
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

CLASSICAL SOLUTIONS OF THE PERTURBED WAVE EQUATION WITH SINGULAR
POTENTIAL

A. VAIDYA and G. A. J. SPARLING

Abstract. This paper discusses the solutions to the perturbed wave equation containing a singular potential term in
the Lorentzian metric. We present the classical solution to the problem using the separation of variables method for any
dimension, n. Special solutions are obtained for even n’s and properties of these solutions are discussed. Finally, we also
consider the solution to the Cauchy problem for the case n = 2.

1. Introduction

The primary aim of this paper is to discuss the classical (in the sense of classical mechanics) structure of the
solutions to the perturbed, massless, wave equation

2φ+
n(n+ 2)
(1 + x2)2

φ = 0(1)

where 2 represents the D’Alembertian operator, φ is a scalar field and x = (t,x) ∈ Mn, n dimensional
Minkowski space. The interesting feature of this problem is the external potential term, n(n+2)

(1+x2)2 with the metric
signature (-,+,+,+,...) which gives rise to a singularity as t2 → 1 + x2

1 + x2
2 + ... + x2

n−1. The equation (1)
emerges from a first order perturbation of the wave equation where the field φ can be thought of as a background
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fluctuation to the wave equation.

The existing literature on the subject of semilinear wave equations, abounds in abstract analytic studies of
these equations. However, there is little in terms of concrete examples of equations with singularity. Our focus in
this paper will be to study the specific semilinear equation (1) and analyze its properties. Furthermore, since the
solution to the full problem is a rather difficult if not an impossible task, we try and understand the structure
of the first order perturbation problem. We do realize that equation (1) provides perhaps a simpler case of a
partial differential equation with a singular potential term where calculations can be made in a fairly rigorous
manner. However, having said this, it must be pointed out that equation (1) is not arbitrarily chosen. The
primary motivation for this study comes from our attempt to quantize the field, φ, which has not been dealt with
here and will be the subject of a later, follow-up paper (see [4] for some preliminary results). The classical results,
in particular, the Cauchy Problem, which is studied here, are essential to the quantization procedure [1]. We
adopt the geometric scheme proposed by Irving Segal for the quantization of nonlinear hyperbolic equations [1].
Though a description of this program is outside the scope of this paper, it will suffice to say that it involves the
construction of a distribution function D(x, x′), such that it solves equation (1) along with the initial conditions
D(x, x′)|t=a = 0 and ∂tD(x, x′)|t=a = δ(x − b) where we write x′ = (a, b). This function D(x, x′) directly allows
us to establish a symplectic structure upon the underlying classical manifold which is a starting point for the
quantization procedure. Though the ultimate objective of this study lies in the quantization, the solution and
properties of the classical problem are interesting in themselves and, we feel, merit independent attention. Also
note that though our problem is motivated primarily by the physics behind the equations, we choose to study the
problem in arbitrary n dimension since there is considerable interest in the physics community in some dimensions
greater than four.

In section 2 we discuss the origins of the perturbed wave equation. We argue here that the powers of the field
variables emerge in such a way as to make the field conformally invariant. This invariance property is discussed
in section 3. In the following section 4, we discuss the classical solution to equation (1) using a simple separation
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of variables argument and special properties of solutions are discussed in the case of even dimensions. Though a
closed form solution to this problem can be obtained without difficulty, the properties of the equation in different
dimensions are nontrivial. The main contribution of this paper lies in providing a solution to the central problem
by a recursive formula, for any even dimension. This allows us to generate the solution to the perturbed problem
in terms of the solution to the wave equation. The final section is devoted to the Cauchy problem for n = 2.
The discussion here is restricted to presenting the final result of the initial value problem; details are omitted due
to the tedious nature of the calculations. The more interesting, and perhaps complicated aspect of the problem,
namely, the quantization of the field and its behavior in the neighborhood of the singularity is reserved for future
study. At this stage, however, the paper remains more of mathematical interest. The above mentioned aspects
of the problem must be looked at before we can make comments on the physics behind the equations.

