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APPLICATIONS OF NONLINEAR DIFFUSION IN
IMAGE PROCESSING AND COMPUTER VISION

J. WEICKERT

Abstract. Nonlinear diffusion processes can be found in many recent methods
for image processing and computer vision. In this article, four applications are
surveyed: nonlinear diffusion filtering, variational image regularization, optic flow
estimation, and geodesic active contours. For each of these techniques we explain
the main ideas, discuss theoretical properties and present an appropriate numerical
scheme. The numerical schemes are based on additive operator splittings (AOS).
In contrast to traditional multiplicative splittings such as ADI, LOD or D’yakonov
splittings, all axes are treated in the same manner, and additional possibilities
for efficient realizations on parallel and distributed architectures appear. Geodesic
active contours lead to equations that resemble mean curvature motion. For this
application, a novel AOS scheme is presented that uses harmonic averaging and
does not require reinitializations of the distance function in each iteration step. Its
accuracy is evaluated in case of mean curvature motion.

1. Introduction

Many mathematicians have been attracted by image processing and computer
vision in recent years. This has been triggered by mathematically well-founded
methods using e.g. wavelets or nonlinear partial differential equations. The goal
of the present paper is to give an introduction to a subarea of this field, namely
methods that are based on nonlinear diffusion techniques.

This field has evolved in a very fruitful way. It is closely connected to a specific
kind of multiscale analysis called scale-space [23, 32], and it has first been used
for image smoothing with simultaneous edge enhancement [26]. Later on, close
connections to regularization methods have been discovered [29], and related non-
linear methods have also entered computer vision fields such as motion analysis
in image sequences [8] or interactive segmentation [4, 20]. In this paper we shall
learn about the basic ideas behind these methods, but also about their theoretical
foundation and their adequate numerical realization.

In this context we will also discuss the specific requirements for adequate nu-
merical schemes in image processing or computer vision. Among the variety of
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numerical methods that fulfill these requirements, we focus on a specific class of
splitting-based finite difference schemes. These semi-implicit schemes differ from
their classical counterparts by the fact that they use additive operator splittings
(AOS) instead of multiplicative ones. It will be shown that these AOS schemes
are simple and efficient, do not require additional parameters, inherit important
properties from the continuous equations, and are widely applicable.

The paper is organized as follows: Section 2 gives an introduction to nonlinear
diffusion filtering, while Section 3 describes its relation to regularization methods.
In Section 4, nonlinear diffusion is used for analysing motion in image sequences,
and Section 5 shows how diffusion-like ideas can be used for interactive segmenta-
tion. Each of these sections explains the main ideas, the theoretical foundation of
the method, and an appropriate numerical realization in terms of AOS schemes.
While sections 2–4 survey work that has been published elsewhere, a novel AOS
scheme for mean curvature motion and geodesic active contours is introduced in
Section 5.

Related work. In view of the large amout of publications in this area, we have
to refer the reader to some recent collections and books in order to obtain a more
detailed overview of the state-of-the-art in diffusion-based image processing [5, 23,
32, 34]. Compared to this large number of publications, however, the number of
papers dealing with numerical aspects of diffusion filtering is still relatively small.
Since the pixel structure of digital images provides a natural discretization on a
fixed rectangular grid, it is not surprising that often finite difference methods are
used in the image processing community. For simplicity reasons, explicit schemes
are still very common, but absolutely stable semi-implicit schemes [6, 13, 39] are
becoming more and more popular. Alternatives to finite differences include finite
element methods [3, 19, 27, 30], wavelets [10, 11], finite and complementary
volume schemes [13], pseudospectral approaches [11], lattice Boltzmann methods
[17], and stochastic simulations [28].

2. Nonlinear Diffusion Filtering

2.1. Basic Idea

Nonlinear diffusion filtering goes back to Perona and Malik [26]. Although their
method in its original formulation is regarded to be ill-posed, it has triggered a lot
of research; see [33, 34] for overviews. In the following we shall be concerned with
one of its earliest regularizations that is due to Catté, Lions, Morel, and Coll [6].

