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MINIMALITY AND PREHOMOGENEITY

SAMER AL GHOUR

Abstract. We introduce two new types of minimality; Namely: minimal set and minimal preopen set. Several results

concerning these types and the known type (minimal open set) are obtained. We also introduce prehomogeneity concept
as a generalization of homogeneity. Several results concerning it are given, some of which related to minimality concepts.
Various counter examples relevant to the relations obtained in this paper are given.

1. Introduction

Let (X, τ) be a space and A ⊆ X. We denote the complement of A in X by X −A, the closure and the interior of
A respectively by A and Int(A), the relative topology on A by τ |A , A is preopen [13] if A ⊆ Int(A). PO (X, τ)
is the family of all preopen sets in X. The topology on X with the subbase PO(X, τ) will be denoted by τ∗ and
is called the topology generated by preopen sets [14]. A is α-set [17] if A ⊆ Int

(
Int (A)

)
. The family of all α-sets

in a space (X, τ), denoted by τα is again a topology on X satisfying τ ⊆ τα. A function f : (X, τ) → (X, τ) is
preirresolute [4] if f−1 (A) ∈ PO(X, τ1) for all A ∈ PO(Y, τ2). f is a prehomeomorphism [14] if f is bijective
and A ∈ PO(X, τ1) iff f(A) ∈ PO(Y, τ2), i.e., f is a bijection and both f and f−1 are perirresolute. f is an
α-homeomorphism [14] if f is bijective and A ∈ τα iff f (A) ∈ τα. If (X, τ) is a space, then PH (X, τ) will denote
the group of all prehomeomorphisms from (X, τ) onto itself.
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The homogeneity concept was introduced by W. Sierpinski [19] in 1920 as follows: A space (X, τ) is homo-
geneous if for any two points x, y ∈ X there exists an autohomeomorphism f on (X, τ) such that f (x) = y.
Seven years earlier, L. Brouwer had shown that if A and B are two countable dense subsets of the n-dimensional
Euclidean space Rn, then there is an autohomeomorphism on Rn that takes A to B. He needed this result in his
development of dimension theory. Many modifications of homogeneity were introduced and studied [1] – [3], [5]
– [7], [9], [15], [18]. In [10], we fuzzified homogeneity.

Mathematicians generalized many concepts of general topology using preopen sets. In a part of this paper
we find it is suitable to generalize homogeneity using preopen sets. In the first part of this paper we introduce
the concepts of minimal sets and minimal preopen sets. Those concepts also play a vital rule in studying
prehomogeneity.

The following lemmas will be used in the sequel.

Lemma 1.1. [4] Let (X, τ) be a space. If A ∈ τα and B ∈ PO(X, τ), then A ∩B ∈ PO(X, τ).

Lemma 1.2. [4] Let (X, τ) be a space. If A ⊆ B ⊆ X and A ∈ PO(X, τ), then A ∈ PO(B, τ |B ).

Lemma 1.3. [11] Let (X, τ) be a space. Then PO (X, τ) = PO (X, τα).

Recall that a space (X, τ) is locally indiscrete if every open subset of X is closed.

Lemma 1.4. [4] For a space (X, τ) the following are equivalent.
(i) (X, τ) is locally indiscrete.
(ii) Every singleton in X is preopen.
(iii) Every subset of X is preopen.

Lemma 1.5. [16] Let (X, τ) be a space and let A be a minimal open set in X. Then

A =
⋂
{O : O is open in Xwith x ∈ O}
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for any element x of A.

Lemma 1.6. [16] Let (X, τ) be a space. If A is a minimal open set in X, then every subset of A is preopen.

Lemma 1.7. [12] Every homeomorphism is a prehomeomorphism but not conversely.

Lemma 1.8. [12] If X, Y are T1 spaces, then the classes of prehomeomorphisms and α-homeomorphisms from
X onto Y coincide.

Recall that a partition base for the space (X, τ) is just a base for τ for which their elements form a partition
on X.

Lemma 1.9. [8] Let (X, τ) be a space which contains a minimal open set. Then the following are equivalent.
(a) (X, τ) is a homogeneous space.
(b) (X, τ) has a partition base consisting of minimal open sets all of which is homeomorphic to one another.

2. Minimal Sets

Let (X, τ) be a space. For each x ∈ X, denote by Ux the intersection of all open sets in X containing x, i.e.,

Ux =
⋂
{O : O is open in X with x ∈ O} .