2. The Perturbed Wave Equation

The perturbed wave equation in n dimensions can be obtained from the Lagrangian density function of the form

L =
∫

(
1
2
gµν

∂ψ

∂xµ
∂ψ

∂xν
− k(n− 2)2

2
ψ

2n
n−2 )

√
det(g)dnx(2)

where k ∈ R+ and gµν is the metric tensor with the Lorentzian signature.
Applying the Euler-Lagrange condition to L yields the n-dimensional wave equation, namely

2ψ + kn(n− 2)ψ
n+2
n−2 = 0.(3)

The power of ψ here is chosen so that the field equation remains conformally invariant (see section 3). Now, we
choose λ to be a scalar and suppose that ψ

λ also satisfies the wave equation

2(
ψ

λ
) + kn(n− 2)(

ψ

λ
)

n+2
n−2 = 0.(4)
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Then, on multiplying by λ and choosing λ = k
n−2

4 equation (4) reduces to

2ψ + n(n− 2)ψ
n+2
n−2 = 0(5)

where we have managed to eliminate the constant k. It can be seen without difficulty that ψ0 = (1 + x2)
2−n

2

solves equation (5).
If we now let ψ = ψ0 + εφ, then the first order perturbation about this solution yields

2φ+
n(n+ 2)
(1 + x2)2

φ = 0(6)

which is the equation we shall attempt to solve in the following sections. Note that the dimensional dependence
of the wave equation appears in the potential term only in the form n(n+ 2).

It can be seen from the form of the Lagrangian that the problem is not well defined, as presented above, when
n = 2. The situation can be remedied by making a simple transformation to the Lagrangian density function, by
letting ψ = η

n−2
n+2 in equation (2) and dividing throughout by (n − 2)2. The variation of the resulting form of L

for n = 2 becomes

2χ+ 8
k

a
eaχ = 0(7)

where we set η = eaχ. It is readily verified that the solution to equation (7) is given by χ0 = − 2
a log(k + x2).

Therefore perturbing χ in the form χ = χ0 + εφ yields at o(ε),

2φ+
8k

(k + x2)2
φ = 0(8)

which, as can be seen is identical to equation (1) for n = 2 with k = 1.
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3. Conformal Invariance

In this section, we investigate the conformal invariance property of the equation (1) in curved space. It is a
well established result that 2ψ + (n−2)R

4(n−1) ψ is conformally invariant [5],[6], where R represents the curvature

term. Therefore it suffices, in our problem, to show that the term ψ
2n

n−2 is also invariant under conformal
transformations. A relatively simple argument for the invariance property of this term is presented. Consider the
Lagrangian function (for n 6= 1) in curved space given by

L =
∫ (

1
2
∂µψ∂µψ −

k(n− 2)2

2
ψ

2n
n−2 − (n− 2)R

8(n− 1)
ψ2

) √
det(g)dnx.(9)

If we let g → Ω2g and ψ → Ωαψ, where Ω is a smooth positive scalar field, then the relevant term

ψ
2n

n−2
√

det(g) → Ω
2nα
n−2ψ

2n
n−2 Ωn

√
det(g)

= Ω
2nα
n−2+nψ

2n
n−2

√
det(g)

= ψ
2n

n−2
√

det(g)

for α = 2−n
2 . Therefore for the appropriate choice of weight, α, the perturbed wave equation, originating from

equation (9), is conformally invariant. Hence for n = 4, for instance, α = −1.

4. Classical Solutions

4.1. Solution in n dimensions

Using separation of variables technique we can write

φ = Σkfk

(
− 1
R2

)
yk(x)(10)
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where
√
x · x = R is the radial term and yk(x) (the harmonic term) is a polynomial homogeneous in x of degree

k and which obeys the wave equation i.e. 2yk(x) = 0. Then yk must obey the following equation,

t∂tyk + x1∂x1yk + x2∂x2yk + ...+ xn−1∂xn−1yk = kyk

for each k (see property iii of the homogeneous operator in section 4.2). We impose the physical boundary
condition

limR→∞fk(−
1
R2

) = 0(11)

for each k. We also require that each term fk
(
− 1
R2

)
yk(x) in the expression above solve the differential equation

(1).

