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ON SUBGROUPOID LATTICES OF SOME FINITE GROUPOID

K. PIÓRO

Abstract. We investigate finite commutative groupoids G = 〈G, ◦〉 such that g ◦ h 6= g for all elements g, h of G. First,

we show that for any such groupoid, its weak (i.e. partial) subgroupoid lattice uniquely determines its subgroupoid
lattice. Next, we characterize the lattice of all weak subgroupoids of such a groupoid. This is a distributive finite lattice

satisfying some combinatorial conditions concerning its atoms and join–irreducible elements.

In [5] we proved that for any (total) locally finite unary algebra of finite type (i.e. with finitely many unary
operations), its weak subalgebra lattice uniquely determines its strong subalgebra lattice. Here we generalize this
result for some finite commutative groupoids. Next, in the second part of this paper, necessary and sufficient
conditions are found for a lattice to be isomorphic to the weak subgroupoid lattice of such a groupoid. The
classical subgroupoids are sometimes called strong as opposed to the other kind of partial subgroupoids, called
weak, considered in this paper. Recall that a partial groupoid H is a weak subgroupoid of a (partial) groupoid
G iff the carrier of H is contained in the carrier of G, and for any elements g, h of H, if the product g ◦ h is
defined in H, then this is also define in G and these two products are equal. The lattices of all weak and strong
subgroupoids of a groupoid G are denoted by Sw(G) and Ss(G), respectively. (More details on various kinds of
partial subalgebras and lattices of such subalgebras can be found e.g. in [3] or [4]; see also [6]).
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Theorem 1. Let G = 〈G, ◦〉 be a (total) finite and commutative groupoid such that

(∗) g ◦ h 6= g for each g, h ∈ G.

Let H = 〈H, ◦〉 be a partial commutative groupoid such that

Sw(H) ' Sw(G).

Then the strong subgroupoid lattice Ss(H) is isomorphic to the strong subgroupoid lattice Ss(G), and moreover,
H is finite, total and satisfies (∗).

Before the proof observe that for any two elements h1 and h2 of a partial commutative groupoid, if h1 ◦ h2 is
defined, then h2 ◦h1 can be also defined (if this is not), and it may be done in the exactly one way. More formally,
we assume that the equation x ◦ y ≈ y ◦ x is strongly valid in H, i.e. if one side is defined, then the other also is,
and they are equal. For more information on various kinds of partial equations see e.g. [3] or [4].

Note also that the assumption (∗) plays an important role in our proof of this result, but, at this moment, the
author do not know any counterexample which would show that Theorem 1 is false without this condition.

To prove the above result we apply hypergraph–algebraic language introduced in [6]. Recall that in this
paper we defined the directed hypergraph D(G) representing a groupoid (or more general, any algebra) G. More
precisely, the carrier G of G is the set of vertices, and directed hyperedges are formed by all directed triples
e = 〈g, h, i〉 such that g ◦ h is defined and equal to i. Then {g, h} is said to be the initial set of e (denoted by
I
D(G)
1 (e)), and i is said to be the final vertex of e (denoted by I

D(G)
2 (e)). Obviously D(G) contains only edges and

2–edges (i.e. hyperedges with one– and two–element initial sets). Observe also that if g 6= h and g ◦ h and h ◦ g
are defined, then we have two different 2–edges starting from {g, h}. But we consider only partial commutative
groupoids (i.e. g ◦ h = h ◦ g, and both sides are defined or not). Thus such two 2–edges have the same initial
set and the same final vertex. Hence, between any two–vertex set and a vertex, there are none or exactly two
2–edges.
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It is easy to see that in D(G), at most one edge starts from any vertex, and at most two 2–edges start from any
two–element set of vertices. Hence, G is total iff exactly one edge starts (in D(G)) from any vertex, and exactly
two 2–edges start from any two–vertex set.

An edge or 2–edge e is said to be regular iff the final vertex of e does not belong to the initial set of e. Otherwise
e is a loop or a 2–loop, respectively. It is easily to shown that G satisfies (∗) iff D(G) has not loops and 2–loops.