Let Ω := (0, a1) × · × (0, am) be our image domain in R
m and consider a

(scalar) image f(x) ∈ L∞(Ω). Then a filtered image u(x, t) of f(x) is calculated
by solving a nonlinear diffusion equation with the original image as initial state,
and homogeneous Neumann boundary conditions:

(1) ∂tu = div
(
g(|∇uσ|2)∇u

)
on Ω × (0,∞),
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u(x, 0) = f(x) on Ω,(2)

∂nu = 0 on ∂Ω × (0,∞),(3)

where n denotes the normal to the image boundary ∂Ω.
The “time” t is a scale parameter: larger values lead to simpler image repre-

sentations. In order to reduce smoothing at edges, the diffusivity g is chosen as
a decreasing function of the edge detector |∇uσ|2, where ∇uσ is the gradient of a
Gaussian-smoothed version of u:

∇uσ := ∇(Kσ ∗ u),(4)

Kσ :=
1

(2πσ2)m/2
exp

(
−|x|2

2σ2

)
.(5)

We use the diffusivity

(6) g(s2) :=

{
1 (s2 = 0)
1 − exp

(
−c

(s/λ)8

)
(s2 > 0).

For such rapidly decreasing diffusivities, smoothing on both sides of an edge is
much stronger than smoothing across it. This selective smoothing process prefers
intraregional smoothing to interregional blurring. One can ensure that the flux
Φ(s) := sg(s2) is increasing for |s| ≤ λ and decreasing for |s| > λ by choosing
c ≈ 3.315. Thus, λ is a contrast parameter separating low-contrast regions with
(smoothing) forward diffusion from high-contrast locations where backward diffu-
sion may enhance edges [26]. Other choices of diffusivities are possible as well, but
experiments indicated that (6) may lead to more segmentation-like results than
the functions used in [26].

Figure 1 shows an application of image restoration by means of such a forward-
backward diffusion filter. A mammogram is denoised in such a way that the
diagnostically relevant microcalcifications become much better visible.

2.2. Theoretical Foundation

2.2.1. Continuous Formulation. The preceding nonlinear diffusion filter be-
longs to a much larger filter class for which useful theoretical properties can be
established. In particular it is possible to replace the scalar-valued diffusivity g
by a smooth matrix-valued function D that remains uniformly positive definite as
long as its argument is bounded. This allows for more flexible nonlinear diffusion
models [34]. For such a class the following properties can be established.

(a) (Well-posedness and smoothness results)
There exists a unique solution u(x, t) in the distributional sense which is in
C∞(Ω̄ × (0,∞)) and depends continuously on f with respect to the L2(Ω)
norm.

(b) (Extremum principle)
Let a := infΩ f and b := supΩ f . Then, a ≤ u(x, t) ≤ b on Ω × [0,∞).
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Figure 1. (a) Top Left: Mammogram with six microcalcifications, Ω = (0, 128)2. (b) Top

Right: 3D plot of (a), where the graph of f is regarded as a surface in R3. (c) Bottom Left:

Nonlinear diffusion filtering of (a) (σ=1, λ=7.5, t=128). (d) Bottom Right: 3D plot of (c).

(c) (Average grey level invariance)
The average grey level µ := 1

|Ω|
∫
Ω

f(x) dx is not affected by nonlinear dif-
fusion filtering: 1

|Ω|
∫
Ω

u(x, t) dx = µ for all t > 0.
(d) (Lyapunov functionals)

V (t) :=
∫
Ω

r(u(x, t)) dx is a Lyapunov function for all convex r ∈ C2[a, b]:
V (t) is decreasing and bounded from below by

∫
Ω

r(µ) dx.
(e) (Convergence to a constant steady state)

lim
t→∞u(x, t) = µ in Lp(Ω), 1 ≤ p < ∞.

The existence, uniqueness and regularity proof is due to [6], the other results
are proved in [34].

