TOPOLOGICAL REPRESENTATIONS OF QUASIORDERED SETS

VĚRA TRNKOVÁ

ABSTRACT. We prove that for every infinite cardinal number α there exists a space X with $|X| = \alpha$, metrizable whenever $\alpha \geq \mathfrak{c}$, strongly paracompact whenever $\omega \leq \alpha \leq \mathfrak{c}$, such that every quasiordered set (Q, \leq) with $|Q| \leq \alpha$ can be represented by closed subspaces of X in the sense that there exists a system $\{X_q | q \in Q\}$ of non-homeomorphic closed subspaces of X such that

 $q_1 \leq q_2 \text{ if and only if } X_{q_1} \text{ is homeomorphic to a subset of } X_{q_2}.$ In fact, stronger results are proved here.

1. INTRODUCTION AND THE MAIN RESULTS

Every class \mathcal{M} of continuous maps, closed with respect to the composition and containing all homeomorphisms, determines a relation \preceq on the class **Top** of all topological spaces by the rule

$$X \preceq Y$$
 if and only if there exists $f: X \to Y$ in \mathcal{M} .

Clearly, the relation \leq is reflexive and transitive but not antisymmetric, i.e. it is a quasiorder on **Top**. We say that a quasiordered set (Q, \leq) has an \mathcal{M} -representation within a class \mathbb{C} of topological spaces if there exists a system $\{X_q | q \in Q\}$ of non-homeomorphic spaces in \mathbb{C} such that, for every $q_1, q_2 \in Q$,

$$q_1 \leq q_2$$
 if and only if $X_{q_1} \preceq X_{q_2}$.

Investigations of \mathcal{M} -representations for the class \mathcal{M} of all homeomorphic embeddings are of rather old origin. In 1926, C. Kuratovski and W. Sierpiński proved in [4] that the ordinal \mathfrak{c}^+ has such a representation within the class of subspaces of the real line and C. Kuratowski proved in [3] that the antichain on 2^c points also has such representation within this class. After more than sixty years, this field of problems was revisited in [5], [6], [7], [8]. In [5], such a representation was constructed for every poset(= partially ordered set) of cardinality at most \mathfrak{c} and,

Received November 13, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54B30, 54H10.

Key words and phrases. Homeomorphisms onto (closed, clopen) subspaces, quasiorders, ultrafilters on $\omega,$ metrizable spaces.

Financial support of the Grant Agency of the Czech Republic under the grants no. 201/00/1466 and no. 201/02/0148 is gratefully acknowledged. Also supported by MSM 113200007.

VĚRA TRNKOVÁ

in [8], for the set $\exp \mathfrak{c}$ of all subsets of \mathfrak{c} ordered by the inclusion. The result of [8] implies those of [5] and [3] because, for every infinite set A, every poset (P, \leq) with $|P| \leq |A|$ and the antichain on $2^{|A|}$ points can be embedded into $(\exp A, \subseteq)$.

In [6], [7], representations of quosets (= quasiordered sets) are investigated (with respect to the homeomorphic embeddings). Given an infinite cardinal number α , the authors of [7] construct a T_0 -space X with $|X| \leq \delta(\alpha)$, where $\delta(\alpha)$ denotes the smallest cardinal number δ for which there exist α distinct cardinals (not necessarily infinite) smaller than δ , such that every quoset (Q, \leq) with $|Q| \leq \alpha$ has a representation by the subspaces of X (with respect to the homeomorphic embeddings). In the final comment, they say that it would be good to have such spaces with better separation axioms and a lower cardinality than $\delta(\alpha)$ (which is satisfactorily small for $\alpha = \omega$ but rather large for α uncountable). We present here such a space X with $|X| = \alpha$ and X strongly paracompact whenever $\omega \leq \alpha \leq \mathfrak{c}$ and metrizable whenever $\alpha \geq \mathfrak{c}$.

In fact, we present stronger results: we investigate also smaller systems of subspaces of X (e.g. all *closed* subspaces of X) and \mathcal{M} -representations also for other classes of maps, namely

- \mathcal{M}_1 = the class of all one-to-one continuous maps,
- \mathcal{M}_2 = the class of all homeomorphic embeddings,
- \mathcal{M}_3 = the class of all homeomorphisms onto closed subspaces,
- \mathcal{M}_4 = the class of all homeomorphisms onto clopen¹ subspaces.

