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TWO KINDS OF CHAOS AND RELATIONS BETWEEN THEM

M. LAMPART

Abstract. In this paper we consider relations between chaos in the sense of
Li and Yorke, and ω-chaos. The main aim is to show how important the size of
scrambled sets is in definitions of chaos. We provide an example of an ω-chaotic
map on a compact metric space which is chaotic in the sense of Li and Yorke, but
any scrambled set contains only two points. Chaos in the sense of Li and Yorke
cannot be excluded: We show that any continuous map of a compact metric space
which is ω-chaotic, must be chaotic in the sense of Li and Yorke. Since it is known
that, for continuous maps of the interval, Li and Yorke chaos does not imply ω-
chaos, Li and Yorke chaos on compact metric spaces appears to be weaker. We
also consider, among others, the relations of the two notions of chaos on countably
infinite compact spaces.

1. Introduction

In this paper we study two different (but similar) definitions of chaos and relations
between them.

Chaos in the sense of Li and Yorke, briefly LYC, was introduced in 1975 by T.
Y. Li and J. A. Yorke [10]: A continuous map f : I → I, where I is the unit
interval, is LYC if there is an uncountable set S ⊂ I such that trajectories of any
two distinct points x, y in S are proximal and not asymptotic, i.e.,

lim inf
n→∞ d(fn(x), fn(y)) = 0 and lim sup

n→∞
d(fn(x), fn(y)) > 0.

The original definition contains another condition which later appeared to be
superfluous [7]. The requirement of uncountability of S in this definition (i.e., for
continuous maps of the interval, but not in a general compact metric space) is
equivalent to the condition that S contains two points [7], or that S is a perfect
set (i.e., nonempty, compact and without isolated points) [12].

The second type of chaos is an ω-chaos, briefly ωC, introduced in 1993 by S. Li
[9]: A continuous map f : I → I is ωC if there is an uncountable set S such that
for any distinct x and y in S,

ωf(x)\ωf (y) is uncountable, ωf (x) ∩ ωf (y) 6= ∅, and ωf (x) \ Per(f) 6= ∅.
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If f : I → I is continuous, then ωC is equivalent to PTE (positive topological
entropy) [9], and by [12] PTE implies LYC but not conversely. Moreover, f is ωC
if and only if it has an ω-scrambled set containing two points [9], and if and only
if it has a perfect ω-scrambled set [13]. However, in the case when X is a general
compact metric space, the size of S is essential.

By a compactum we mean an infinite compact metric space X (countable or
uncountable) with a metric d, and all maps considered in this paper are continuous.
The space of all continuous maps of X is denoted by C(X, X). The set of limit
points of the trajectory of a point x ∈ X under f ∈ C(X, X), i.e., of the sequence
{fn(x)}∞n=0, is called ω-limit set of x under f , and is denoted by ωf (x). The set
of strictly increasing sequences of positive integers is denoted by A.

Definition 1.1. Let f ∈ C(X, X), and let S ⊂ X contain at least two points.
We say that f is chaotic in the sense of Li and Yorke (briefly, f is LYC), and that
S is a scrambled set for f if, for any distinct x, y ∈ S,

(1) lim sup
n→∞

d(fn(x), fn(y)) > 0,

(2) lim inf
n→∞ d(fn(x), fn(y)) = 0.

Stronger notions of Li and Yorke chaos are these with infinite, or with an un-
countable scrambled set. To distinguish between these three types of chaos we use
notation LY2C, or LY∞C, or LYuC, respectively. Also we say that f is completely
LYC if S = X .

Now we introduce several modifications of the notion of ω-chaos.

Definition 1.2. Let f ∈ C(X, X), and let S ⊂ X contain at least two points.
We say that f is ωu-chaotic (briefly, f is ωuC), and S is an ωu-scrambled set for
f if, for any distinct x, y ∈ S,

(1) ωf(x)\ωf (y) is uncountable,
(2) ωf(x) ∩ ωf(y) is nonempty,
(3) ωf(x) is not contained in the set of periodic points.

In particular, f is ωu
2 -chaotic, or ωu

∞-chaotic, or ωu
u-chaotic (briefly, ωu

2 C, or ωu
∞C,

or ωu
uC, respectively), if there is an ωu-scrambled set containing two, or infinitely

many, or uncountable many points, respectively).