Substituting for φ in the perturbed equation we obtain the differential equation

4uf ′′k (u)− (2n− 8 + 4k)f ′k(u)−
n(n+ 2)
(1− u)2

fk(u) = 0(12)

where the prime here is used to indicate the derivative with respect to the variable u. We then let fk(u) =
(1− u)

n+2
2 gk(u). The result of this transformation is the differential equation,

g′′k +
(
−n+ 4− 2k
2u(1− u)

− n+ 8− 2k
2(1− u)

)
g′k −

(n+ 2)(2− k)
2u(1− u)

gk = 0(13)

after factoring out (1− u)1+
n
2 . We recognize this to be Gauss’ differential equation [2]

y′′ +
(

c

z(1− z)
− 1 + a+ b

(1− z)

)
y′ − ab

z(1− z)
y = 0,(14)

where a = 2 − k, b = n+2
2 , c = 2 − k − n

2 . Gauss’ differential equation is known to have twenty-four different
solution on the real line. These are also referred to as Kummer’s solutions and arise from various transformations
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of equation (14). In attempting to provide an integral representation of the solution, we note that [2]

g12(u) = (−u)n
2 (1− u)−1−nF [−n

2
, k − 1, k +

n

2
,
1
u

](15)

provides the appropriate solution to the equation (1). Hence retracing our steps we have

φ =
∫

0

1

p(tx)
(1− t)

n
2

t2
(t+ (

t− 1
1 + x2

))
n
2 dt,(16)

where p(x) =
∑
k yk(x). That φ is indeed a solution to the original equation (1) is verified in [4].

4.2. Solution in Even Dimensions

We observe here that the problem simplifies and reveals more interesting features when n is even. The special
results we obtain for the case of even dimensions is based on recognition of the fact that the solution to the
perturbed equation can be written in the form φ =

∑n
2
r=0 Pr(x)

1
(1+x2)r . This is proved in the Lemma below.

Lemma 1. The solution to equation (1) can be written in the form

φ =

n
2∑

r=0

Pr(x)
1

(1 + x2)r
(17)

where 2Pr(x) = 0 for every r ∈ [0, n2 ].

Proof. The solution to the perturbed equation is given by

φ =
∫ 1

0

p(tx)α
n
2

(1− t)
n
2

t2
dt(18)
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where p(tx) =
∑
k pk(tx), α = (t + 1−t

1+x2 ). Hence for n even, α is a polynomial. So using the Binomial Series
expansion we have

α
n
2 = t

n
2 (1 +

1− t

t(1 + x2)
)

n
2 = t

n
2

n
2∑

r=0

(n
2

r

)
(1− t)r

tr(1 + x2)r
(19)

where
(n

2
r

)
=

n
2 !

r!( n
2−r)!

, the binomial coefficient. Therefore

φ =

n
2∑

r=0

((n
2

r

) ∫ 1

0

p(tx)(1− t)
n
2 +rt

n
2−2−rdt

)
1

(1 + x2)r
=

n
2∑

r=0

Pr(x)
1

(1 + x2)r

where p(tx) satisfies the wave equation and therefore, so does Pr. �

Therefore, for n = 2, φ = P0 + P1ρ, where ρ = 1
(1+x2) , and for n = 4, φ = P0 + P1ρ + P2ρ

2 etc. This
representation is also valid for odd n, although in that case the above representation yields an infinite series. This
is not conducive to the kind of calculations that we perform below. In addition, even n suffices for our purposes
since our ultimate interest lies in the physically relevant dimension n = 4.

We will now show that the equation (1) can be solved directly by taking equation (17) as an ansatz and where
the coefficients Pr’s are, in fact, not independent but determined by a certain recursion relation and in addition,
also solve the wave equation. For sake of convenience we shall define the homogeneous operator H := x ·∇ which
has the following well known properties [3]:

(i) Hpn(x) = npn(x)
(ii) The commutation relation, [2,H] = 22, from which it follows that
(iii) 2Hy(x) = (H + 2)2y(x) .
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Theorem 1. The function Pr introduced in equation (17) obeys the following recursion relation:

Pr =
2(r + 1)[2H + (n− 2r − 4)]Pr+1

(n− 2r)(n+ 2r + 2)
(20)

Proof. Let us take φ as in equation (17). Then applying the box operator to both sides of the equation, with
the assumption that 2Pr = 0, yields

2φ =

n
2∑

r=0

[Pr (2ρr) + 2∇Pr · ∇ρr]

=

n
2∑

r=0

[((4r2 + 4r − 2nr)Pr − 4rHPr)ρr+1 − (4r2 + 4r)Prρr+2].