Continuous dependence of the solution on the initial image is of significant
practical importance, since it guarantees stability under perturbations. This is
relevant when considering stereo images, image sequences or slices from medical
CT or MR sequences, since we know that similar images remain similar after
filtering.
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Hummel [15] has shown that, for a large class of linear and nonlinear parabolic
operators, extremum principles imply that no new level sets can be created that
are absent at smaller scales t > 0. This so-called causality property allows to
trace back structures in time (e.g. in order to improve their localization). It is
important in many computer vision applications.

Average grey level invariance is a property which distinguishes nonlinear dif-
fusion filtering from other PDE-based image processing techniques such as mean
curvature motion [2]. The latter one is not in divergence form and, thus, can not
be conservative. Average grey level invariance is required in some segmentation
algorithms such as the Hyperstack [24].

Lyapunov functionals are of theoretical importance, as they allow to prove that
– in spite of its image enhancing qualities – our filter class consists of smoothing
transformations: Indeed, the special choices r(s) := |s|p, r(s) := (s−µ)2n and
r(s) := s ln s, respectively, imply that all Lp norms with 2 ≤ p ≤ ∞ are decreas-
ing (e.g. the energy ‖u(t)‖2

L2(Ω)), all even central moments are decreasing (e.g.
the variance), and the entropy S[u(t)] := − ∫

Ω
u(x, t) ln(u(x, t)) dx, a measure of

uncertainty and missing information, is increasing with respect to t. Thus, in
spite of the fact that our filters may act image enhancing, their global smoothing
properties in terms of Lyapunov functionals can be interpreted in a deterministic,
stochastic, and information-theoretic manner.

The result (e) tells us that, for t →∞, diffusion filtering tends to the most
global image representation that is possible: a constant image with the same
average grey level as f .

A continuous family {u(t) | t ≥ 0} of simplified versions of f = u(0) with prop-
erties like the ones above is called a scale-space representation. Scale-spaces
have turned out to be useful image processing and computer vision techniques
with many applications [23, 32].

2.2.2. Semidiscrete and Discrete Formulations. The preceding theoretical
framework yielded several properties that are desirable from an image processing
viewpoint. Since digital images are discretized on a regular pixel grid, however,
the natural question arises whether these properties are still preserved for suitable
numerical approximations. We would thus need semidiscrete and discrete theories
that guarantee the same properties.

Such a framework has been developed in [34], both for the spatially discrete
and for the fully discrete case when finite differences are used. In this setting,
semidiscrete filters (discrete in space and continuous in time) are given by a cou-
pled system of ordinary differential equations, while fully discrete methods may
lead to matrix-vector multiplications where the matrix depends nonlinearly on the
evolving image.

Table 1 gives an overview of the requirements which are needed in order
that well-posedness properties, average grey value invariance, causality in terms
of an extremum principle and Lyapunov functionals, and convergence to a con-
stant steady-state are inherited from the continuous setting. We observe that
the requirements belong to five categories: smoothness, symmetry, conservation,
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nonnegativity and connectivity requirements. These criteria are easy to check for
many discretizations.

requirement continuous semidiscrete discrete
∂tu = div (D∇u) du

dt = A(u)u uk+1 = Q(uk)uk

u(x, 0) = f(x) u(0) = f u0 = f

smoothness D ∈ C∞ A Lipschitz- Q continuous
continuous

symmetry D symmetric A symmetric Q symmetric
conservation divergence form;

∑
i

aij = 0
∑
i

qij = 1

〈D∇u, n〉 = 0
nonnegativity positive nonnegative nonnegative

semidefinite off-diagonals elements
connectivity uniformly A irreducible Q irreducible;

positive definite pos. diagonal

Table 1. Requirements for continuous, semidiscrete and fully discrete nonlinear diffusion scale-
spaces. In the continuous case, u is a function of space and time, in the semidiscrete case it is a

time-dependent vector, and in the fully discrete case, uk is a vector. From [34].