Proof. Let D = D(G) and K = D(H). It is proved in [6, Corollary 3.14]

Sw(G) ' Sw(H) ⇐⇒ D∗ ' K∗,

where D∗ and K∗ are (undirected) hypergraphs obtained from D and K, respectively, by omitting the orientation
of all hyperedges (but not hyperedges themselves). More formally, for any (undirected) hyperedge e of D∗, its
set of endpoints consists of the initial set ID

1 (e) of e in D and the final vertex ID
2 (e) of e in D, i.e. ID∗

(e) =
ID
1 (e) ∪

{
ID
2 (e)

}
.

First, D and K have the same number of vertices. In particular, H is a finite groupoid. Secondly, since G is
total, D contains exactly 2 · M ·(M−1)

2 = M · (M − 1) 2–edges, and exactly M edges, where M is the number of
all vertices of D. Analogously, K contains at most M · (M − 1) 2–edges, and at most M edges. Thirdly, by (∗),
D has not loops and 2–loops.

Let D1 and K1 be directed hypergraphs obtained from D and K, respectively, by omitting all regular 2–edges.
Let D2 and K2 be directed hypergraphs consisting of all vertices and all regular 2–edges of D and K, respectively.
D2 contains all 2–edges of D, so we first obtain D2 has exactly M · (M − 1) hyperedges. Secondly, D1 contains
all edges of D, so D1 is the usual directed graph. Moreover, D1 is a finite total functional directed graph without
loops.

The image of a regular 2–edge in D∗ (or K∗) has exactly three endpoints. Conversely, since D and K have
only edges and 2–edges, each (undirected) hyperedge of D∗ or K∗ with three endpoints is the image of some
regular 2–edge. Hence, because D∗ ' K∗,

D∗
1 ' K∗

1 and D∗
2 ' K∗

2.
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The second isomorphism implies that K2 has M · (M − 1) 2–edges. Thus K2 contains all 2–edges of K. Hence
first, K has not 2–loops, and exactly two 2–edge start from any two–element set of vertices. Secondly, K1 consists
of all edges of K. This fact and the first isomorphism imply that K1 has exactly M edges. Thus exactly one
edge starts from any vertex of K. Further, by the same isomorphism, K1, thus also K, does not contain loops
(because D1 has not loops).

All the above facts imply that H is a finite total groupoid satisfying (∗).
Exactly two 2–edges start from each two–element set of vertices (in D and K), and moreover, they have the
same final vertex. Thus we can replace any such pair of 2–edges by a single 2–edge to obtain two new directed
hypergraphs D and K. Since D and K have only regular edges and 2–edges, and D∗, K∗ are isomorphic, we
deduce

D
∗ ' K

∗
.

More precisely, since D (and K) contains only regular hyperedges, we have that 2–edges of D (K) and hyperedges
of D∗ (K∗) with three endpoints are in the bijective correspondence, given by ∗. Moreover, for any three–element
set W of vertices, the set F of all undirected hyperedges with W as the endpoint set consists of all (regular)
2–edges starting from W and ending in W . Hence, first, the number l of all elements of F is even. Secondly,
the analogous set of hyperedges for D

∗
(K

∗
) has exactly l

2 elements. These facts imply that any isomorphism
between D∗ and K∗ induces an isomorphism from D

∗
onto K

∗
.

Note that it is not true for directed hypergraphs with 2–loops. For example, take M with two vertices and
two 2–loops, and N with two vertices and two regular edges forming a directed cycle. Then M∗ ' N∗. But M

∗

and N
∗

are not isomorphic, because M contains exactly one hyperedge (which is a 2–loop).
Observe also that we can assume

D
∗

= K
∗
.(1)

It is sufficient to transport (by any isomorphism) the structure of the hypergraph K
∗

onto sets of vertices and
hyperedges of D. In this way we also transport the structure of the directed hypergraph K onto these two sets.
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Let D2 and K2 be directed hypergraphs containing all vertices and all 2–edges of D and K, respectively. Note
that these two directed hypergraphs are constructed from D2 and K2, respectively, in the same way as D and
K. Note also that D1 and K1 consist of all edges of D and K. Obviously by (1),

