i,j+ 1

2
=

∆yu
i,j+ 3

2
∆yu

i,j+ 1
2

, and α ∈ [0, 1] can be
adjusted depending on the need of computations. When α = 0, this scheme is of
second-order accuracy in space variables and of first-order accuracy in time. When
α = 1, this scheme is of second-order accuracy in both space and time variables.
One can easily check that this scheme is upwind averaging provided that

φ(r)|r≤0 = 0,

0 ≤ φ(r) ≤ min
(2(1− 2bλy)

1− aλx
,
2(1− 2aλx)
1− bλy

)
,

0 ≤ φ(r)
r

≤ min
( 1
aλx

− 1− αbλy

1− aλx
,
1

bλy
− 1− αaλx

1− bλy

)
,

|aλx|, |bλy| ≤ 1
4
.

(3.10)

Based on the simple idea described above, a second-order upwind scheme for
the two-dimensional compressible Euler equations was formulated in [5, 6]. We
also refer the reader to [63, 74] for Lax-Liu’s effective, robust positive schemes for
gas dynamics.
With the aid of the upwind scheme in [5, 6], the Riemann problem for the

two-dimensional compressible Euler equations in gas dynamics was systematically
analyzed in Chang-Chen-Yang [5, 6, 7]. The central point at this issue is the
dynamical interaction of shocks, centered rarefaction waves, and contact discon-
tinuities that connect two neighboring constant initial states in the quadrants.
Noting the essential difference between contact discontinuities J+ and J− dis-
tinguished by the sign of the vorticity and necessary compatibility conditions of
initial data, we classified the Riemann data from sixteen cases in [105] to eighteen
genuinely different cases. For each configuration, the structure of the Riemann
solution was analyzed by using the method of characteristics, and corresponding
numerical solution was illustrated by contour plots by using the upwind scheme.
In [5, 6], the main focus was on the interaction of shocks and rarefaction waves.

We proved that there are two subcases for each of the two cases of the interaction
of rarefaction waves. The numerical solutions are considerably coincident with
conjectures in [105] except the case of interaction of rarefaction waves propagat-
ing in the opposite direction. For the latter, the numerical solution clearly shows
that two compressive waves, even shock waves, appear in the solution. This phe-
nomenon can be explained as the effect of compression of the flow characteristics.
In [5, 7], our focus was on the interaction of contact discontinuities, which con-

sists of two genuinely different cases. For one case, the four contact discontinuities
role up and generate a vortex, and the density monotonically decreases to zero at
the center of the vortex along the stream curves. For the other, two shocks are
formed and, in the subsonic region between two shocks, a vortex is generated for
one subcase, and a new kind of nonlinear hyperbolic waves (called smoothed Delta
shocks) was first discovered.
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Related interesting phenomena and configurations can be found in Glimm,
Klingenberg, McBryan, Plohr, Sharp, and Yaniv [42] (also see Chern, Glimm,
McBryan, Plohr, and Yaniv [20]) by using their front-tracking algorithms, and
Lax and Liu [63, 74] by using their positive schemes. Also see Schulz-Rinne,
Collins, and Glaz [87], and Kurganov and Tadmor [57]. We remark that most
of the numerical results in [5, 6, 7] are strikingly consistent with calculation in
[42, 57, 63, 74, 87] via several different schemes.

4. Shock Capturing and Existence Theory

Effective numerical shock capturing algorithms not only provide excellent numeri-
cal solutions, but also yield a mathematical existence theory to construct rigorously
global entropy solutions for the compressible Euler equations. The Glimm scheme
[41] is an excellent example (see [29, 68, 72, 88, 91]; also [1] for the wave-front
tracking algorithm first proposed by Dafermos [30]). The Lax-Friedrichs scheme
and the Godunov scheme are another example (see [9, 31, 32]). In this section,
we discuss a recent example to yield a new existence theory of global solutions
with geometrical structure for the compressible Euler equations of isentropic gas
dynamics (1.8).
Consider the spherically symmetric solutions outside a solid core (|x| ≥ 1):

ρ(x, t) = ρ(r, t), m(x, t) = m(r, t)
x
r
, r = |x|.(4.1)

Then (ρ,m)(r, t) is determined by the equations:


∂tρ+ ∂rm = −A′(r)
A(r) m,

∂tm+ ∂r(m
2

ρ + p(ρ)) = −A′(r)
A(r)

m2

ρ , r > 1,
(4.2)

{
m|r=1 = 0,

(ρ,m)|t=0 = (ρ0,m0)(r), r > 1,
(4.3)

where A(r) = 2π
d
2

Γ( d
2 )
rd−1 is the surface area of d-dimensional sphere.