Hence the wave equation becomes

0 =

n
2∑

r=0

[((4r2 + 4r − 2nr)Pr − 4rHPr)ρr+1 − (4r2 + 4r − n2 − 2n)Prρr+2]

=

n
2−1∑
0

[2(r + 1)(2r + 4− n− 2H)Pr+1 − (4r2 + 4r − n2 − 2n)Pr]ρr+2.

So it is sufficient that we have

0 = 2(r + 1)[(2r + 4− n− 2H)Pr+1 − (4r2 + 4r − n2 − 2n)Pr]

⇒ (n− 2r)(n+ 2r + 2)
2(r + 1)

Pr = [2H + n− 2r − 4]Pr+1

from which the Theorem follows. �
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We will now verify by an induction argument that the equation (20) is consistent with the assumption that Pr
satisfies the wave equation.

Proposition 1. If Pn
2

obeys 2Pn
2

= 0 then 2Pr = 0 for any 0 ≤ r ≤ n
2 .

Proof. We prove the proposition by a reverse induction argument. It can be seen by concrete calculations that
2P1 = 0,2P2 = 0, etc. Let us assume that 2Pn

2
= 0. Then it can easily be shown that all Pr’s satisfy 2Pr = 0.

Starting from the above theorem, we write

Pr = a1[a2H + a3]Pr+1

where a1 = 2(r+1)
(n−2r)(n+2r+2) , a2 = 2 and a3 = n− 2r− 4. Therefore applying the box operator to both sides of the

equation gives us

2Pr = a12[a2H + a3]Pr+1

= a1a22HPr+1 + a1a32Pr+1

= [a1a2(H + 2) + a1a3]2Pr+1

where we have employed the second property of the homogeneous operator in the last equality. Using this last
recursion relation in r, it is easily seen that 2Pr must be zero for every 0 ≤ r ≤ n

2 . �

Table 1 provides examples, in different dimensions, of the recursion relationship obtained in equation (20).

4.3. Inverse Relations

To establish completeness, we must, in addition to the result of the previous section, also show that the mapping
F : Pn

2
→ φ is surjective. This can be affirmed by checking to see if we can invert the expression in equation

(17) above i.e. if we can write each of the Pr’s as a function of φ. In this section we shall discuss this inverse
relationship for certain specific dimensions. Table 2 summarizes the findings. At the outset, it must be stated
that calculations pertaining to inversion become extremely complex with increasing n. For this purpose results
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Dimension, n Relations

2 P0 = (H−1)P1
2

4 P0 = HP1
6

P1 = (H−1)P2
2

6 P0 = (H+1)P1
12

P1 = HP2
5

P2 = (H−1)P3
2

8 P0 = (H+2)P1
20

P1 = (H+1)P2
9

P2 = 3HP3
14

P3 = (H−1)P4
2

Table 1. The recursion relations for Pr.

are shown only up to n = 6, although, in principle, we can do so for any even dimension. We shall present our
calculations below for dimensions n = 2 and n = 4. However, unlike in section 4.2, we are unable to obtain a
general recursion formula in this case.
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1. Case n = 2

Lemma 2. The operator (H + 1)−1 exists.

Proof. We define

φk =
∫ 1

0

tkφ(tx)dt

where k ≥ 0 ensures convergence of the integral. Then,

Hφk =
∫ 1

0

tkx · ∇(φ(tx))dt =
∫ 1

0

tk+1 d

dt
(φ(tx))dt.(21)

Now integrating by parts we have

Hφk =
∫ 1

0

d

dt

[
tk+1φ(tx)

]
dt−

∫ 1

0

(k + 1)tkφ(tx)dt

=
∫ 1

0

d

dt

[
tk+1φ(tx)

]
dt− (k + 1)φk

⇒ (H + k + 1)φk = φ(x)
⇒ φk = (H + k + 1)−1φ(x).