It should be noted that this table provides design criteria for reliable algorithms.
Criteria that guarantee a discrete extremum principle, for instance, constitute
strong stability properties. The table also shows an important difference between
image processing and other fields of scientific computing. In other fields, a diffusion
equation is motivated from some underlying physical problem. Hence, a good
numerical method aims at approximating it as closely as possible. This may result
e.g. in high-order methods and sophisticated error estimators. In image processing
there is no physical problem behind the model. Thus, one might be more interested
in methods that inherit all qualitative properties of a continuous model than in
highly precise, but possibly oscillating schemes.

It should also be noted that our discrete scale-space framework is not necessarily
limited to finite difference methods, as it is well known that e.g. finite volume
schemes on a regular grid may lead to the same algorithms. On the other hand, it
is worth mentioning that this framework can only give sufficient criteria for well-
founded and stable discrete processes. These criteria are not necessarily the only
way to go, as one can see e.g. from the theoretically well-investigated alternatives
in [13, 19, 30].

2.3. Adequate Numerical Schemes

2.3.1. Classical Semi-Implicit Schemes. Let us now consider finite difference
approximations to the m-dimensional diffusion filter of Catté et al. [6]. A discrete
m-dimensional image can be regarded as a vector f ∈ R

N , whose components
fi, i ∈ {1, . . . , N} display the grey values at the pixels. Pixel i represents the
location xi. Let hl denote the grid size in the l direction. We consider discrete
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times tk := kτ , where k ∈ N0 and τ is the time step size. By uk
i and gk

i we denote
approximations to u(xi, tk) and g(|∇uσ(xi, tk)|2), respectively, where the gradient
is replaced by central differences.

A semi-implicit (linear implicit) discretization of the diffusion equation with
reflecting boundary conditions is given by

(7)
uk+1

i − uk
i

τ
=

m∑
l=1

∑
j∈Nl(i)

gk
j + gk

i

2h2
l

(uk+1
j − uk+1

i ).

where Nl(i) consists of the two neighbours of pixel i along the l direction (boundary
pixels may have only one neighbour). In vector-matrix notation this becomes

(8)
uk+1 − uk

τ
=

m∑
l=1

Al(uk)uk+1.

Al describes the diffusive interaction in l direction. This scheme does not give the
solution uk+1 directly: it requires to solve a linear system first. Its solution is
formally given by

(9) uk+1 =
(
I − τ

m∑
l=1

Al(uk)
)−1

uk.

In [34] it is shown that this scheme satisfies all discrete scale-space requirements
for all time step sizes τ > 0. This absolute stability shows in particular that one
does not have to consider numerically more expensive fully implicit schemes.

How expensive is it to solve the linear system? In the 1-D case the system
matrix is tridiagonal and diagonally dominant. Here a simple Gaussian algorithm
for tridiagonal systems solves the problem in linear complexity. For dimensions
m ≥ 2, however, the matrix may reveal a much larger bandwidth. Applying
direct algorithms such as Gaussian elimination would destroy the zeros within the
band and would lead to an immense storage and computation effort. Classical
iterative algorithms become slow for large τ , since this increases the condition
number of the system matrix. Hence, it would be natural to consider e.g. multigrid
methods [1] whose convergence can be independent of the condition number, or
preconditioned conjugate gradient methods [13, 27]. In the following we shall
focus on a splitting-based alternative. It is simple to implement and does not
require to specify any additional parameters. This may make it attractive in a
number of image processing and computer vision applications.

2.3.2. AOS Schemes. Let us now consider a modification of (9), namely the
additive operator splitting (AOS) scheme [39]

(10) uk+1 =
1
m

m∑
l=1

(
I − mτAl(uk)

)−1

uk.

The operators Bl(uk) := I−mτAl(uk) describe one-dimensional diffusion processes
along the xl axes. Under a consecutive pixel numbering along the direction l they
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come down to strictly diagonally dominant tridiagonal linear systems which can
be solved in linear complexity with a simple Gaussian algorithm.

It should be noted that (10) has the same first-order Taylor expansion in τ as
the semi-implicit scheme: both methods are O(τ + h2

1 + · · ·+ h2
m) approximations

to the continuous equation.
Moreover, since (10) is an additive splitting, all coordinate axes are treated in

exactly the same manner. This is in contrast to conventional splitting techniques
from the literature such as ADI methods, D’yakonov splitting or LOD techniques
[21]: they are multiplicative and may produce different results in the nonlinear
setting if the image is rotated by 90 degrees, since the operators do not commute.
In general, they also produce nonsymmetric system matrices, for which the discrete
scale-space framework from Table 1 is not applicable.