Although (4.2) is derived through a spherically symmetric flow, it also describes
many important physical flows such as transonic nozzle flows with variable cross-
sectional area A(r) ≥ c0 > 0 (see Courant-Friedirchs [27] and Whitham [103]).
The eigenvalues of (4.2) are

λ± =
m

ρ
± c = c(M ± 1),

where c =
√

p′(ρ) is the sound speed, and M = m
ρc is the Mach number. Notice

that
λ+ − λ− = 2c(ρ) = 2ρ

γ−1
2 → 0

as ρ → 0, which implies that the system in (4.2) is nonstrictly hyperbolic near
ρ = 0. On the other hand, the geometric source speed is zero, and the eigenvalues
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λ± are also zero near M ≈ ±1, which indicates that there is also a nonlinear
resonance between the geometrical source terms and the characteristic modes.
The insights we sought for this problem are: (a) whether the solution has the

same geometrical structure globally; (b) whether the solution blows up to infinity
in a finite time, especially the density. These questions are not easily understood in
physical experiments and numerical simulations, especially for the second question,
due to a limited capacity of available instruments and computers. The central
difficulty of this problem in the unbounded domain is the reflection of waves from
infinity and their strengthening as they move radially inward. Another difficulty is
that the associated steady-state equations change type from elliptic to hyperbolic
at the sonic point; such steady-state solutions are fundamental building blocks in
the approach in Chen-Glimm [12].
Consider the steady-state solutions:


mr = −A′(r)

A(r) m,

(m
2

ρ + p(ρ))r = −A′(r)
A(r)

m2

ρ ,

(ρ,m)|r=r0 = (ρ0,m0).

(4.4)

The first equation can be directly integrated to get

A(r)m = A(r0)m0.(4.5)

The second equation can be rewritten as

(A(r)
m2

ρ
)r +A(r)p(ρ)r = 0.

Hence, using (4.5) and θ = γ−1
2 ,

ρ2θ(θM2 + 1) = ρ2θ
0 (θM

2
0 + 1).(4.6)

Then (4.5)-(4.6) become(
ρ

ρ0

)θ+1

=
A(r0)M0

A(r)M
,

(
ρ

ρ0

)2θ

=
θM2

0 + 1
θM2 + 1

.(4.7)

Eliminating ρ in (4.7), we obtain

F (M) =
A(r0)
A(r)

F (M0),(4.8)

where

F (M) =M

(
1 + θ

1 + θM2

) θ+1
2θ

satisfies 


F (0) = 0, F (1) = 1; F (M)→ 0, when M → ∞,

F ′(M)(1−M) > 0, when M ∈ [0,∞),
F ′(M)(1 +M) > 0, when M ∈ (−∞, 0].
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Thus we see that, if A(r) < A(r0)|F (M0)|, no smooth solution exists be-
cause the right-hand side of (4.8) exceeds the maximum values of |F |. If A(r) >
A(r0)|F (M0)|, there are two solutions of (4.8), one with |M | > 1 and the other
with |M | < 1 since the line F = A(r0)

A(r) F (M0) intersects the graph of F (M) at two
points.
For A′(r) = 0, the system becomes the one-dimensional isentropic Euler equa-

tions; the convergence of shock capturing numerical schemes was handled in Chen
[9] and Ding-Chen-Luo [31, 32] (also see Chen-LeFloch [14]).
For A′(r) 	= 0, the existence of global solutions for the transonic nozzle flow

problem was established in Liu [69] by first incorporating the steady-state building
blocks with the Glimm method [41], provided that the initial data have small total
variation and are bounded away from both sonic and vacuum states. A generalized
random choice method was introduced to compute transient gas flows in a Laval
nozzle in [40, 44]. A global weak entropy solution with spherical symmetry was
constructed in [78] for γ = 1, and the local existence of such a weak solution for
1 < γ ≤ 5

3 was also discussed in [79]. Also see Liu [69, 70, 71], Embid-Goodman-
Majda [35], and Fok [38].
In Chen-Glimm [12], we developed a numerical shock capturing scheme for