The next definition modifies the notion of ω-chaos for countable compact spaces.

Definition 1.3. Let f ∈ C(X, X), and let S ⊂ X contain at least two points.
We say that f is ω∞-chaotic (briefly, f is ω∞C), and that S is an ω∞ -scrambled
set for f if, for any distinct x, y ∈ S,

(1) ωf(x)\ωf (y) is infinite,
(2) ωf(x) ∩ ωf(y) is nonempty,
(3) ωf(x) is not contained in the set of periodic points.

In particular, the map f is ω∞
2 -chaotic, or ω∞

∞-chaotic (briefly, ω∞
2 C, or ω∞

∞C,
respectively), if f has an ω∞-scrambled set possessing two, or infinitely many
points, respectively.
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Let me note, that there are two types of indices in the previous definitions. The
upper indices in the definitions concerning ω-chaos denote the cardinality of the
difference of ω-limit sets, and the lower ones the cardinality of the scrambled set.

Remark 1.4. It is obvious, that LYuC ⇒ LY∞C ⇒ LY2C; the converse impli-
cations are true for continuous maps on the interval [12] but, on general compact
metric spaces they are no more valid [5], [4]. Also ωu

uC ⇒ ωu
∞C ⇒ ωu

2 C ⇒ ω∞
2 C

and ωu∞C ⇒ ω∞∞C ⇒ ω∞
2 C, and again it is possible to show that the converse

implications are not true in the general case. Moreover, by [12] there is a LYuC
map of the interval with zero topological entropy. This map has a unique infinite
ω-limit set and consequently, by [9], it cannot be ω∞

2 C. Thus, in the general case,
no form of Li and Yorke chaos implies the weakest form of ω-chaos.

Thus it remains to answer the question: which forms of ω-chaos imply Li and
Yorke chaos? In the present paper we show that any form of ωC implies LY2C, cf.
the next Theorem 1.5. But the implied LYC may be very small. In fact, we show
that ωC map on a compact metric space may have only two points LY-scrambled
sets – cf. Theorem 3.11. On the other hand, we show that even completely
LYC homeomorhisms may not be ωC (Theorems 2.3. and 2.5.; compare with
Theorem 3.1.).

Recall that a subset M of X is minimal for a map f , if it is nonempty, closed and
invariant, and no proper subset of M has these three properties (or equivalently,
M is minimal for a map f , if and only if ωf (x) = M , for each x ∈ M), and every
point belonging to a minimal subset is called uniformly recurrent.

Theorem 1.5. Let X be a compact metric space, and let f ∈ C(X, X) be ω∞
2 C.

Then f is LY2C. In general, any point in an ω∞-scrambled set of f forms a LYC
pair with a suitable point in X.

Proof. Let u, v be points in X from an ω∞-scrambled set for f . By results
of Auslander [1] and Ellis [3], in a dynamical system on a compact metric space
any point is proximal to a uniformly recurrent point in its orbit closure. Let x be
such a uniformly recurrent point proximal to u. Then x belongs to a minimal set
M = ωf (x) ⊂ ωf(u). But M must be a proper subset of ωf (u). For if M = ωf (u)
then ωf (u) ∩ ωf(v) 6= ∅ and ωf(v) \ ωf (u) 6= ∅ would imply ωf (u) ⊂ ωf (v) and
consequently, ωf (u) \ ωf(v) = ∅ – a contradiction. Thus u and x are proximal
points, which cannot be asymptotic since ωf(x) 6= ωf (u). �

2. Examples on countably infinite spaces

For a set A ⊂ X , and for any nonnegative integer n, define the n-th derivative An

of A by A0 = A, and An+1 is the set of cluster points of An. Denote X0 = X \X1,
and Xj = Xj \ Xj+1 for each j = 1, 2, . . . .

Proposition 2.1. [5, Proposition 2.2.] Let f be a completely LYC homeomor-
phism of a compactum X. Then, f has a unique fixed point.
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Remark 2.2. In [5] there is given a construction of a countably infinite com-
pactum X ′ and completely LYC homeomorphism ϕ on X ′, with fixed point p.