The AOS scheme, however, does not require commuting operators, and it sat-
isfies the discrete scale-space framework for all time step sizes [39]. As a con-
sequence, it preserves the average grey level µ, satisfies a causality property in
terms of a maximum–minimum principle, possesses the desired class of Lyapunov
sequences and converges to a constant steady state.

In practice, it makes of course not much sense to use extremely large time
steps, since this leads to poor rotation invariance, as splitting effects become vis-
ible. Evaluations have shown that for h1 = h2 = 1 a step size of τ = 5 is a
good compromise between accuracy and efficiency [39]. Many nonlinear diffusion
problems require only the elimination of noise and some small-scale details. Often
this can be accomplished with no more than 5 discrete time steps. This requires
about 0.3 CPU seconds for an image with 256× 256 pixels on a 700 MHz PC. For
many applications this is sufficiently fast.

In case one is interested in a further speed-up, one should notice that AOS
schemes are well-suited for parallel computing as they possess two granularities of
parallelism:

• Coarse grain parallelism: Diffusion in different directions can be performed
simultaneously on different processors.

• Mid grain parallelism: 1D diffusions along the same direction decouple as
well.

Motivated from our encouraging results with AOS schemes on a shared memory
machine [36], we are currently studying their behaviour on architectures with
distributed memory such as system area networks with low latency communication.

3. Regularization Methods

3.1. Basic Idea and Theoretical Foundation

Regularization methods constitute an interesting alternative to nonlinear diffusion
filters. Typical variational methods for image restoration (such as [7], [9], [16],
[25], [30]) obtain a filtered version of some degraded image f as the minimizer uα
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of

(11) Ef (u) :=
∫
Ω

(
(u−f)2 + αΨ(|∇u|2)

)
dx.

The first summand encourages similarity between the restored image and the orig-
inal one, while the second summand rewards smoothness. The smoothness weight
α > 0 is called regularization parameter. In our case, the regularizer Ψ is supposed
to satisfy the following conditions:

• Ψ(.) is continuous for any compact K ⊆ [0,∞).
• Ψ(| . |2) is convex from R

m to R.
• Ψ(.) is increasing in [0,∞).
• There exists a constant ε > 0 with Ψ(s2) ≥ εs2.

One example is given by

(12) Ψ(s2) = λ2
√

1 + s2/λ2 + εs2.

For this class of regularization methods one can establish a similar well-posedness
and scale-space framework as for nonlinear diffusion filtering if one considers the
regularization parameter α as scale. In [29] the following properties have been
proved:

(a) (Well-posedness and regularity)
Let f ∈ L∞(Ω). Then the functional (11) has a unique minimizer uα in
the Sobolev space H1(Ω). Moreover, uα ∈ H2(Ω) and ‖uα‖L2(Ω) depends
continuously on α.

(b) (Extremum principle)
Let a := infΩ f and b := supΩ f . Then, a ≤ uα(x) ≤ b on Ω.

(c) (Average grey level invariance)
The average grey level µ := 1

|Ω|
∫
Ω f(x) dx remains constant under regular-

ization: 1
|Ω|
∫
Ω

uα(x) dx = µ.
(d) (Lyapunov functionals)

V (α) :=
∫
Ω

r(uα(x)) dx is a Lyapunov functional for all r ∈ C2[a, b] with
r′′ ≥ 0: V (α) ≤ V (0) for all α ≥ 0 and V (α) ≥ ∫

Ω
r(µ) dx.

(e) (Convergence to a constant image for α → ∞)
If m = 2, then lim

α→∞ ‖uα − µ‖Lp(Ω) = 0 for any p ∈ [1,∞).