(4.2) and applied it to constructing global solutions of (1.8) with geometrical
structure and large initial data in L∞ for 1 < γ ≤ 5/3, including both the spherical
symmetric flows and the transonic nozzle flow. The case γ ≥ 5/3 was treated in
[19]. We proved that the solutions do not blow up to infinity in a finite time.
More precisely, we proved that there exists a family of numerical shock capturing
approximate solutions (ρε,mε) of (4.2) such that

(i) 0 ≤ ρε(r, t) ≤ C, |mε(r,t)
ρε(r,t) | ≤ C;

(ii) ∂tη(ρε,mε) + ∂rq(ρε,mε) is compact in H−1
loc (Ω) for any weak entropy pair

(η, q), where Ω ⊂ R
2
+ or Ω ⊂ R+ × (1,∞).

Furthermore, there is a convergent subsequence (ρεk ,mεk) in the approximate
solutions (ρε,mε) such that

(ρεk ,mεk)(r, t)→ (ρ,m)(r, t), a.e.

which is a global entropy solution of (4.2) in L∞ and satisfies

0 ≤ ρ(r, t) ≤ C,

∣∣∣∣m(r, t)ρ(r, t)

∣∣∣∣ ≤ C.

Moreover, for the initial-boundary value problem (4.2)-(4.3), the vector function
(ρ,m)(x, t), defined in (4.1) through (ρ,m)(r, t), is a global entropy solution of
(1.8) in L∞ with spherically symmetric initial data.
The approach in Chen-Glimm [12] for the construction of the family of numer-

ical approximate solutions (ρε,mε) above is to combine the shock capturing ideas
with the fractional-step techniques to develop a first-order Godunov-type shock
capturing scheme, with piecewise constant building blocks replaced by piecewise
smooth ones. The main point is to use the steady-state solutions governing the
large-time asymptotic states, which incorporate the main geometrical source terms,
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to modify the wave strengths in the Riemann solutions, in order to reduce the er-
rors in large number time-steps in the approximate solutions. This construction
yields better approximate solutions and permits a uniform L∞ bound. There are
two technical difficulties to achieve this, both due to transonic phenomena. One is
that no smooth steady-state solution exists in each cell in general. This problem
can be solved by introducing a standing shock. The other is that the constructed
steady-state solution in each cell must satisfy the following requirements:

(a) The oscillation of the steady-state solution around the Godunov value must
be of the same order as the cell length to obtain the L∞ estimate for the conver-
gence arguments;

(b) The difference between the average of the steady-state solution over each
cell and the Godunov value must be higher than first-order in the cell length to
ensure the consistency of the corresponding approximate solutions with the Euler
equations. That is,

1
∆r

∫ (j+ 1
2 )∆r

(j− 1
2 )∆r

u(r, n∆t− 0) dr = unj (1 +O(|∆r|1+δ)), δ > 0.

These requirements are naturally satisfied by smooth steady-state solutions that
are bounded away from the sonic state in the cell. The general case must include
the transonic steady-state solutions. The sonic difficulty was overcome, as in ex-
perimental physics, by introducing an additional standing shock with continuous
mass and by adjusting its left state and right state in the density and its loca-
tion to control the growth of the density. These requirements can yield the H−1

compactness estimates for entropy dissipation measures

∂tη(ρε,mε) + ∂rq(ρε,mε)

and the strong compactness of approximate solutions (ρε,mε) with the aid of a
compensated compactness framework in [9, 14, 31, 67].

5. Shock Capturing and the Navier-Stokes Equations

The shock capturing ideas are also very useful for designing numerical viscosity and
heat-conductivity terms for the Navier-Stokes equations and for establishing the
global existence of solutions with large discontinuous initial data. In this section,
we give such two examples.