D∗
1 = K∗

1 and D
∗
2 = K

∗
2.(2)

Recall (see [2, Chapter 3, Theorem 17]), Ore Theorem: all edges of a finite (undirected) graph can be directed to
a form of total functional directed graph iff each of its connected components contains exactly one cycle. Recall
also that for a finite connected graph with one cycle (v1, . . . , vn) (where v1, . . . , vn are consecutive vertices of the
cycle), at most two such directions exist. More precisely, the edges in the cycle have to be directed either from vi

to vi+1 for i = 1, . . . , n− 1 and from vn to v1, or from vi+1 to vi for i = 1, . . . , n− 1 and from v1 to vn. Moreover,
other edges have to be directed towards the cycle. Thus we have exactly two ways (if the cycle is non–trivial, i.e.
has at least two vertices) or exactly one (if the cycle is trivial).

Since D1 and K1 are finite total functional directed graphs and K∗
1 = D∗

1, the above facts (applying to each
connected component separately) we obtain that K1 is obtained from D1 by inverting the orientation of some
pairwise disjoint directed cycles (more precisely, each of these cycles belongs to another connected component).

Since D
∗
2 = K

∗
2, we have that for any 2–edge e,

ID
1 (e) ∪

{
ID
2 (e)

}
= IK

1 (e) ∪
{
IK
2 (e)

}
,

and each of these sets has exactly three elements.
This equality of sets implies, of course, that exactly one of the following two cases is satisfied:

ID
2 (e) = IK

2 (e) or ID
2 (e) 6= IK

2 (e).

If the first condition holds, then also ID
1 (e) = IK

1 (e). Thus all such 2–edges have the same orientation in D2 and
in K2.
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Now take the set F of all 2–edges f which satisfy the second case, i.e. IK
2 (f) 6= ID

2 (f). Let us denote vf = IK
2 (f)

and df = ID
2 (f). Then by the above equality of sets, vf ∈ ID

1 (f). The second vertex of ID
1 (f) (i.e. different from

vf ) we denote by uf . Applying again the above equality, since ID
1 (f) = {vf , uf}, we obtain IK

1 (f) = {uf , df}.
Obviously K2 is obtained from D2 by inverting the orientation of all 2–edges from F according to the set

{vf : f ∈ F}, i.e. in this way that for any f ∈ F , uf and df form the new initial set and vf forms the new final
vertex.

Now we show that F can be divided onto finitely many 2–edge–disjoint subsets in such a way that each of them
forms a sequence (f1, . . . , fn), called the quasicycle, such that {vfi+1 , ufi+1} = {ufi

, dfi
}, where fn+1 = f1. Of

course, we can assume that F is non–empty. Our proof is some generalization of one of proofs of Euler Theorem
(see [2, Chapter 11]).

Take an arbitrary 2–edge f1 from F . Then there is a 2–edge f2 of D2 starting from {uf1 , df1}. f2 has to be
contained in F . Otherwise f2 starts from {uf1 , df1} also in K2, which is impossible, because this set is the initial
set of f1 in K2 and f1 6= f2.

If {uf2 , df2} = {uf1 , vf1}, then (f1, f2) forms the desired quasicycle. Thus we can assume that these sets are
different. Then first, there is a 2–edge f3 of D2 starting from {uf2 , df2}. By the assumption, f3 6= f1. Moreover, as
above it can be proved that f3 ∈ F . Further, {uf3 , df3} 6= {vf2 , uf2}. To see it assume otherwise that the equality
holds, so also {uf3 , df3} = {uf1 , df1}. But then f1 and f3 are two different 2–edges starting from {uf3 , df3} in
K2, which is impossible.

If {uf3 , df3} = {vf1 , uf1}, then the sequence (f1, f2, f3) is a quasicycle. If not, then we can repeat the above
procedure; and so on. But D is finite, so after finite steps this construction have to be finished. Thus we obtain
a quasicycle (f1, . . . , fn).