Let us now give an intuitive reason for this large amount of structural similarities
between diffusion filters and regularization methods. If Ψ is differentiable, then
the minimizer of Ef (u) satisfies the Euler-Lagrange equation

(13)
u − f

α
= div

(
Ψ′(|∇u|2)∇u

)
.

This can be regarded as a fully implicit time discretization of the diffusion filter

(14) ∂tu = div
(
Ψ′(|∇u|2)∇u

)
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with one discrete time step of size α. One may thus regard our well-posedness and
scale-space framework for regularization methods as a time-discrete framework for
diffusion filtering. This would constitute another column in Table 1.

It should be noted, however, that we have restricted ourselves to convex regu-
larizers Ψ. In this case the flux function Ψ′(s2) s is always increasing. This implies
that there is no contrast enhancement in a similar way as for forward–backward
diffusion filters. Nevertheless, since the diffusivity Ψ′(|∇u|2) is decreasing in |∇u|2,
smoothing at edges is reduced and discontinuities are better preserved than with
linear smoothing methods.

3.2. Numerical Approximation

From the discussion in the last section it follows that one may use any diffusion
algorithm in order to approximate a regularization method. All one has to do is
to use the regularization parameter as stopping time.

If one wants to have a more accurate approximation, an alternative way to use
diffusion techniques would be to discretize the steepest descent equation of (11),

(15) ∂tu = div
(
Ψ′(|∇u|2)∇u

)
+ 1

α (f − u),

and extract the desired regularization from its steady state (t → ∞). In matrix-
vector notation a semi-implicit discretization of this diffusion-reaction equation is
given by

(16)
uk+1 − uk

τ
=

m∑
l=1

Al(uk)uk+1 + 1
α (f − uk+1).

Solving for uk+1 yields

(17) uk+1 =

(
I − ατ

α + τ

m∑
l=1

Al(uk)

)−1
αuk + τf

α + τ
.

In analogy to the previous section we may replace this scheme by its AOS approx-
imation

(18) uk+1 =
1
m

m∑
l=1

(
I − mατ

α + τ
Al(uk)

)−1
αuk + τf

α + τ

which again leads to simple tridiagonal linear systems of equations.
In contrast to the pure diffusion filter, however, we are now interested in ap-

proximating the solution for t → ∞. In order to speed up the process, we may
embed the AOS scheme into a multilevel framework [35]. Experiments have shown
that a simple nested iteration strategy with full weighting for restriction and with
linear interpolation gives sufficiently fast and accurate results. Hence, the princi-
ple is as follows: The original image is downsampled in a pyramid-like manner by
applying the convolution mask [14 , 1

2 , 1
4 ] in x and y direction until the coarsest res-

olution is reached. This image is used as initialization at the coarsest level. Then
a fixed number of AOS iterations is applied, and the result is linearly interpolated
to the next higher level where it serves as initialization. This is repeated until the
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finest level is reached again. Figure 2 illustrates this approach. Regularizing a
2562 image on a 700 MHz PC with 5 time steps per level requires about 0.3 CPU
seconds.

Figure 2. (a) Top: Restriction of a noisy test image. (b) Bottom: Regularized by an AOS
scheme embedded in a nested iteration strategy. From [35].

4. Optic Flow Estimation

Let us now investigate the use of nonlinear diffusion processes in the context of
image sequence analysis. One of the main goals of image sequence analysis is
the recovery of the so-called optic flow field. Optic flow describes the apparent
motion of structures in the image plane. It can be used in a large variety of
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applications ranging from the recovery of motion parameters in robotics to the
design of efficient algorithms for second generation video compression.

In the following we consider an image sequence f(x, y, z) where (x, y) ∈ Ω
denotes the location and z ∈ [0, Z] is the time. We are looking for the optic
flow field

(
u(x,y,z)
v(x,y,z)

)
which describes the correspondence of image structures at

different times. Variational methods constitute one possibility to solve the optic
flow problem; see e.g. [8, 14, 22, 37]. In [38] a method is considered which is
based on the following two assumptions:

1. Image structures do not change their grey value over time. Therefore, along
their path (x(z), y(z)) one obtains

(19) 0 =
df(x(z), y(z), z)

dz
= fxu + fyv + fz.