Example 1. Consider the one-dimensional compressible Navier-Stokes equa-
tions:

∂tτ − ∂xv = 0,

∂tv + ∂xp(τ, e) = ∂x

(
ε∂xv

τ

)
,(5.1)

∂t

(
e+

v2

2

)
+ ∂x(vp(τ, e)) = ∂x

(
εv∂xv + λ∂xe

τ

)
.
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Here ε and λ are fixed positive viscosity parameters; and x is the Lagrangian
coordinate, so that x =constant corresponds to a particle trajectory. We assume
that e, v, and p are related by the equation of state of a polytropic gas in (1.5)-(1.6).
For concreteness, we focus on the initial boundary-value problem for (5.1); thus

0 < x < 1 without loss of generality, and the boundary conditions

v(i, t) = 0, ex(i, t) = 0, i = 0, 1,(5.2)

are to hold for t > 0. Let initial data

(τ, v, e)|t=0 = (τ0, v0, e0)(x), 0 ≤ x ≤ 1,(5.3)

be given, satisfying

(5.4) C−1
0 ≤ τ0(x) ≤ C0, e0(x) ≥ C−1

0 , ‖v0‖L4 + ‖e0‖L2 +TV(τ0) ≤ C0,

for a constant C0 > 0. On the other hand, our existence results can be extended
with little difficulty to the Cauchy problem.
Let h be an increment in x such that Kh = 1 for K ∈ Z+, xk = kh for

k ∈ {0, 1, . . . ,K}, and xj = jh for j ∈ { 1
2 ,

3
2 , . . . ,K− 1

2}. Time-dependent approx-
imations (τj(t), vk(t), ej(t)) to (τ(xj , t), v(xk, t), e(xj , t)) are then constructed as
follows:

τ̇j = δvj ,(5.5)

v̇k + δpk = εδ

(
δv

τ

)
k

,(5.6)

ėj + pjδvj = ε
(δvj)2

τj
+ λδ

(
δe

τ

)
j

.(5.7)

Here pj = p(τj , ej), ej = e(τj , ej), τk is taken to be the average τk =
τ

k+1
2
+τ

k− 1
2

2

with j ∈ { 1
2 ,

3
2 , . . . ,K − 1

2}, k ∈ {0, 1, . . . ,K}, and δ is the operator defined by

δwl =
w

l+1
2
−w

l− 1
2

h , l = k, or j. The initial data (τj(0), vk(0), ej(0)) for the ordinary
differential equations specified above satisfy that

v0 = vK = 0, δe0 = δeK = 0,(5.8)

C−1
0 ≤ τj(0) ≤ C0, ej(0) ≥ C−1

0 ,
∑
k v

4
k(0)h+

∑
j e

2
j(0)h ≤ C0,(5.9)

and that there are distinguished points 0 < xk1 < xk2 < · · · < xkN < 1, N =
N(h), N4h ≤ 1, such that

∑
k=ki

|[τki(0)]| +
∑
k �=ki

|δτk(0)|2h ≤ C0. Now, the
standard theory of ordinary differential equations applies to guarantee that the
initial-value problem (5.5)-(5.9) has a unique solution (τj(t), vk(t), ej(t)), defined
at least for small time.

In Chen-Hoff-Trivisa [13], we first derived the apriori bounds to show that these
approximate solutions exist globally in time and to provide sufficient compactness
both to extract limiting solutions as h → 0 as well as to determine their asymp-
totic behavior. Then we proved the global existence of weak solutions (τ, v, e) to
the Navier-Stokes equations (5.1) with large, discontinuous initial data such
that τ, v ∈ C([0,∞);L2), e ∈ C((0,∞);L2) with e(·, t) ⇀ e0 weakly in L2 as
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t → 0. Furthermore, we showed that there is a constant M depending on C0, but
independent of t > 0, such that the following hold:

M−1 ≤ τ(x, t) ≤ M, M−1 ≤ e(x, t) ≤ Mσ−1(t),

TV[0,1] (τ(·, t)) ≤ M, ‖τ(·, t′)− τ(·, t)‖ ≤ M |t′ − t|1/2,
‖vx(·, t)‖ ≤ Mσ−1/2(t), ‖ex(·, t)‖ ≤ Mσ−1(t),

‖v(·, t)‖L∞ ≤ Mσ−1/4(t), E(t) + F(t) ≤ M,

where

E(t) = sup
0≤s≤t

(
σ(s)‖vx(·, s)‖2 + σ2(s)‖ex(·, s)‖2

)

+
∫ t

0

(‖vx(·, s)‖2 + ‖ex(·, s)‖2 + σ(s)‖vt(·, s)‖2 + σ2(s)‖et(·, s)‖2) ds,

F(t) = sup
0≤s≤t

(
σ2(s)‖vt(·, s)‖2 + σ3(s)‖et(·, s)‖2

)

+
∫ t

0

σ2(s)‖vxt(·, s)‖2ds+
∫ t

0

σ3(s)‖ext(·, s)‖2 ds,

with σ(t) = min{t, 1}, and ‖ · ‖ the norm in L2(0, 1).
These a-priori estimates for the weak solutions are independent of large time

so that their asymptotic behavior can be determined. In particular, we showed
that, as time goes to infinity, the solution tends to a constant state determined
by the initial mass and energy, and that the magnitudes of singularities in the
solution decay to zero. The regularity and stability for the weak solutions were
also established.