Definition 2.1. Let (X, τ) be a space and let A ⊆ X, then A is called a minimal set in X if there exists x ∈ X
such that A = Ux.

Definition 2.2. [16] Let (X, τ) be a space. A non empty open set A of X is called a minimal open set in X
if any open set in X which is contained in A is ∅ or A, i.e., τ |A is the indiscrete topology on A.

Definition 2.3. Let (X, τ) be a space. A non empty preopen set A of X is called a minimal preopen set in
X if any preopen set in X which is contained in A is ∅ or A.
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Theorem 2.4. Let (X, τ) be a space. If A is a minimal open set in X, then A is a minimal set in X.

Proof. Lemma 1.5. �

The converse of Theorem 2.4 is not true as the following example shows.

Example 2.5. Let R be the real line with the usual topology.

Since 0 ∈ U0 ⊆
∞⋂

n=1

(
−1
n

,
1
n

)
= {0}, U0 = {0}. But {0} is not even preopen in R.

The following result is a characterization of locally indiscrete spaces in terms of minimal preopen sets. The
proof follows easily and is left to the reader.

Theorem 2.6. For a space (X, τ) the following are equivalent
(i) (X, τ) is locally indiscrete.
(ii) The set of all minimal sets in X form a partition base for (X, τ).

The following result shows that minimal preopen sets are singletons.

Theorem 2.7. Let (X, τ) be a space and A ⊆ X, then A is a minimal preopen set in X iff A ∈ PO(X, τ) and
A is a singleton.

Proof. Suppose that A is a minimal preopen set in X. Choose x ∈ A. We are going to show that {x} is preopen.
By Lemma 1.1, it follows that

(
X − {x}

)
∩A is preopen. Therefore, since A is a minimal preopen set in X and(

X − {x}
)
∩ A ⊆ A with

(
X − {x}

)
∩ A 6= A, it follows that

(
X − {x}

)
∩ A = ∅. Thus, A ⊆ {x} and hence

A ⊆ {x}. Therefore, {x} ⊆ A ⊆ Int
(
A

)
⊆ Int

(
{x}

)
and hence {x} is preopen. Thus, by preopen minimality of

A, A = {x} and hence A is a singleton.
Conversely, if A ∈ PO (X, τ) and A is a singleton, then it is clear that A is a minimal preopen set. �
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Corollary 2.8. If A is a minimal open set in the space (X, τ), then for each a ∈ A, {a} is a minimal preopen
set in X.

Proof. Lemma 1.6 and Theorem 2.7. �

Corollary 2.8, shows that if a space have the property ‘having a minimal open set’, then it must have the
property ‘having a minimal preopen set’. The following example shows that the converse is not true. It also
shows that the converse of Corollary 2.8 is not true.

Example 2.9. LetR be the set of real numbers with the topology τ having the family {[−a, a] : a ∈ R and a > 1}
as a base. Then {0} is a minimal preopen set in R, but (R, τ) has no minimal open set. On the other hand, it is
easy to see that {a} is a minimal preopen set in R for each point a ∈ U0 = [−1, 1] and U0 is not a minimal open
set in R.

Theorem 2.10. Let (X, τ) be a space and x ∈ X, then {x} is a minimal preopen subset of X iff {y} ∈ PO(X, τ)
for each y ∈ Ux.

Proof. Let y ∈ Ux, then x ∈ {y} and so {x} ⊆ {y}. Since {x} ∈ PO(X, τ), there exists U ∈ τ such that
{x} ⊆ U ⊆ {x}. Thus, {y} ⊆ Ux ⊆ U ⊆ {x} ⊆ {y} and hence {y} ∈ PO(X, τ).
Conversely, if {y} ∈ PO(X, τ) for each y ∈ Ux, then in particular, {x} ∈ PO(X, τ) and hence {x} is a minimal
preopen subset of X. �

Corollary 2.11. Let (X, τ) be a space. If {x} is a minimal preopen subset of X, then the minimal set Ux is
preopen.

Corollary 2.12. Let (X, τ) be a space. If {x} is a minimal preopen subset of X, then the subspace (Ux, τ |Ux )
is locally indiscrete.

Proof. Lemmas 1.2 and 1.4 and Theorem 2.10. �



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The following example shows that in Corollary 2.12, the condition ‘{x} is a minimal preopen subset of X’
cannot be dropped although the minimal set Ux ∈ PO(X, τ). It also shows that the converse of Corollary 2.11,
is not true.