If f1, . . . , fn are all 2–edges of F , then the proof of the fact is complete. If there is a 2–edge g ∈ F \{f1, . . . , fn},
then in the same way as above we construct a quasicycle g1, . . . , gk containing g (e.g. g1 = g), and contained in
F .
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Observe that these two quasicycles are 2–edge–disjoint. To see it assume otherwise. Let 1 ≤ l ≤ k be the
greatest number such that gl is contained in (f1, . . . , fn), and let 1 ≤ j ≤ n be the natural number such that
gl = fj . Take h = gl+1 (if l = k, then h = g1). Then h 6∈ {f1, . . . , fn}, in particular, h 6= fj . By the definition of
quasicycle, h starts (in D2) from {ugl

, dgl
}, and fj+1 starts (in D2) from {ufj

, dfj
} (if j = n, then fj+1 = f1).

Next, these two sets are equal, because gl = fj . Thus we obtain two different 2–edges of D2 starting from the
same set of two vertices, which is impossible.

Since F is finite, we can repeat this procedure as many times as needed to obtain finitely many pairwise
2–edge–disjoint quasicycles containing all 2–edges from F .

Summarizing, we have shown that directed hypergraph K is obtained from D by inverting the orientation of some
pairwise disjoint cycles c1, . . . , cl, and by inverting the orientation of some pairwise 2–edge–disjoint quasicycles
q1, . . . , qk.

Take a strong subhypergraph M of D. (The usual (weak) subhypergraph M is called strong iff for any edge
or 2–edge e of D, if the initial set of e is contained in M, then e, thus also the final vertex of e, belongs to M; see
Definition 2.4 in [6]). Then for any cycle or quasicycle p ∈ {c1, . . . , cl, q1, . . . , qk}, p is contained in M, or p and
M are hyperedge–disjoint. Assume that some hyperedge e (or equivalently, its initial set) of p is contained in M.
Then all its endpoints belong to M. Thus the initial set of the successor of e is contained in M, which implies
that the successor also belongs to M; and so on.

Let p be a quasicycle 2–edge–disjoint with M, and e be a 2–edge of p. Then, in particular, {ue, ve} is not
contained in M. Hence we deduce that {ue, de} is also not contained in M, because this set is the initial set of
the successor of e (in p).

Let M̂ be the weak subhypergraph of K consisting of all vertices and hyperedges of M. First, M̂ is correctly
defined, by (1). Observe that M̂ is just obtained from M by inverting the orientation of these cycles and
quasicycles from the family {c1, . . . , cl, q1, . . . , qk} which are contained in M. Secondly, using the above facts it
is easy to show that M̂ is a strong subhypergraph of K. Analogously, for any strong subhypergraph N of K, the
weak subhypergraph N̂ of D consisting of all vertices and hyperedges of N is a strong subhypergraph of D.
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Thus we obtain that the function ϕ, assigning M̂ to each strong subhypergraph M of D, is a well–defined
surjection from the set of all strong subhypergraphs of D onto the set of all strong subhypergraphs of K. Recall
(Proposition 2.7 in [6]) that the set of all strong subhypergraphs forms a complete lattice under (strong subhy-
pergraph) inclusion ≤s. Recall also (Proposition 2.5 (d) and (e) in [6]) that for any strong subhypergraphs O,P,
O = P iff their vertex sets are equal; O ≤s P iff the vertex set of O is contained in the vertex set of P. The first
fact implies that ϕ is injective. The second implies that ϕ and its inverse ϕ−1 preserve inclusion ≤s. Hence we
deduce that ϕ is an isomorphism between the strong subhypergraph lattices of D and K. Finally observe that
since D is obtained from D by doubling each 2–edge, the strong subhypergraph lattices of D and D are isomor-
phic. More precisely, to each strong subhypergraph M of D, it is sufficient to assign the weak subhypergraph of
D obtained from M by doubling each of its 2–edges. Similarly as above it can be shown that this function is a
lattice isomorphism. Of course, the analogous result for K and K also holds. This completes the proof of the
theorem, because the subgroupoid lattices Ss(G) and Ss(H) are isomorphic to the strong subhypergraph lattices
of D and K, respectively (Corollary 3.9 in [6]). �

Now necessary and sufficient conditions are found for a lattice to be isomorphic to the weak subgroupoid lattice
for some partial commutative groupoid satisfying the non–equality x ◦ y 6= x. In [1] it is proved that a lattice L
is isomorphic to the weak subalgebra lattice for some partial algebra iff L is distributive algebraic and

(i) every element is a join of join–irreducible elements,
(ii) any non–zero join–irreducible element contains only a finite (and non–empty) set of atoms,
(iii) the set of all non–zero and non–atomic join–irreducible elements is an antichain with respect to the lattice

ordering of L.

(Recall that an element l of L is join–irreducible iff for any elements k1, k2,l = k1 ∨ k2 implies l = k1 or l = k2.)
Note that a partial algebra is finite iff its weak subalgebra lattice is finite, because each element forms a weak
subalgebra. It is also easy to see that any finite distributive lattice is algebraic and satisfies (i). Thus, since only
finite groupoids are here considered, we can assume that L is a finite distributive lattice satisfying (ii) and (iii).
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Let G = 〈G, ◦〉 be a partial commutative groupoid, such that g ◦ h 6= g (if g ◦ h is defined) for any g, h ∈ G,
and let H = 〈H, ◦〉 be a weak subgroupoid of G. Recall first, (see Lemma 3 in [1]), that H is an atom in Sw(G)
iff H consists of exactly one element and the binary operation ◦ is defined nowhere. Secondly, H is a non–zero
non–atomic join–irreducible element in Sw(G) iff there are g1, g2, h ∈ G such that H = {g1, g2, h} and g1 ◦ g2 is
defined and equal to h, and ◦ is defined (in H) onto this directed pair only. Note also h = g1 ◦ g2 6= g1. These
facts imply that every non–zero non–atomic join–irreducible element in Sw(G) contains two or three atoms.

Since we consider commutative groupoids in the strong sense, the weak subgroupoid lattice Sw(G) has some
additional property yet. More formally, take an arbitrary non–zero non–atomic join–irreducible element H =
〈H, ◦〉 in Sw(G) containing three atoms. Then H = {g1, g2, h} and g1, g2, h are pairwise different and g1 ◦ g2 is
defined and equal to h. Since g1 ◦ g2 is defined also in G, we obtain that g2 ◦ g1 is defined (in G) and equal to
h. Hence, the weak subgroupoid H = 〈H, ◦〉 such that H = H and ◦ is defined onto exactly one pair 〈g2, g1〉 is
a non–zero non–atomic join–irreducible element in Sw(G). H and H are different (because their operations are
defined onto two different pairs of elements), and H contains the same three atoms as H. (If H contains two
atoms, then the non–equality g1 ◦g2 6= h implies g1 = g2, and thus H = H.) Thus we obtain that for any pairwise
different three atoms of Sw(G), the number of all non–zero non–atomic join–irreducible elements containing these
atoms is even.

Summarizing we have the following fact

Proposition 2. If L is a lattice isomorphic to the weak subgroupoid lattice Sw(G) for some partial finite
commutative groupoid G such that g ◦ h 6= g for any g, h ∈ G, then
(L.1) L is finite and distributive,
(L.2) every non–zero non–atomic join–irreducible element contains exactly two or three atoms,
(L.3) for any three–element set A of atoms, the number of all non–zero and non–atomic join–irreducible elements

containing A is divided by 2,
(L.4) the set of all non–zero non–atomic join–irreducible elements is an antichain with respect to the lattice

ordering of L.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

For any lattice L, by A(L) we denote the set of all atoms of L, next, the set of all non–zero and non–atomic
join–irreducible elements of L containing exactly two atoms is denoted by I2(L), and I3(L) denotes the set of all
non–zero and non–atomic join–irreducible elements of L containing exactly three atoms.

Now we can formulate and prove our characterization theorem.