Example 2. Consider the multi-dimensional Navier-Stokes equations for com-
pressible heat-conducting flow in R

d(d ≥ 2);
∂tρ+ div(ρv) = 0,

∂t(ρv) +∇ · (ρv ⊗ v) +∇p = µ∆v + (λ+ µ)∇(div v),

∂t(ρ(e+
|v|2
2
)) + div(v(ρ(e +

|v|2
2
) + p))

= ∆(κe+
µ

2
|v|2) + λdiv((div v)v) + µ div((∇v)v).

(5.10)

Here λ and µ are the constant viscosity coefficients, µ > 0, λ + 2µ/n ≥ 0; and
κ > 0 is the ratio of the heat conductivity coefficient over the heat capacity. We
focus on polytropic fluids (1.5)-(1.6).
At t = 0:

(ρ,v, e)|t=0 = (ρ0,v0, e0)(x) = (ρ0(r), v0(r)
x
r
, e0(r)),

(ρ0, v0, e0)(r) ∈ W 1,2(0, r0), v0(0) = 0,

0 < ρ0(r) ≤ C0, e0(r) ≥ C−1
0 , 1 < r = |x| < r0.

(5.11)
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On the fixed boundary r = 1:

v|r=1 = 0, ∂re|r=1 = 0.(5.12)

The conditions on the free boundary r = r(t) specified later so that the free
boundary connects the compressible heat-conducting fluids to the vacuum state
with free normal stress and zero normal heat flux, which represent a natural phys-
ical situation that the fluids are free to expand into the vacuum region without
normal resistance from the vacuum. The fluids are initially assumed to fill with
a finite volume and zero density at the free boundary, and with bounded positive
density and temperature (equivalently, internal energy) between the solid core and
the initial position of the free boundary. One of the main analytical difficulties to
handle this problem is the singularity of solutions near the free boundary.
Unlike the stability of solutions with the vacuum states for the compressible

Euler equations (see [10]), solutions with the vacuum states for the compressible
Navier-Stokes equations are not stable in general (see Hoff-Serre [52]). Hence it is
essential to estimate first a relative positive lower bound of the density between the
solid core and the free boundary. Another physical important question is whether
the free boundary expands with a finite speed. The positive answer to these two
questions is also essential for establishing the existence theorem of global solutions
without the vacuum states between the solid core and the free boundary for this
problem.
To solve this problem, we look for spherically symmetric solutions (ρ,v, e):

ρ(x, t) = ρ(r, t), v(x, t) = v(r, t)
x
r
, e(x, t) = e(r, t).(5.13)

It is more convenient to reduce the problem in Eulerian coordinates (r, t) to the
problem in Lagrangian coordinates (x, t) moving with the fluid, via the transfor-
mation:

(5.14) x =
∫ r(x,t)

1

sd−1ρ(s, t) ds, or, r(x, t) = r(x, 0) +
∫ t

0

v(r(x, τ), τ) dτ.

It is easy to check that x =
∫ r(x,0)
1

sd−1ρ0(s) ds. Without loss of generality,
we assume that

∫ r0
1 sd−1ρ0(s) dx = 1, so that the region {(r, t) | 1 ≤ r ≤ r(t),

0 ≤ t ≤ T } under consideration is transformed into the region {(x, t) | 0 ≤ x ≤
1, 0 ≤ t ≤ T }. With this change of coordinates, then (ρ, v, e)(x, t) is determined
by

∂tρ = −ρ2∂x(rd−1v),

∂tv = rd−1∂xσ,(5.15)

∂te = κ∂x
(
ρr2d−2∂xe

)
+ σ∂x(rd−1v)− 2µ(d− 1)∂x(rd−2v2),

where σ = (λ+ 2µ)ρ∂x(rd−1v)− p. Then the initial conditions are in the form

(ρ, v, e)|t=0 = (ρ0, v0, e0)(x), 0 ≤ x ≤ 1.(5.16)
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The free boundary conditions and the solid boundary conditions then are specified
as

v(0, t) = 0, (ρ∂xe)(0, t) = (ρ∂xe)(1, t) = 0, σ(1, t) = 0.(5.17)