Example 2.13. Let X = {a, b, c} with the topology τ = {∅, X, {a} , {a, b} , {a, c}}. Then Ub = {a, b} ∈
PO (X, τ) but {b} /∈ PO(X, τ). On the other hand, τ |Ub = {∅, Ub, {a}}, and hence the subspace (Ub, τ |Ub ) is
not locally indiscrete.

Theorem 2.14. Let (X, τ) be a space. If {x} is a minimal preopen set and there is a non empty open subset
V ⊆ X such that V ⊆ Ux, then Ux = V .

Proof. Let V be a non empty open set in X such that V ⊆ Ux. Choose y ∈ V . Since y ∈ Ux, x ∈ {y}. Also,
since {x} ∈ PO(X, τ), there exists U ∈ τ such that {x} ⊆ U ⊆ {x}. Since x ∈ U ∩ {y}, y ∈ U and so y ∈ {x}.
Therefore, x ∈ V and hence Ux ⊆ V . Thus, Ux = V . �

Corollary 2.15. Let (X, τ) be a space. If {x} is a minimal preopen set in X, then either Ux is a minimal
open set in X or Int (Ux) = ∅.

In corollary 2.15, the statement ‘Int (Ux) = ∅’, cannot be replaced by the statement ‘Ux is a minimal preopen
set’ as Example 2.9 shows.

Theorem 2.16. Let (X, τ) be a space and x ∈ X. Then Ux is a minimal open set in X iff {x} is a minimal
preopen set in X and Int (Ux) 6= ∅.

Proof. If Ux is a minimal open set, then it is clear that Int (Ux) 6= ∅. On the other hand, by Corollary 2.8, it
follows that {x} is a minimal preopen set in X.

Conversely, if {x} is a minimal preopen set with Int (Ux) 6= ∅, then by Corollary 2.15, Ux is a minimal open
set. �
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3. Prehomogeneous spaces

Definition 3.1. A space (X, τ) is prehomogeneous if for any two points x, y ∈ X there exists f ∈ PH (X, τ)
such that f (x) = y.

Theorem 3.2. Every homogeneous space is prehomogeneous.

Proof. Lemma 1.7. �

Theorem 3.3. Every locally indiscrete space is a prehomogeneous.

Proof. Let (X, τ) be a locally indiscrete space and let x1, x2 ∈ X. Define f : (X, τ) → (X, τ) by f (x1) = x2,
f (x2) = x1 and f (x) = x elsewhere. Then by Lemma 1.4 it is easy to see that f ∈ PH (X, τ) with f (x1) = x2.
Therefore, (X, τ) is a prehomogeneous space. �

Corollary 3.4. Let (X, τ) be a space. If {x} is a minimal preopen set in X. Then the subspace (Ux, τ |Ux ) is
prehomogenous.

Proof. Corollary 2.12 and Theorem 3.3. �

Corollary 3.5. Let (X, τ) be a space. If A is a minimal open subset of X. Then the subspace (A, τ |A ) is
prehomogenous.

Proof. Since A is a minimal open set in X, then by Theorem 2.4, it follows that A is a minimal set in X and
so there exists x ∈ X such that A = Ux. Since x ∈ A, it follows by Corollary 2.8, that {x} is a minimal preopen
set and so according to Corollary 3.4 we get the result. �

The following example shows that the converse of Theorem 3.2 is not true.

Example 3.6. Let X = {a, b, c} with the topology τ = {∅, X, {a} , {b, c}}. Then by Theorem 3.3, the space
(X, τ) is prehomogeneous but using Lemma 1.9, it follows that (X, τ) is not homogeneous.
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One may ask the following question: Does there exist a non-homogeneous and perhomogeneous space that is
not locally indiscrete?

The following example answers this question.

Example 3.7. Consider the set of natural numbers N with the topology τ = {∅}∪{{n, n + 1, n + 2, ...} : n ∈ N}.
Then this space is prehomogeneous and non homogeneous but not locally indiscrete.