The set X ′ is contained in the plane R
2, it can be written in the form

X ′ =
⋃∞

j=0 Xj ∪ {p}, where ωf (x) = X(j+1) for each j = 0, 1, 2, . . . and each
x ∈ Xj (cf. [5, Theorem 3.1]). Note that p ∈ ωf (x) for each x ∈ X .

Theorem 2.3. There is a countable compactum X and completely LYC home-
omorphism f : X → X such that f is not ω∞

2 C.

Proof. Put X = X ′, and f = ϕ (see Remark 2.2.). From the form of ωf (x),
x ∈ X , it is easy to see that, for each x, y ∈ X , ωf (x) ⊂ ωf (y) or ωf(y) ⊂ ωf (x).
So, the map f cannot be ω∞

2 C. �

Proposition 2.4. [5, Proposition 2.5.] Let f be a completely LYC homeomor-
phism of a compactum X. Then for each x 6= y ∈ X, there is {ni} ∈ A such that
fni(x) → p and fni(y) → p where p is the unique fixed point of f (cf. Proposition
2.1.).

Theorem 2.5. There is a countable compactum X and a completely LYC home-
omorphism ϕ : X → X such that ϕ is ω∞

∞C.

Proof. Let D = {1/n, n ∈ N} ∪ {0}, where N is the set of positive integers.
By collapsing {p}×D in X ×D into a point, we get a compact metrizable space.
Denote it by X ′D. One can think of it as a subspace of R

3. The topology on X ′D is
given by the metric inherited from R

3. We can imagine the space X ′D as a union of
slices Si with one common point p. (So each Si is countably infinite compactum.)
There are fi : Si → Si (by [5] and Remark 2.2.), which are completely chaotic
homeomorphisms with the fixed point p. Let ϕ : X ′D → X ′D be a map such
that ϕ restricted to Si is equal to fi, for each i. It is easy to see, that ϕ is a
homeomorphism with the fixed point p.

It is clear that lim infn→∞ d(ϕn(x), ϕn(y)) = 0 for each x 6= y ∈ X ′D (by
Proposition 2.4.). Since, for any i 6= j and any neighbourhood U of p, the distance
between Si \ U and Sj \ U is positive, lim supn→∞ d(ϕn(x), ϕn(y)) > 0 for each
x 6= y ∈ X ′D. Consequently, the map ϕ is completely LYC.

On the other hand, the set S =
⋃∞

i=0{xi}, where xi is an arbitrary point from
Si \ {p}, is ω∞-scrambled for the map ϕ. Really, ωϕ(xi)\ωϕ(xj) is countably
infinite, ωϕ(xi)∩ωϕ(xj) = {p}, for each xi 6= xj ∈ S (see Remark 2.2.), and ωϕ(x)
is not contained in the set of periodic points of ϕ, for each x ∈ S (note that it is
singleton {p}). Thus, ϕ is ω∞

∞C. �

3. Examples on uncountable spaces

By a Cantor set, denoted by C, we mean a compactum which is homeomorphic to
the Cantor middle third set.

Theorem 3.1. There is a perfect compact set X ⊂ R
3 possessing a completely

LYC homeomorphism ϕ : X → X, such that ϕ is not ωu
2C.
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Proof. This proof is similar to the proof of Theorem 2.5., we only replace the set
D by the set C. (The set X ′C is perfect, since each point of X ′C is accumulation
one.) The map ϕ : X ′C → X ′C is not ωu

2 C, since for each x ∈ S, ωϕ(x) is
countable. �

To conclude this section we provide an example of a map which has a two points
ωu-scrambled set and has only two points LY-scrambled set. The construction of
this example is based on symbolic dynamics. The standard notions and basic
known results can be found, e.g., in [6].

Let Σ2 denote the set of sequences x = x1x2x3 . . . where xn = 0 or 1 for each
n, equipped with the metric of pointwise convergence. Thus, for y = y1y2y3 . . . ,
put ρ(x, y) = 1/k if x 6= y, and k = min{n ∈ N : xn 6= yn}, and let ρ(x, y) = 0
for x = y. Then Σ2 is a compactum and the “shift map” σ : Σ2 → Σ2 defined by
σ(x1x2x3 . . . ) = x2x3 . . . is continuous.