To articulate the assumption that there is no initial cavity with the fluid resid-
ing in the bounded region, we assume that there exist a decreasing nonnegative
function Λ(x), Λ(1) = 0,

∫ 1

0 Λ
−1(x) dx < ∞, and a constant C0 > 0 such that

C−1
0 Λ(x) ≤ ρ0(x) ≤ C0Λ(x)(5.18)

holds uniformly for all x ∈ [0, 1].
We use the following a space-discrete difference scheme to handle the singularity

of solutions near the free boundary. Let h be an increment in x such that Kh = 1
for K ∈ Z+, xj = jh for j ∈ {0, 1, . . . ,K}. For each integer K, we construct the
following time-dependent functions:

(ρj(t), vj(t), ej(t)), j = 0, . . . ,K,(5.19)

that form a discrete approximation to (ρ(xj , t), v(xj , t), e(xj , t)) for j = 0, . . . ,K.
First, (ρi(t), vj(t), ej(t)), i = 0, . . . ,K − 1, j = 1, . . . ,K − 1, are determined by

the following system of 3K − 2 differential equations:
ρ̇i = −ρ2

i δ(r
d−1
i vi),

v̇j = rd−1
j δσj ,

ėj = κδ(ρj−1r
2d−2
j δej−1) + σjδ(rd−2

j−1vj−1)− 2µ(d− 1)δ(rd−2
j−1v

2
j−1),

(5.20)

where δ is the operator defined by δwj =
wj+1−wj

h , and

σj(t) = (λ+ 2µ)ρj−1δ(rd−1
j−1vj−1)− p(ρj−1, ej),

r0 = 1, rdj (t) = 1 + d

j−1∑
i=0

h

ρi
, j = 1, . . . ,K.

(5.21)

The corresponding initial data are defined by
ρK−1(0) = ρK−2(0),

(ρi, vj , ej)(0) =
( 1
h

∫ (i+1)h

ih

ρ0(x) dx,
1
h

∫ jh

(j−1)h

v0(x) dx,

1
h

∫ jh

(j−1)h

e0(x) dx
)
,

i = 0, . . . ,K − 2; j = 1, . . . ,K − 1.

(5.22)

Then the initial data (ρj , vj , ej)(0) satisfy

C−1
0 Λ(xj+1) ≤ ρj(0) ≤ C0Λ(xj), ej(0) ≥ C−1

0 ,

K−1∑
j=0

(|(ρj , vj , ej)|2 + |(δρj , δvj , δej)|2)(0)h ≤ C1,
(5.23)

which also imply
∑K−1
j=0 v4

j (0)h ≤ C1, where C1 > 0 is independent of K.
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These are coupled with additional five boundary conditions:

ρK(t) = ρK−1(t), v0(t) = 0,

e0(t) = e1(t), eK(t) = eK−1(t), σK(t) = 0.
(5.24)

These boundary conditions are consistent with the initial data. Condition σK(t) =
0 determines vK(t).
The basic theory of differential equations guarantees the local existence of

smooth solutions (ρi, vj , ej)(t), i = 0, . . . ,K − 1, j = 1, . . . ,K − 1, to the Cauchy
problem (5.20)-(5.23) in some time interval (0, T ).

In Chen-Krakta [18], we derived the apriori bounds to guarantee that the solu-
tions are actually globally defined in [0,∞), that is, the scheme (ρj , vj , ej)(t), j =
0, 1, . . . ,K, in (5.19)-(5.24) is globally well defined. Then we constructed global
solutions of the multi-dimensional Navier-Stokes equations for compressible heat-
conducting flow, with spherically symmetric initial data of large oscillation be-
tween a static solid core and a free boundary connected to a surrounding vacuum
state. The approach we employed is to combine an effective difference scheme
(5.19)-(5.24) to construct approximate solutions with the energy methods and the
pointwise estimate techniques to deal with the singularity of solutions near the
free boundary and to obtain the bounded estimates of the solutions and the free
boundary as time evolves. The convergence of the difference scheme was estab-
lished. It was also proved that no vacuum develops between the solid core and the
free boundary, and the free boundary expands with a finite speed.
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