For $i \leq j$, an $\mathcal{M}_i \mathcal{M}_j$ -representation of a quoset (Q, \leq) within a class \mathbb{C} of spaces is any system $\{X_q | q \in Q\}$ of non-homeomorphic spaces in \mathbb{C} such that

- if $q_1 \leq q_2$, then there exists $f: X_{q_1} \to X_{q_2}$ in \mathcal{M}_j and
- if $q_1 \not\leq q_2$, then no $f: X_{q_1} \to X_{q_2}$ is in \mathcal{M}_i .

The following theorem is an easy application of the ideas of [7] and the well-known results (see below):

Theorem 1. For any infinite cardinal α , $(\exp \alpha, \subseteq)$ has an $\mathcal{M}_1\mathcal{M}_4$ -representation within the class of all clopen subspaces of a suitable space X with $|X| = \alpha$ which is

- strongly paracompact whenever $\omega \leq \alpha \leq \mathfrak{c}$,
- metrizable whenever $\alpha \geq \mathfrak{c}$.

As mentioned above, all posets of cardinalities at most α and the antichain on 2^{α} points can be embedded into $(\exp \alpha, \subseteq)$, hence they have $\mathcal{M}_1\mathcal{M}_4$ -representation within clopen subspaces of the above X.

To formulate the theorems about the representability of quosets, let T_{α} denote the quoset obtained from $(\exp \alpha, \subseteq)$ by splitting any element into 2^{α} distinct but mutually comparable elements. More precisely, T_{α} is the set $\exp \alpha \times \exp \alpha$ with the quasiorder \leq given by the rule

 $(A_1, A_2) \leq (B_1, B_2)$ if and only if $A_1 \subseteq B_1$.

¹closed-and-open

Theorem 2. For every $\alpha \geq \mathfrak{c}$ there exists a metrizable space X such that $|X| = \alpha$ and T_{α} has an $\mathcal{M}_1\mathcal{M}_4$ -representation within the clopen subspaces of X. For $\alpha = \mathfrak{c}$, X can be moreover strongly paracompact.

Theorem 3. For every α with $\omega \leq \alpha \leq \mathfrak{c}$ there exists a strongly paracompact space X such that $|X| = \alpha$ and T_{α} has an $\mathcal{M}_2\mathcal{M}_3$ -representation within the set of closed subspaces of X.

Proofs of these theorems are presented in the section below. Although, for $\alpha \geq \mathfrak{c}$, Theorem 2 implies the statement of Theorem 1, we give a separate proof of Theorem 1 because of its simplicity.

2. The Proofs

Proof of Theorem 1. a) Let $\omega \leq \alpha \leq \mathfrak{c}$: By [2], there exists a set of cardinality \mathfrak{c} of non-principal ultrafilters on ω which are mutually incomparable in the Rudin-Keisler order of ultrafilters, i.e. there exists a system $\{\mathcal{F}_i | i \in \mathfrak{c}\}$ of non principal ultrafilters on ω such that, denoting by P_i the subspace $P_i = \omega \cup \{\mathcal{F}_i\}$ of the compactification $\beta\omega$, every continuous map $P_i \to P_j$ is constant on a set $F \in \mathcal{F}_i$ whenever $i \neq j$. Then the space $X = \coprod_{i \in \alpha} P_i$, where II denotes the coproduct (= the sum = the disjoint union as clopen subspaces), has the required properties: if $A \subseteq \alpha$, we put $X_A = \coprod_{i \in A} P_i$. Then, clearly, $\{X_A | A \subseteq \alpha\}$ forms an $\mathcal{M}_1 \mathcal{M}_4$ -representation of (exp α, \subseteq).

b) Let $\alpha \geq c$: We put again $X = \coprod_{i \in \alpha} P_i$ and $X_A = \coprod_{i \in A} P_i$; but now, $\mathcal{P} = \{P_i | i \in \alpha\}$ is a system of metrizable spaces such that $|P_i| = \alpha$ and every continuous map $P_i \to P_j$ is constant whenever $i \neq j$ (and then $\{X_A | A \subseteq \alpha\}$ is an $\mathcal{M}_1 \mathcal{M}_4$ -representation of $(\exp \alpha, \subseteq)$ again). Such a system \mathcal{P} does exist. More strongly,