Theorem 3. Let a lattice L = 〈L,≤L〉 satisfy (L.1)—(L.4). Then L is isomorphic to the weak subgroupoid
lattice Sw(G) for some partial finite commutative groupoid G = 〈G, ◦〉 such that g ◦ h 6= g for each g, h ∈ G iff

(i) For any subset I ⊆ I2(L),
|I| ≤

∣∣{a ∈ A(L) : ∃i∈I a ≤L i}
∣∣.

(ii) For any subset I ⊆ I3(L),

|I| ≤ 2 ·
∣∣{{a, b} ⊆ A(L) : a 6= b and ∃i∈I a ≤L i, b ≤L i

}∣∣.
Moreover, G is total iff the following two additional equalities hold:∣∣I2(L)

∣∣ =
∣∣A(L)

∣∣ and
∣∣I3(L)

∣∣ = 2 ·
∣∣P2

(
A(L)

)∣∣,
where P2

(
A(L)

)
is the family of all two–element subsets of A(L).

Proof. In the proof of this result we also use hypergraph–algebraic language from [6]. Recall that a lattice L
satisfying the conditions (L.1)–(L.4) can be represented (see Definition 3.17 in [6]) by the (undirected) hypergraph
U(L) consisting of all atoms of L as its vertices, and all non–zero non–atomic join–irreducible elements as its
hyperedges, and for any hyperedge e, atoms contained in e forms the endpoint set of e. By (L.2), U(L) has not
loops.

By (L.3), for any three-element set W of vertices, the set of all hyperedges with endpoints in W has an even
number of hyperedges. Thus this set (if it is non–empty) we can divide onto pairwise disjoint two–element sets.
Next, any such two–element set can be replaced by a single hyperedge with W as its endpoints. Obviously we
can apply this procedure to each three–element set of vertices. The hypergraph such obtained will be denoted by
U(L). More formally, in this way we obtain, in general, many different hypergraphs, but they are isomorphic.
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Let U1(L) be the hypergraph obtained from U(L) by omitting all hyperedges with three endpoints. Note that
U1(L) is an usual (undirected) graph with regular edges (i.e. edges having two different endpoints). Let U2(L)
be the hypergraph consisting of all vertices and all hyperedges with three endpoints of U(L).

Observe first that the conditions (i) and (ii) of Theorem 3 are equivalent, respectively, with the following

(a) Each connected component of the graph U1(L) contains at most one (undirected) cycle.

Moreover,
∣∣I2(L)

∣∣ =
∣∣A(L)

∣∣ iff each connected component of U1(L) has exactly one cycle.
(b) For any set E of hyperedges of U2(L), |E| is not greater than the number of all (undirected) pairs {v, w}

of vertices such that v and w are arbitrary endpoints of some hyperedge e from E (i.e. v, w ∈ IU2(L)(e)).

Moreover,
∣∣I3(L)

∣∣ = 2 ·
∣∣P2

(
A(L)

)∣∣ iff the number of all hyperedges of U2(L) is equal to the number of all
(undirected) pairs of vertices.

The equivalence (ii)⇐⇒(b) is trivial.
(i)⇐⇒(a). Of course, the straightforward translation of (i) onto hypergraph language is the following (similarly

as (ii)):

(i′) For any subset F of edges of U1(L), |F | is not greater than the number of all vertices being endpoints of
edges from F .

Moreover,
∣∣I2(L)

∣∣ =
∣∣A(L)

∣∣ iff the number of all edges and the number of all vertices are equal.

If (a) holds, then by Ore Theorem (see [2], Chapter 3, Theorem 17), all edges of U1(L) can be directed to a form
of functional directed graph D. Thus (i′) also holds, because from each vertex at most one edge starts. Next,
if each connected component of U1(L) has exactly one cycle, then, by the same result, D is a total functional
directed graph. Thus obviously the number of all edges of D and the number of all vertices of D are equal.