2. As second assumption we impose a spatio-temporal smoothness constraint:

(20)
∫

Ω×[0,Z]

Ψ
(|∇3u|2 + |∇3v|2

)
dx dy dz is “small”,

where ∇3 := (∂x, ∂y, ∂z)T and Ψ is a regularizer as in the previous section.
Combining these two constraints in a single energy functional, one can obtain the
optic flow as a minimizer of

(21) Ef (u, v) :=
∫

Ω×[0,Z]

(
(fxu+fyv+fz)

2 + α Ψ
(|∇3u|2 + |∇3v|2

))
dx dy dz.

This functional can be regarded as a special representative of a much larger class
of optic flow functionals for which one can establish general well-posedness results
in H1(Ω× (0, T ))×H1(Ω× (0, T )). For more details the reader is referred to [37].

The steepest descent equations for (21) with a differentiable regularizer Ψ are

ut = ∇3 ·
(
Ψ′ (|∇3u|2+|∇3v|2

) ∇3u
) − 1

α fx (fxu+fyv+fz),(22)

vt = ∇3 ·
(
Ψ′ (|∇3u|2+|∇3v|2

) ∇3v
) − 1

α fy (fxu+fyv+fz).(23)

This is a coupled three-dimensional diffusion–reaction system. It may be treated
numerically in the same way as the regularization methods from the last section.
In matrix-vector notation, the resulting AOS scheme is given by

uk+1 =
1
3

3∑
l=1

(
I + 3τ

α f2
xI − 3τAl(uk, vk)

)−1 (
uk − τ

αfx

(
fyv

k+fz

))
,(24)

vk+1 =
1
3

3∑
l=1

(
I + 3τ

α f2
y I − 3τAl(uk, vk)

)−1 (
vk − τ

αfy

(
fxuk+fz

))
.(25)

Since the continuous and discrete processes are globally convergent for convex
diffusivities, the specific choice of the initial values is not very important. In our
experiments the flow is initialized with zero. Figure 3 shows an example. We
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can see that the recovered optic flow field gives a quite realistic description of the
person’s movement towards the camera.

Figure 3. (a) Left: One frame of a hallway sequence with 256× 256× 16 pixels. A person is
approaching the camera. (b) Middle: Detail. (c) Right: Computed optic flow. From [38] .

5. Geodesic Active Contours

5.1. Basic Idea and Theoretical Properties

Active contours [18] play an important role in interactive image segmentation, in
particular for medical applications. The basic idea is that the user specifies an
initial guess of an interesting contour (organ, tumour, . . . ). Then this contour is
moved by image-driven forces to the edges of the desired object.

So-called geodesic active contour models [4, 20] achieve this by applying a
specific kind of level set ideas [31]. In its simplest form, a geodesic active contour
model consists of the following steps. One embeds the user-specified initial curve
C0(s) as a zero level curve into a function u0 : R

2 → R, for instance by using
the distance transformation. Then u0 is evolved under a PDE which includes
knowledge about the original image f :

(26) ∂tu = |∇u| div
(

g(|∇fσ|2) ∇u

|∇u|
)

,

where g inhibits evolution at edges of f . One may choose decreasing functions
such as (6). Experiments indicate that, in general, (26) will have nontrivial steady
states. The evolution is stopped at some time T , when the process does hardly
alter anymore, and the final contour C is extracted as the zero level curve of
u(x, T ). Figure 4 gives an example of such a geodesic active contour evolution.
It can be interpreted as a curve evolution that follows a modified mean curvature
motion.
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The theoretical analysis from [4, 20] shows that the initial value problem has
a unique viscosity solution u ∈ L∞(0, T ;W 1,∞(R2)) ∩ C([0,∞) × R

2) for initial
data u0 ∈ C(R2) ∩ W 1,∞(R2). This solution satisfies an extremum principle and
depends continuously on the initial data with respect to the L∞ norm.