(*) $\begin{cases} \text{for every cardinal nuber } \alpha \geq \mathfrak{c} \text{ there exists a set } \mathcal{P} \text{ of the cardinality } 2^{\alpha} \\ \text{consisting of metrizable spaces of the cardinality } \alpha \text{ such that if } X, Y \in \mathcal{P} \\ \text{and } f: X \to Y \text{ is a continuous map, then either } f \text{ is constant or } X = Y \\ \text{and } f \text{ is the identity.} \end{cases}$

This is explicitly stated in [12, p. 510] where this construction is completly described (for all the corresponding proofs see [9, pp 139, 215–219 and 222–226], but (*) is not explicitly stated there). The construction also implies that for $\alpha = \mathfrak{c}$, the spaces in \mathcal{P} are separable; hence X, being a coproduct of \mathfrak{c} metrizable separable spaces, is strongly paracompact.

Proof of Theorem 2. We use the system \mathcal{P} satisfying (*) of the previous proof again and we use also a compact metric zero-dimensional space K of the cardinality at most \mathfrak{c} homeomorphic to the coproduct of its three copies K II K II K but not homeomorphic to K II K. Such a space was constructed in [1]. Hence

1. if $P_1, P_2 \in \mathcal{P}, P_1 \neq P_2$, then there exists no continuous one-to-one map of any of the spaces $P_1, P_1 \times K, P_1 \times (K \amalg K)$ into any of the spaces $P_2, P_2 \times K, P_2 \times (K \amalg K)$ (because K is zero-dimensional while the spaces in \mathcal{P} must be connected)

VĚRA TRNKOVÁ

2. although $P_2 \times K$ is homeomorphic to a clopen subspace of $P_2 \times (K \amalg K)$ and vice versa, $P_2 \times K$ and $P_2 \times (K \amalg K)$ are not homeomorphic. In fact, since every continuous map $f: P_2 \to P_2$ has to be either the identity or a constant, by (*), the existence of a homeomorphism of $P_2 \times K$ onto $P_2 \times (K \amalg K)$ would imply the existence of a homeomorphism of K onto $K \amalg K$.

Let $\widetilde{\mathcal{P}} = \{P_{i,j} | i \in \alpha, j = 1, 2\}$ be a subsystem of \mathcal{P} . Then our required space is

$$X = \prod_{i \in \alpha} P_{i,1} \amalg \prod_{i \in \alpha} (P_{i,2} \times K)$$

i.e. $|X| = \alpha$ and T_{α} has an $\mathcal{M}_1\mathcal{M}_4$ -representation within clopen subspaces of X: for $(A_1, A_2) \in T_{\alpha}$ we put

$$X_{(A_1,A_2)} = \coprod_{i \in A_1} P_{i,1} \amalg \coprod_{i \in A_2} (P_{i,2} \times K) \amalg \coprod_{i \in \alpha \setminus A_2} (P_{i,2} \times h(K \amalg K)),$$

where h is a homeomorphism of K II K II K onto K. Then, clearly, $\{X_{(A_1,A_2)} | (A_1, A_2) \in T_{\alpha}\}$ is an $\mathcal{M}_1 \mathcal{M}_4$ -representation of T_{α} .

Proof of Theorem 3. As in part a) of the proof of Theorem 1, we use the incomparable ultrafilters again; but now, we denote the subspace $\omega \cup \{\mathcal{F}\}$ of $\beta\omega$ by $P_{\mathcal{F}}$. We use also the construction of [11] of a countable strongly paracompact space S homomorphic to $S \times S \times S$ but not to $S \times S$. We recall it briefly: first, for every triple $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2$ of non-principal ultrafilters on ω , the space $P_{\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2}$ is constructed in [11] as follows:

$$\widetilde{P}_0 = P_{\mathcal{F}_0}, \quad \widetilde{P}_1 = P_{\mathcal{F}_0} \amalg \coprod (\omega \times P_{\mathcal{F}_1}),$$
$$\widetilde{P}_n = P_{\mathcal{F}_0} \amalg (\omega \times P_{\mathcal{F}_1}) \amalg \coprod_{k=2}^n (\omega^k \times P_{\mathcal{F}_2}) \quad \text{for } n \ge 2.$$