The Lemma follows, since φ is well defined and from the definition of φk (by setting k = 0 in our case). �

Proposition 2. P0 and P1 are invertible and are given by

P0 = φ+ (H + 1)−1(−2ρφ)
P1 = ρ−1(H + 1)−1(2ρφ)
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Proof. We write the equation φ = P0 + ρP1 in the form

ρ−1φ = ρ−1P0 + P1.(22)

Applying the box operator to both sides of the above equation yields

2
(
ρ−1φ

)
= 2

(
ρ−1P0 + P1

)
= 2

(
ρ−1P0

)
Carrying the box operator through we have

LHS = 2(ρ−1)φ+ ρ−12(φ) + 2∇ρ−1∇φ = ρ−12φ+ 4(H + 1)φ
RHS = 2(ρ−1)P0 + ρ−12P0 + 2∇ρ−1∇P0 = 4(H + 1)P0.

Hence equating the two sides and simplifying we get

P0 = φ+ (H + 1)−1(−2ρφ)(23)

and hence it follows that

P1 = ρ−1(φ− P0) = ρ−1(H + 1)−1(2ρφ).

�

2. Case n = 4
We follow the same line of arguments as above for this case too.

Lemma 3. The operator (H + 2)−1(H + 3)−1 exists.

Proof. Let us define

φk =
∫ 1

0

tkφ(tx)dt

φk,m =
∫ 1

0

∫ 1

0

tksm (φ(stx)) dtds.
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Then

Hφk,m =
∫ 1

0

∫ 1

0

tksmH(φ(stx))dtds =
∫ 1

0

∫ 1

0

tk+1sm
d

dt
(φ(stx))dtds

using equation (21). Now integrating the right hand side of the last integral by parts we have

Hφk,m =
∫ 1

0

smφ(sx)ds− (k + 1)
∫ 1

0

∫ 1

0

tksm (φ(stx)) dtds

= φm − (k + 1)φk,m

by the definition above. Therefore on simplification

(H + k + 1)φk,m = φm

⇒ (H +m+ 1)(H + k + 1)φk,m = (H +m+ 1)φm = φ(x).

The last equality follows from Lemma 2. Note that φ is well defined and using the definitions of φk, φk,m above
it is clearly seen that the operator (H + 2)−1(H + 3)−1 exists (with k = 1 and m = 2). From the pattern of the
two Lemma’s above, it can be inferred that the Lemma can be generalized for any higher (even) dimension. �

Proposition 3. P0, P1and P2 are invertible and are given by

P0 = (H + 2)−1(H + 3)−1[(H + 2)(H + 3)φ− 6ρ(H + 1)φ]
P1 = (4H + 8)−1[ρ−18(H + 3)φ− 32φ− 8ρ−1(H + 3)P0 + 8P0]
P2 = ρ−2φ− ρ−2(φ− 6(H + 2)−1(H + 3)−1(ρ(H + 1)φ))

− ρ−1(4H + 8)−1[ρ−18(H + 3)φ− 32φ− 8ρ−1(H + 3)P0 + 8P0)]

Proof. We have
ρ−2φ = ρ−2P0 + ρ−2P1 + P2.(24)
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So

2(ρ−2φ) = 2(ρ−2P0 + ρ−2P1 + P2) = 2(ρ−2P0) + 2(ρ−2P1).

Simplifying the left and right hand sides of the last equation above separately,

LHS = (2ρ−2)φ+ ρ−22φ+ 2∇ρ−2∇φ = ρ−1(8H + 24)φ− 32φ
RHS = (2ρ−2)P0 + (2ρ−1)P1 + 2∇ρ−2∇P0 + 2∇ρ−2∇P1

= ρ−1(8H + 24)P0 + (4H + 8)P1 − 8P0.

Therefore
ρ−1(8H + 24)φ− 32φ = ρ−1(8H + 24)P0 + (4H + 8)P1 − 8P0.(25)

We now apply the box operator a second time on both sides to get

22(ρ−2φ) = 2(ρ−1(8H + 24)φ− 32φ)
= 24(2ρ−1)φ+ 24ρ−12φ+ 48∇ρ−1∇φ
= 32(H + 3)(H + 2)φ− 192ρ(H + 1)φ

22(ρ−2P0 + ρ−2P1 + P2) = 2(ρ−1(8H + 24)P0 + (4H + 8)P1 − 8P0)
= 24(2ρ−1)P0 + 48∇ρ−1∇P0 + 8(2ρ−1)HP0

+ 16∇ρ−1∇(HP0) = (32H2 + 160H + 192)P0.