Recall that a sequence x = x1x2x3 · · · ∈ Σ2 is called uniformly recurrent if for
each block x1x2 . . . xl there is k, such that for each i at least one of the sequences
σi(x), σi+1(x) . . . σi+k(x) starts with the block x1x2 . . . xl.

For the construction of our example we use the following special uniformly
recurrent sequences which, among others, have all blocks periodic.

Denote by N0 the set of nonnegative integers, i.e., N0 = N ∪ {0}. Let N =
= {Nn = 2n−1(1 + 2N0), n = 1, 2, . . . }. It is easy to verify that N is a decomposi-
tion of N. Define a map Φ : Σ2 → Σ2 so that, for x = x1x2x3 · · · ∈ Σ2, Φ(x) = x̃ =
= x̃1x̃2x̃3 . . . , where x̃k = xs if k ∈ Ns, i.e. Φ(x) = x1x2x1x3x1x2x1x4x1x2x1 . . . .
Then Φ(x) is not only uniformly recurrent but the blocks in Φ(x) are even periodic.
This follows from the next lemma whose proof is obvious.

Lemma 3.2. Let B = x̃ix̃i+1 . . . x̃j be a block of Φ(x), and let n be the maximal
positive integer such that i ≤ 2n ≤ j. Then the block B is periodic in the sequence
Φ(x), with period 2n+1.

Let {ai}∞i=0 be a set of all sequences in Σ2 such that

ai = 0(2i−1) 1 0(2i+1−1) 1 0(2i+1−1) 1 . . .

for each i in N0, where the upper right index of 0(2i+1−1) means that a zero repeats
(2i+1 − 1) times (i.e., 0(3) = 000), and hence for any distinct indices i and j the
sequence ai differes from aj on infinitely many positions. It is worth noticing that
each sequence ai contains infinitely many zeros and infinitely many ones. Thus,
keeping our notation, we have Φ(ai) = ãi = ãi

1ã
i
2ã

i
3 . . . , for each i. The sets ωσ(ãi)

are minimal and uncountable, since the sequences ãi are uniformly recurent but
not periodic.

For x = x1x2x3 . . . and y = y1y2y3 . . . in Σ2, put

x �i y = X(2i−1) Y X(2i+1−1) Y X(2i+1−1) Y . . . ,

where X is a block x1x2 . . . xk, k ∈ N, of the sequence x, the upper right index
of X(2i−1) means that the block X repeats (2i − 1) times and the length of each
block X is equal to the position on which it is (i.e., x �1 y = XY XXXY · · · =
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= x1 y1y2 x1x2x3 x1x2x3x4 x1x2x3x4x5 y1y2y3y4y5y6 . . . , the blocks are under-
lined to be well-arranged). Finally, let

αi = ãi+1 �i ã0,

and let

X =
∞⋃

i=0

Orb(αi).

Let us note that for the constructions of the sequences ai and αi was used
similar principle as for the construction of the map Φ defined above.

The proof of the second condition of the following Lemma was motivated by
Lemma 1.2 from [11].

Lemma 3.3. Let αi and ãi be as above, for each i. Then

(i) Orb(αi) = Orb(αi) ∪ ωσ(αi).

(ii) Orb(ãi+1) ∪ Orb(ã0) ⊂ ωσ(αi) = Orb(ãi+1) ∪ Orb(ã0) ∪ Cai+1 ∪ Ca0

where Cai+1 is a subset of the set Orb−1(ãi+1) of all σ-preimages of the points
from Orb(ãi+1), and similarly for Ca0 . Consequently, each Cai is countable.

Proof. (i) This equality is true, since ωσ(αi) is the set of accumulation points
of Orb(αi).
(ii) Obviously, ãi+1 and ã0 belong to ωσ(αi), and ωσ(αi) is closed and invariant.

Therefore, it contains Orb(ãi+1) and Orb(ã0). This proves the first inclusion.
To prove the second equality, let u ∈ ωσ(αi). There is a sequence {pk} ∈ A

such that σpk(αi) → u. Consider the four possible cases:

1. Infinitely many terms in the sequence σpk(αi) begin with a block of ãi+1 of
the same length λ ≥ 0 (i.e., block of the form ams−λ+1 . . . ams), followed by a
block ã0

1ã
0
2 . . . , ã0

nk
of ã0. Since the length of blocks ã0 tends to infinity, u =

ãi+1
i . . . ãi+1

j ã0, where j ≥ i. Thus, u ∈ Orb−1(ã0).