Proof. Note that PO (N, τ) = {∅} ∪ {A ⊆ N : A is infinite}. Therefore, for any two points n, m ∈ N, it is
easy to see that the function f : (N, τ) → (N, τ) where f (n) = m, f (m) = n, and f (x) = x elsewhere is a
prehomeomorphism with f (n) = m and hence (N, τ) is a prehomogeneous space. Now it is not difficult to see
that there is no homeomorphism between (N, τ) and itself which takes 1 to 2 and hence (N, τ) is not homogeneous.
Finally, it is clear that the space (N, τ) is not locally indiscrete. �

Now we state one of our main results in this section.

Theorem 3.8. Let (X, τ) be a space which contains a minimal preopen set. Then the following are equivalent.
(i) (X, τ) is prehomogeneous.
(ii) (X, τ) is locally indiscrete.

Proof. (i) ⇒ (ii) Suppose that (X, τ) is prehomogeneous and let {x} be a minimal preopen set in X. Let
y ∈ X, then since (X, τ) is a prehomogeneous space there exists f ∈ PH (X, τ) such that f (y) = x. Since f is
preirresolute, {y} = f−1 ({x}) ∈ PO(X, τ). Therefore, every singleton in X is preopen and hence by Lemma 1.4,
it follows that (X, τ) is a locally indiscrete space.

(ii) ⇒ (i) Theorem 3.3. �

Example 3.7, shows that the condition ‘containing a minimal preopen set’ in Theorem 3.8 cannot be dropped.

Corollary 3.9. Let (X, τ) be a space which contains a minimal open set. Then the following are equivalent
(i) (X, τ) is prehomogeneous.
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(ii) (X, τ) is locally indiscrete.

Proof. Corollary 2.8 and Theorem 3.8. �

Corollary 3.10. Let (X, τ) be a space for which X is finite or τ is finite. Then (X, τ) is prehomogeneous iff
(X, τ) is locally indiscrete.

Theorem 3.11. Let (X, τ) be a space. Then (X, τ) is prehomogeneous iff (X, τα) is prehomogeneous.

Proof. Suppose that (X, τ) is a prehomogeneous space and let x1, x2 ∈ X, then there exists f ∈ PH (X, τ) such
that f (x1) = x2. Now, by Lemma 1.3, it follows that f ∈ PH (X, τα) and hence (X, τα) is prehomogeneous. �

Similarly, if (X, τα) is prehomogeneous then we can show that (X, τ) is prehomogeneous.

Corollary 3.12. Let (X, τ) be a space. If (X, τα) is homogeneous, then (X, τ) is a prehomogeneous.

Proof. Since (X, τα) is homogeneous, it follows by Theorem 3.2 that (X, τα) is prehomogeneous. Therefore,
by Theorem 3.11, it follows that (X, τ) is a prehomogeneous. �

In fact, Example 3.6 shows that the converse of Corollary 3.12 is not true. However, in T1 spaces we have the
following result.

Theorem 3.13. If (X, τ) is a T1 space. Then the following are equivalent.
(i) (X, τα) is homogeneous.
(ii) (X, τ) is prehomogeneous.

Proof. (i) ⇒ (ii) Corollary 3.12.
(ii) ⇒ (i) Lemma 1.8. �

Theorem 3.14. Let (X, τ) be a space. If (X, τ) is prehomogeneous then (X, τ∗) is homogeneous.
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Proof. Suppose that (X, τ) is prehomogeneous. Let x1, x2 ∈ X, then since (X, τ) is prehomogeneous, there is

f ∈ PH (X, τ) such that f (x1) = x2. Let B be a basic open set in (X, τ∗), then B =
n⋂

i=1

Ai where Ai ∈ PO(X, τ)

for all i. Since f ∈ PH (X, τ), f−1 (Ai) ∈ PO(X, τ) for all i and hence f−1 (B) =
n⋂

i=1

f−1 (Ai) ∈ τ∗. Therefore,

f is continuous. Similarly we can show f−1 is continuous. Therefore, f : (X, τ∗) → (X, τ∗) is a homeomorphism
with f (x1) = x2 and hence (X, τ∗) is a homogeneous space. �

The following example shows that the converse of Theorem 3.14 is not true.

Example 3.15. Consider the set X = {a, b, c, d} with the topology τ = {∅, X, {a, b} , {a, b, c}}. Then τ∗ is
the discrete topology on X and hence by Lemma 1.9, it follows that (X, τ∗) is a homogeneous space. On the
other hand, using Corollary 3.10, it is easy to see that (X, τ) is not prehomogeneous.
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Samer Al Ghour, Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan,

e-mail : algore@just.edu.jo