Now, let $P_0 = P_{\mathcal{F}_0}$ and let P_n be the quotient space of \tilde{P}_n obtained by identifying each point $m \in \omega \subseteq P_{\mathcal{F}_0}$ with the point $(m, \mathcal{F}_1) \in \omega \times P_{\mathcal{F}_1}$ and, for n > 1, each point $(m_1, m_2) \in \omega \times \omega \subseteq \omega \times P_{\mathcal{F}_1}$ with the point $(m_1, m_2, \mathcal{F}_2) \in \omega^2 \times P_{\mathcal{F}_2}$ and, for n > 2, each point $(m_1, \ldots, m_k) \in \omega^{k-1} \times \omega \subseteq \omega^{k-1} \times P_{\mathcal{F}_2}$ with the point $(m_1, \ldots, m_k, \mathcal{F}_2) \in \omega^k \times P_{\mathcal{F}_2}$, $k = 3, 4, \ldots, n$. We may suppose that $P_0 \subseteq P_1 \subseteq$ $\subseteq P_2 \subseteq \cdots$ and $P_{\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2}$ is $\bigcup_{n=0}^{\infty} P_n$ with the inductively generated topology (in the modern description, see [14], $P_{\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2}$ is precisely the space $Seq(u_t)$ with $u_t = \mathcal{F}_0$ whenever the length |t| is $0, u_t = \mathcal{F}_1$ whenever |t| = 1 and $u_t = \mathcal{F}_2$ in all the other cases).

Let $\{\mathcal{F}_{j,n}|j \in \{0,1,2\}; n \in \omega\}$ be a collection of pairwise incomparable nonprincipal ultrafilters on ω . As in [11], let us denote the space $P_{\mathcal{F}_{0,n},\mathcal{F}_{1,n},\mathcal{F}_{2,n}}$ by Q_n and its point $\mathcal{F}_{0,n}$ by O_n . For every map $a : \omega \to \omega$ put

$$\widetilde{Q}_a = \prod_{n \in \omega} Q_n^{a(n)}$$

70

(where $Q_n^{a(n)} = \{O_n\}$ whenever a(n) = 0) and denote by O_a its point with all the coordinates equal to the corresponding O_n 's. Let Q_a be the subspace of \widetilde{Q}_a consisting of all the points which differ from O_a only in finitely many coordinates. The space S (homeomorphic to $S \times S \times S$ but not to $S \times S$) is a coproduct of ω copies of Q_a for every a in a countable set $A \subseteq \omega^{\omega}$ satisfying A = A + A + A and $A \cap (A + A) = \emptyset$ (where $A + A = \{a + b | a, b \in A\}$, (a + b)(n) = a(n) + b(n)); such a set A does exist, see [10].

Now, let a cardinal number α with $\omega \leq \alpha \leq \mathfrak{c}$ be given. Let $\{\mathcal{F}_i, \mathcal{F}_{i,j,n} | i \in \alpha; j \in \{0, 1, 2\}; n \in \omega\}$ be a system of mutually incomparable non-principal ultrafilters on ω . We put

$$X = \coprod_{i \in \alpha} P_{\mathcal{F}_i} \amalg \coprod_{i \in \alpha} S_i$$

where S_i is the space obtained by the above described construction from the system $\{\mathcal{F}_{i,j,n} | j \in \{0, 1, 2\}; n \in \omega\}$. Then X has the required properties, i.e. T_{α} has an $\mathcal{M}_2\mathcal{M}_3$ -representation within closed subspaces of X. In fact, for $(A_1, A_2) \in T_{\alpha}$, we put

$$X_{(A_1,A_2)} = \prod_{i \in A_1} P_{\mathcal{F}_i} \amalg \prod_{i \in A_2} S_i \amalg \prod_{i \in \alpha \setminus A_2} h_i(S_i \times S_i \times \{s_i\})$$

where h_i is a homeomorphism of $S_i \times S_i \times S_i$ onto S_i and s_i is an arbitrarily chosen point in S_i . Then $\{X_{(A_1,A_2)} | (A_1, A_2) \in T_\alpha\}$ is an $\mathcal{M}_2\mathcal{M}_3$ -representation of T_α by closed subspaces of X. This follows easily from the incomparability of the above ultrafilters \mathcal{F}_i , $\mathcal{F}_{i,j,n}$ using the following Lemma 5 of [11]:

Let $\{R_n | n \in \omega\}$ be arbitrary spaces and $\pi_k : \prod_{n \in \omega} R_n \to R_k$ be the projections. For any non-principal ultrafilter \mathcal{F} on ω and any homeomorphism h of $P_{\mathcal{F}}$ into the space $\prod_{n \in \omega} R_n$ there exists $n \in \omega$ such that $\pi_n \circ h$ is nonconstant on any $F \in \mathcal{F}$.