So equating the left and right sides above we have

P0 = (H + 2)−1(H + 3)−1[(H + 2)(H + 3)φ− 6ρ(H + 1)φ](26)

and using equation (25) we obtain

P1 = (4H + 8)−1(ρ−1(8H + 24)φ− 32φ− ρ−1(8H + 24)P0 + 8P0)(27)

with P0 given as above. Similarly P2 can be obtained in terms of φ, P0 and P1 from equation (24). �
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Dimension, n Relations

2 P0 = φ + (H + 1)−1(−2ρφ)

P1 = ρ−1(H + 1)−1(2ρφ)

4 P0 = (H + 2)−1(H + 3)−1[(H + 2)(H + 3)φ− 6ρ(H + 1)φ]

P1 = (4H + 8)−1[ρ−18(H + 3)φ− 32φ− 8ρ−1(H + 3)P0 + 8P0]

P2 = ρ−2φ− ρ−2P0 − ρ−1P1

6 P0 = φ + (H + 4)−1(H + 3)−1(H + 2)−1[12ρ(H + 1)(H + 2)φ

+12ρ2(H − 2)φ + 24ρ3φ]

P1 = 18(H + 2)−1(H + 3)−1P0 + (H + 2)−1(H + 3)−1

[−3ρ−1(H + 3)(H + 4)P0 + 3ρ−1(H + 3)(H + 4)φ

−6(5H + 11)φ + 36ρφ]

P2 = (H + 2)−1[2P1 + 6ρ−1P0 − 2ρ−1(H + 3)P1 − 3ρ−2(H + 4)P0

+3ρ−2(H + 4)φ− 18ρ−1φ]

P3 = ρ−3φ− ρ−1P2 − ρ−2P1 − ρ−3P0

Table 2. Inverse Relations for Pr for different values of n.

5. Cauchy Problem

In this section we discuss the solution to the Initial Value Problem for equation (1). The primary motivation for
this attempt comes from Segal’s outline for quantization [1] which first requires us to obtain a fundamental solution
to the differential equation. However, the Cauchy problem is an interesting result in itself and an important aspect
of the classical discussion. Also, the discussion is restricted to the case n = 2 since the computations can be quite
complex in higher dimensions. However the technique used to solve the problem for n = 2 can be mimicked for
higher dimensions. It must also be stated that we solved the problem by analytic continuation into the Euclidean
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space [4]. The solution to the initial value problem for equation (1) in two dimensions is given by

φ =
φ(x− (t− a)) + φ(x+ (t− a))

2

− 2
∫ x−(t−a)

x+(t−a)

(t(1 + a2 + w2) + a(x2 − 2wx− t2 − 1))
(1 + x2 − t2)(1− a2 + w2)2

φ(w)dw

− 1
2

∫ x−(t−a)

x+(t−a)

(1− x2 + t2)(1 + a2 − w2)− 4at+ 4wx
(1 + x2 − t2)(1− a2 + w2)

ϕ(w)dw(28)

where φ(w) and ϕ(w) refer to the initial conditions, φ|t=a = φ(w) and ∂tφ|t=a = ϕ(w). It is easily verified
that φ, as given above satisfies the perturbed wave equation. The reader is referred to [4] for the proof. Notice
that the expression for φ above brings out the causal structure of the function, which is evaluated between the
points x− (t− a) and x+ (t− a).

1. Segal I. E., Quantization of Nonlinear Systems, Journal of Mathematical Physics, 1, Number 6 (1960), 468–488.
2. Slater L. J., Generalized Hypergeometric Functions, Cambridge University Press, 1966.
3. Tsien L. and Yunmei C., Global Classical Solutions for Nonlinear Evolution Equations, Longman Scientific and Technical, 1992.
4. Vaidya A., On the Classical and Quantized Solutions of the Perturbed Wave Equation with External Potential, M.S. Thesis,

Department of Mathematics, University of Pittsburgh, 1999.
5. Wald Robert M., General Relativity, University of Chicago Press, 1984.
6. Ward R. S. and Wells R. O., Twistor Geometry and Field Theory, Cambridge University Press, 1990.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A. Vaidya, 648 Benedum Hall, Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A.,

e-mail : axvst@pitt.edu

G. A. J. Sparling, 609 Thackeray Hall, Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A., e-mail :

sparling@math.pitt.edu