Now assume that some connected component of U1(L) contains two different undirected cycles c1 = (u1, . . . , un)
and c2 = (w1, . . . , wm) (where u1, . . . , un and w1, . . . , wn are consecutive vertices of these cycles). If c1 and c2

have common edges, say l edges, then they have at least l + 1 common vertices. Thus c1 and c2 together have
n+m− l edges, and at most n+m− l− 1 vertices. Hence, (i′) does not hold. If c1 and c2 are edge–disjoint, then
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since the cycles belong to one connected component, there is a path p = (v1, . . . , vk), connecting c1 and c2 and
edge–disjoint with these cycles (we assume here that a single vertex is also a path; in this case our cycles have a
common vertex). Let F be the set of all edges of c1, c2 and p. Then |F | = n + m + k − 1. On the other hand c1,
c2 and p have together at most n + m + k − 2 vertices, because v1 and vk belongs to c1 and c2, respectively (if
k = 1, then c1 and c2 have at least one common vertex, so they have together at most n + m− 1 vertices). Thus
again (i′) does not hold.

Summarizing we have shown that each connected component of U1(L) contains at most one undirected cycle.
Thus by Ore Theorem, all edges of U1(L) can be directed to a form of functional directed graph D. If we
additionally assume that the number of all edges of U1(L) is equal to the number of all vertices of U1(L), then
D have to be total (recall that these graphs are finite). Hence, applying again Ore Theorem, each connected
component of U1(L) has exactly one cycle.

We also need the following result from [6, Corollary 3.19(b)]

(WS) L ' Sw(G) ⇐⇒ U(L) ' D(G)∗.

=⇒. For any two–element set W of vertices, if a 2–edge starts from W , then exactly two 2–edges starts from W ,
and moreover, these two 2–edges have the same initial vertex. Thus we can replace each such pair by a single
2–edge to obtain the new directed hypergraph D. Then (see the second part of the proof of Theorem 1) for any
three–element set W of vertices, the set of all hyperedges of D(G)∗ with W as the endpoint set has twice more
elements than the analogous set of hyperedges of D∗. Next, for any two–vertex set, sets of edges similarly defined
for D(G)∗ and D∗ are equal. It follows from the fact that each hyperedge of D(G), thus also of D, is regular.
Hence, since D(G)∗ ' U(L),

D∗ ' U(L).
Thus, because D has not loops and 2–loops,

D∗
1 ' U1(L) and D∗

2 ' U2(L),

where D1 and D2 consist of all vertices of D and all edges or 2–edges, respectively.
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Since D1 is a functional directed graph (if G in total, then D is also total), by the first isomorphism and Ore
Theorem we obtain (a).

By the definition of D, at most one (if G is total, then exactly one) 2–edge starts from any two–element set
of vertices. Take an arbitrary set E of 2–edges of D2. Then |E| is equal to the number of all pairs from which
starts some 2–edge. This fact and the second isomorphism implies (b). Next, if G is total, then the number of all
2–edges of D2 is equal to the number of all (undirected) pairs of vertices.

⇐=. Having (WS), it is enough to direct all hyperedges of U(L) to a form of finite directed hypergraph D in such
a way that D contains only regular edges and regular 2–edges, and at most one edge starts from any vertex, and
at most one 2–edge starts from any two–element set of vertices. Because then we can define a groupoid G = 〈G, ◦〉
in the following way: The carrier G is the set of all vertices of D. Next, for any g, h ∈ G, g ◦ h and h ◦ g are
defined iff some (directed) hyperedge e starts from {g, h} and then g ◦ h and h ◦ g are equal to the final vertex
of e. It is obvious that G is finite and commutative, and also satisfies g ◦ h 6= g (since D has only regular edges
and 2–edges). Further, D(G) is obtained from D by doubling each 2–edge. Thus, in the same way as in the proof
of =⇒, we obtain that D(G)∗ ' U(L). Note also that G is total iff exactly one edge (2–edge) starts from each
vertex (two–vertex set) of D.

First, by (a) and Ore Theorem, all edges of U1(G) can be directed to a form of functional directed graph D1.
Secondly, by (L.2) we have that U1(G) has not loops, which implies that D1 contains regular edges only. Recall
also that, if each connected component of U1(G) contains exactly one cycle, then D1 is total.