2. Similarly, if infinitely many terms in the sequence σpk(αi) begin with a block of
ã0 of the same length, followed by a block ãi+1

1 ãi+1
2 . . . , ãi+1

ml
of ã, u ∈ Orb−1(ãi+1).

3. If infinitely many terms in the sequence σpk(αi) begin with a block of ãi+1

whose length is unbounded as k tends to infinity then u ∈ Orb(ãi+1).

4. If infinitely many terms in the sequence σpk(αi) begin with a block of ã0 whose
length is unbounded as k tends to infinity then u ∈ Orb(ã0). �

Lemma 3.4. The map σ restricted to X is ωu
∞C.

Proof. We show that {αi}∞i=0 is an ωu-scrambled set. By Lemma 3.3., ωσ(αi) \
ωσ(αj) ⊃ ωσ(ãi+1) is uncountable and ωσ(αi) ∩ ωσ(αj) ⊃ ωσ(ã0) 6= ∅ for each
i 6= j, and since ωσ(ã0) is infinite and minimal, it contains no periodic point. �

Lemma 3.5. Let i > j, then ρ(σn(ãi), σm(ãj)) > 1/(2j+2), for any m, n ∈ N0.
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Proof. By a direct computation, each block of length 2i+2 contains at most
three ones and at least 2i+2 − 3 zeros of the sequence ãi. Hence, for each m, n in
N0 and each i > j is ρ(σn(ãi), σm(ãj)) > 1/(2j+2). �

For simplicity put Px = Orb(x̃) ∪ Orb−1(x̃), for x ∈ Σ2.

Lemma 3.6. The sets Pai are distal (and hence, disjoint). Thus, for u ∈ Pai

and v ∈ Paj where i 6= j, lim infk→∞ ρ(σk(u), σk(v)) > 0.

Proof. Apply Lemma 3.5. �
Our next aim is to show that σ is LYC on Px for no x ∈ Σ2. For simplicity, we

will consider only sequences x which contain infinitely many zeros and infinitely
many ones, if it contains finitely many zeros or ones, then the assertion is obvious.
In this case, it is possible to reconstruct the original sequence x from ỹ = σk(x̃)
without knowing k. In fact, majority of the digits in ỹ must be equal to x1: either
the digits on odd places in ỹ are the same and equal to x1, or the digits on the
even places in ỹ are equal to x1. Next, having fixed x1 among the digits x̃j , we
remove from ỹ the digits corresponding to x1 (i.e., either all digits on the odd
places, or all digits on the even places), and we obtain a new sequence, to which
the previous procedure is applicable.

However, in a similar way we can reconstruct the first n digits in x from
any block of a sequence in ωσ(x̃), with a sufficient length δn. Indeed, let d =
= d1d2d3 · · · ∈ ωσ(x̃). Then for any m = 1, 2, . . . there is {nk} ∈ A such that
d1d2 . . . dm = x̃nk+1x̃nk+2 . . . x̃nk+m, for any k. Let r = min{i : xi 6= x1}. Then
it suffices to take m = 2r to see, which members of d1d2 . . . dm are equal to x1.
(Thus, in our case, δ1 = 2r.) Define a map µ : ωσ(x̃) → Σ2 such that, for
d = d1d2d3 · · · ∈ ωσ(x̃), µ(d) = s = s1s2s3 . . . , where sn is given inductively in the
following way:
Stage 1: Let

s1 =
{

0, if x1 = d1 = d3 = d5 . . . ,
1, if x1 = d2 = d4 = d6 . . .

Let d1 = d1
1d

1
2d

1
3 . . . be a subsequence of d obtained by removing d1, d3, d5 . . . from

d if s1 = 0, and by removing d2, d4, d6 . . . otherwise.
Stage n: Sequence dn−1 = {dn−1

i }∞i=1 is available from the stage n-1. Let

sn =
{

0, if xn = dn−1
1 = dn−1

3 = dn−1
5 . . . ,

1, if xn = dn−1
2 = dn−1

4 = dn−1
6 . . . ,

and let dn be obtained from dn−1 by removing the odd or even members, if sn = 0
or sn = 1, respectively. Obviously, we have the following

Lemma 3.7. Let x be a sequence in Σ2 having infinitely many zeros and infin-
itely many ones. Then the map µ is a bijection from ωσ(x̃) to Σ2.