Figure 4. Temporal evolution of a geodesic active contour superimposed on the original image
(Ω = (0, 256)2, λ = 5, σ = 1). From Left to Right: t = 0, 1500, 7500. Larger values for t do

not alter the result .

5.2. Numerical Approximation

Next we present a novel scheme for the geodesic active contour model. Although
(26) is not a diffusion process in a strict sense – it cannot be written in divergence
form – one may use similar techniques as before.

The case ∇u = 0 can be treated numerically by imposing no changes at these
points. Several modifications are possible, but this case is less important since one
is interested in steady states where the embedded level set does not vanish. Let
us therefore consider the case where ∇u �= 0 in some pixel i. Here straightforward
finite difference implementations would give rise to problems when ∇u vanishes in
the 4-neighbourhood N (i) of i. These problems do not appear if one uses a finite
difference scheme with harmonic averaging. In its semi-implicit formulation such
a scheme reads

(27)
uk+1

i − uk
i

τ
= |∇u|ki

∑
j∈N (i)

2
( |∇u|

g )k

j
+( |∇u|

g )k

i

uk+1
j − uk+1

i

h2
.

Note that the denominator cannot vanish in this scheme. One can also verify that
such a scheme is absolutely stable, since it satisfies the discrete extremum principle

(28) min
i

u0,i ≤ uk
j ≤ max

i
u0,i

for all j and for all k > 0. An AOS variant of this scheme can be constructed in
exactly the same manner as in Section 2. The only difference is that Al(uk)uk+1

is now a semi-implicit discretization of |∇u|∂xl
(g∇u/|∇u|) instead of ∂xl

(g∇u). It
may be accelerated by embedding it in a multilevel framework as is described in
Section 3.2. The AOS scheme for geodesic active contours also inherits absolute
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stability from (27), while a simple explicit variant of (27) would only be stable for
τ ≤ h2/8.

It should be mentioned that this AOS strategy is not the only AOS approach
that has been proposed for geodesic active contours. In [12], Goldenberg et al.
present a method that requires to apply a distance transformation in each iteration
[31]. This is done in order to obtain |∇u| = 1 such that (26) becomes the diffusion
process

(29) ∂tu = div
(
g(|∇fσ|2)∇u

)
for which the standard AOS from Section 2 is used. Since our method does not
require any time-consuming distance transformation in each iteration step, it is
simpler and computationally more efficient.

5.3. Evaluation in Case of Mean Curvature Motion

It is obvious that the preceding AOS-based harmonic averaging scheme can also be
used for computing mean curvature motion for the case g = 1. In this situation a
simple numerical evaluation is possible: Since it is well-known that a disk-shaped
level set with area S(0) shrinks under mean curvature motion such that

(30) S(t) = S(0)− 2πt,

simple accuracy evaluations are possible. To this end we used a distance transfor-
mation of some disk-shaped initial image and considered the evolution of a level set
with an initial area of 24845 pixels. Table 2 shows the area errors for different time
step sizes τ and two stopping times. We observe that for τ ≤ 5, the accuracy is
sufficiently high for typical image processing applications. Figure 5 demonstrates
that in this case no violations regarding rotational invariance are visible.

Figure 5. Temporal evolution of a disked shaped level set under mean curvature motion. The
results have been obtained using an AOS-based semi-implicit scheme with harmonic averaging

and step size τ = 5. From Left to Right: t = 0, 2250, 3600.
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step size τ stopping time T = 2250 stopping time T = 3600
0.5 −0.27 % −0.60 %
1 −0.26 % −0.88 %
2 −0.27 % −0.88 %
5 −0.34 % −1.73 %
10 −5.18 % 51.20 %

Table 2. Area errors for the evolution of a disk-shaped area of 24845 pixels under mean curva-
ture motion using an AOS-based semi-implicit scheme with harmonic averaging. The pixels have

size 1 in each direction.
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36. Weickert J., Heers J., Schnörr C., Zuiderveld K. J., Scherzer O. and Stiehl H. S., Fast

parallel algorithms for a broad class of nonlinear variational diffusion approaches, Real-
Time Imaging 7 (2001), 31–45.



50 J. WEICKERT
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