Clearly, for every clopen subset \mathcal{U} of S_i , every point $x \in \mathcal{U}$ lies in a copy of $P_{\mathcal{F}_{i,j,n}}$ contained in \mathcal{U} , for some $j \in \{0, 1, 2\}$ and $n \in \omega$, such that the copy is closed in S_i and x plays the rôle of the point $\mathcal{F}_{i,j,n}$ in it. Hence, for every $i \in \alpha$, there exists no homeomorphism of S_i (or of P_i or $h_i(S_i \times S_i \times \{s_i\})$) into the coproduct of all the other summands in the definition of X (or of $X_{(A_1,A_2)}$). Thus if $A_1 \not\subseteq B_1$, then $X_{(A_1,A_2)}$ does not admit any homeomorphism into $X_{(B_1,B_2)}$; and $X_{(A,B_1)}$ is not homeomorphic to $X_{(A,B_2)}$ whenever $B_1 \neq B_2$ because, for $i \in (B_1 \setminus B_2) \cup (B_2 \setminus B_1)$, S_i is not homeomorphic to $h_i(S_i \times S_i \times \{s_i\})$.

Concluding remarks. Questions and results concerning \mathcal{M} -representations (or $\mathcal{M}\mathcal{M}'$ -representations with $\mathcal{M} \supseteq \mathcal{M}'$) within various classes of spaces form a very extensive field. Some results of this kind can be found in [13], along with an initial attack on "simultaneous representations" (i.e. representations of more than one quasiordered set by a single system of spaces).

References

^{1.} Ketonen J., The structure of countable Boolean algebras, Annals of Math. 108 (1978), 41-81.

^{2.} Kunen K., Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), 299-306.

VĚRA TRNKOVÁ

- Kuratowski C., Sur la puissance de l'ensemble des "nombres de dimension" au sens de M. Fréchet, Fund. Math. 8 (1926), 201–208.
- Kuratowski C. and Sierpiński W., Sur un problème de M. Fréchet concernant les dimensions des ensembles linéaires, Fund. Math. 8 (1926), 193–200.
- Mathews P. T. and McMaster T. B. M., Families of spaces having prescribed embeddability order-type, Rend. 1st Mat. Univ. Trieste 25 (1993), 345–352.
- McCluskey A. E. and McMaster T. B. M., Realising quasiordered sets by subspaces of 'continuum-like' spaces, Order 15 (1999), 143–149.
- McCluskey A. E. and McMaster T. B. M., Representing quasiorders by embeddability ordering of families of topological spaces, Proc. Amer. Math. Soc. 127 (1999), 1275–1279.
- McCluskey A. E., McMaster T. B. M. and Watson W. S., Representing set-inclusion by embeddability (among the subspaces of the real line), Topology its Appl. 96 (1999), 89–92.
- 9. Pultr A. and Trnková V., Combinatorial, Algebraic and Topological Representation of Groups, Semigroups and Categories, North Holland 1980.
- Trnková V., Representation of semigroups by products in a category, J. Algebra 34 (1975), 191–204.
- V. Trnková, Homeomorphisms of products of countable spaces, DAN SSSR 263 (1982), 47–51 (in Russian); English translation AMS: Soviet. Math. Dokl. 25 (1982), 304–307.
- Trnková V., Amazingly extensive use of Cook continuum, Math. Japonica 51 (2000), 499–549.
- 13. Trnková V., Quasiorders on topological categories, Proceedings of the Ninth Prague Topological Symposium, Contributed papers from the symposium held in Prague, Czech Republic, August 19–25, 2001, pp. 327–336.
- 14. Vaughan J., Two spaces homeomorphic to Seq(p), preprint 2001.

Věra Trnková, Math. Institute of Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic, *e-mail*: trnkova@karlin.mff.cuni.cz

72