Lemma 3.8. Let x be a sequence in Σ2 having infinitely many zeros and infin-
itely many ones. Then, for any distinct d, h in Px,

lim inf
n→∞ ρ(σn(d), σn(h)) > 0.
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Proof. Since any point in Px is eventually in ωσ(x̃) we may assume, without loss
of generality, that d, h ∈ ωσ(x̃). By Lemma 3.7., µ is bijective, hence µ(d) 6= µ(h).
Then, for some m ∈ N, the sequences µ(d), µ(h) differ on the m-th coordinate,
µ(d)m 6= µ(h)m. But then lim infn→∞ ρ(σn(d), σn(h)) ≥ 1/2m (cf. the construc-
tion of µ). �

Now we can return to our special sequences αi.

Lemma 3.9. The map σ restricted to Orb(αi) is not LY2C for each i. In
particular lim infn→∞ ρ(σn(αi), σn+k(αi)) > 0 whenever k ∈ N.

Proof. Let us suppose that lim infn→∞ ρ(σn(αi), σn+k(αi)) = 0. Then there is
{nl}∞l=1 ∈ A such that limn→∞ ρ(σnl(αi), σnl+k(αi)) = 0. Then σnl(αi) → d and
σnl+k(αi) → d so σk(d) = d and d ∈ X is a periodic point. But σ restricted to X
has no periodic point (cf. Lemma 3.3.) – a contradiction. �

Lemma 3.10. The map σ restricted to
⋃∞

i=0 Orb(αi) is not LY2C.

Proof. Because of the symmetry it suffices to show that, for any l ∈ N0,
lim infn→∞ ρ(σn+l(αi), σn(αj)) > 0, where i 6= j. Assume, contrary to what we
wish to show, that this is not true. Then, by Lemma 3.5., in both sequences σl(αi),
αj , there must be arbitrarily large blocks of ã0 at the same positions. However, if
l = 0, then any blocks of ã0 in αi and αj are at complementary positions (cf. the
definition of αi and αj). If l is positive, then the blocks are shifted, and there is
some overlapping of the blocks of ã0. But since the lenght of the blocks ã0, ãi+1

and ãj+1 tends to infinity, the parts of the blocks of ã0 in σl(αi), αj , respectively,
that are overlapping, are small — their length is l. Consequently, by Lemma 3.5.,
we get lim infn→∞ ρ(σn+l(αi), σn(αj)) ≥ 1/(2j + 2 + l) > 0. �

Now we are able to prove our main result.

Theorem 3.11. There is a compactum X ⊂ Σ2 such that σ(X) ⊂ X, σ has
no periodic points in X, σ restricted to X is ωu∞C and any LY-scrambled set has
only two points.

Proof. Let X = X . By Lemma 3.4., σ is ωu
∞C on X . On the other hand, by

Lemma 3.3.,

X ⊂
( ∞⋃

i=0

Orb(αi)

)
∪
( ∞⋃

i=0

Pai

)
.

By Lemmas 3.6. and 3.8. – 3.10. any two points set in
⋃∞

i=0 Orb(αi) or in⋃∞
i=0 Pai is not LY-scrambled. Hence, {u, v} is LY-scambled, if u ∈ ⋃∞

i=0 Orb(αi)
and v ∈ ⋃∞

i=0 Pai are suitable points. �

Concluding remarks. (i) R. Pikula [11] recently proved, that there is an ωC
map f of a compact metric space with the property that any LY-scrambled set
has not more than 8 points. He considers uncountable ωu-scrambled sets. Our
Theorem 3.11. gives a stronger result. On the other hand, our ωu-scrambled set
is infinity.



TWO KINDS OF CHAOS AND RELATIONS BETWEEN THEM 127

(ii) The systems obtained in Theorems 2.3. – 3.11. can be inserted to the real
line so that there is a continuous map f of the unit interval I which has as factors
the systems from Theorems 2.3. – 3.11.
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