Thus now it is sufficient to show that all hyperedges of H = U2(G) can be directed to a form of directed
hypergraph D2 in such a way that

(i) D2 contains regular 2–edges only,
(ii) for any two–element set V , at most one 2–edge starts from V .

We use the induction on the number of hyperedges. If H has not hyperedges, then it is trivial. Thus we can
assume that H has x ≥ 1 hyperedges. We also assume that our thesis is true for any hypergraph satisfying (b)
and having not greater than x− 1 hyperedges.
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Let e be a hyperedge of H, and W be the set of all endpoints of e. Let K be the hypergraph obtained from H
by omitting e. Since K is a weak subhypergraph of H, and H satisfies (b), we deduce that K also satisfies (b).
Hence and by the induction hypothesis all hyperedges of K can be directed to a form of finite directed hypergraph
C satisfying (i) and (ii).

If there is a pair {v, w} ⊆ W such that none 2–edge of C starts from {v, w}, then we can take this set as the
initial set of e and the third vertex of W (different from v and w) as the final vertex of e. Obviously the directed
hypergraph such obtained satisfies (i) and (ii).

Thus we can assume that for any two different vertices v and w of W , there is (of course, exactly one) 2–edge
of C starting from {v, w}.

Let E0, E1, E2, . . . and U0,U1,U2, . . . be sequences of sets such that E0 = ∅ and U0 is the family of all two–
element subsets of W , and for any n ≥ 1, En is the set of all 2–edges of C starting from elements of Un−1,
and Un is the family of all two–element sets V such that V is contained in the endpoint set of some hyperedge
f from En (i.e. V ⊆ IC

1 (f) ∪ {IC
2 (f)} = IH(f)). It is easy to see that E0 ⊆ E1 ⊆ E2 ⊆ . . ., which implies

U1 ⊆ U2 ⊆ U3 ⊆ . . ..
Hence, since C is finite, Em+1 = Em, thus also Um+1 = Um, for some non–negative integer m ∈ N. Let

E = Em and U = Um. Observe that the assumption on W implies U0 ⊆ U1, so U0 ⊆ U . Thus, since H satisfies
(b) and e 6∈ E, we infer

|E|+ 1 =
∣∣E ∪ {e}

∣∣ ≤ |U|,

so

|E| ≤ |U| − 1.

Since C satisfies (ii) and the family of initial sets (in C) of all 2–edges from E is contained in U , this inequality
implies that there is a two–element set V = {v1, v2} ∈ U such that none 2–edge of E starts from V . Hence it
follows that there is not 2–edge of C starting from V . (Otherwise this 2–edge would have to belong to Em+1, but
Em+1 = E.)
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Let n be the least number such that V ∈ Un, of course, n ≥ 1 (by the assumption on W ). By the definition of
Un, there is a 2–edge f ∈ En such that v1 ∈ IC

1 (f) and v2 = IC
2 (f) (or conversely, but it does not matter). First,

IC
1 (f) ∈ Un−1. Secondly, we can change the orientation of f in this way that V forms the new initial set of f

and the second vertex w of IC
1 (f) (different from v1) forms the new final vertex of f . The directed hypergraph

C1 such obtained satisfies (i) and (ii), moreover, none 2–edge of C1 starts from V1 = {v1, w}, and V1 ∈ Un−1. If
n− 1 ≥ 1, then we can apply the above construction to C1 and V1. Repeating this procedure as many times as
needed we obtain that the orientation of some 2–edges in C can be changed in such a way that a new directed
hypergraph D′

2 also satisfies (i) and (ii), and additionally, none 2–edge starts from some two–element subset V
of W . Then, it has been shown earlier, V can be taken as the initial set of e and the vertex of W outside V can
be taken as the final vertex of e. Thus we obtain that all hyperedges of H can be directed to a form of directed
hypergraph D2 satisfying (i) and (ii). This completes the proof of the induction step.

Finally observe that if the number of all 2–edges of D is equal to the number of all pairs of vertices, then by
(ii), exactly one 2–edge starts from each two–vertex set. �
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5. Pióro K., On a strong property of the weak subalgebra lattice, Alg. Univ. 40(1998), 477–495.
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