A NOTE ON A MOORE BOUND FOR GRAPHS EMBEDDED IN SURFACES

J. ŠIAGIOVÁ AND R. SIMANJUNTAK

ABSTRACT. Based on a separator theorem for general surfaces we prove a Moore bound for graphs of given degree and diameter, embedded in a fixed surface.

The problem of determining the largest order (i.e., number of vertices) n(d, k) of a graph of maximum degree at most d and diameter at most k is well known as the *degree-diameter problem*. A spanning tree argument shows that $n(d, k) \leq M(d, k)$, where $M(d, k) = 1 + d + d(d-1) + \ldots d(d-1)^{k-1}$ is the *Moore bound*. In particular, for fixed k and $d \to \infty$ we have $n(d, k) < d^k$, and it is believed that d^k is the correct asymptotic order of n(d, k). More exactly, a conjecture of Bollobás [1] claims that for each $\delta > 0$ there exist d_0 and k_0 such that for all $d \geq d_0$ and $k \geq k_0$ we have $n(d, k) > (1 - \delta)d^k$. As of now the conjecture has been proved for $k \leq 3$ and k = 5only. For the current state of the degree-diameter problem we refer to a survey article by Miller and Širáň [6].

The degree-diameter problem has often been considered for restricted classes of graphs such as bipartite graphs, Cayley graphs, vertex-transitive graphs, and others. In this article we focus on the degree-diameter problem for graphs embeddable in a fixed surface. Here, by a *surface* we understand a compact, connected 2-manifold without boundary. The classification of surfaces is well known; they split into two classes according to orientability. Each orientable (nonorientable) surface is homeomorphic to a sphere with $g \ge 0$ handles ($h \ge 1$ crosscaps) attached; the *Euler genus* ε of a surface is $\varepsilon = 2g$ or $\varepsilon = h$, respectively.

Given a surface S, let $n_S(d, k)$ denote the maximum order of a graph of largest degree at most d and diameter at most k, embeddable in S. In the case when $S = S_0$ is a sphere, it was shown by Fellows, Hell and Seyffarth [**3**] that $n_{S_0}(d, k) < (6k+3)(2d^{\lfloor k/2 \rfloor}+1)$. On the other hand, for an arbitrary surface S and diameter k = 2, Knor and Širáň [**5**] proved that $n_S(d, 2) = \lfloor \frac{3}{2}d \rfloor + 1$ for $d \geq d_S$. The two striking features of this result are that it gives the exact value of $n_S(d, 2)$ for sufficiently large d, and this value does not depend on the surface at all.

In this note we extend the results of [3, 5] by presenting a general upper bound of asymptotic form $n_S(d,k) < C d^{\lfloor k/2 \rfloor}$, valid for all d, k and all surfaces S, where C depends on k and S. Consequently, Bollobás' conjecture cannot be proved by

Received September 19, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 05C10.

Key words and phrases. Graph, degree, diameter, surface, embedding.

considering graphs embeddable in a fixed surface. To prove the bound we use the idea of the proof of Corollary 14 of [3], which is a combination of a simple counting argument with a planar separator theorem of Lipton and Tarjan [7]. It turns out that it is sufficient to replace the planar separator theorem with the following analogous result for general surfaces.

Proposition 1. Let G be a graph of order n, cellularly embedded in a surface of Euler genus $\varepsilon > 0$. Let T be a spanning tree of G of radius r rooted at v. Then there exists a partition of V(G) into three subsets A, B, C, such that $|A|, |B| \leq \frac{2}{3}n$, $|C| \leq 2r(\varepsilon + 1) + 1$, $v \in C$, and there is no edge between A and B.

Proof. For orientable surfaces this result was proved by Gilbert, Hutchinson and Tarjan [4] and later by Djidjev [2]. It is widely acknowledged that the proof in [4] carries over to nonorientable surfaces. \Box

With this separator result it is easy to prove a Moore bound for graphs embeddable in general surfaces.

Theorem 1. Let G be a graph of order n, maximum degree $d \ge 3$, and diameter at most k, cellularly embedded in a surface of Euler genus ε . Then

$$n \le (6k(\varepsilon+1)+3) \ \frac{d((d-1)^{\lfloor k/2 \rfloor}-2)}{d-2}$$

Proof. Being of diameter at most k, the graph G contains a spanning tree of radius at most k, rooted at a vertex v. According to Proposition 1 with r = k (and Lemma 2 of [7] for $\varepsilon = 0$), there is a partition of V(G) into subsets A, B, C such that $|A|, |B| \leq \frac{2}{3}n, |C| \leq 2k(\varepsilon+1)+1$, with no edge between A and B. From this point on, one may exactly follow the proof of Corollary 14 in [3] to obtain the bound

$$|A| \le |C|(d+d(d-1)+\dots+d(d-1)^{\lfloor k/2 \rfloor - 1}) = |C| \frac{d((d-1)^{\lfloor k/2 \rfloor} - 1)}{d-2}.$$

Since $A = V(G) \setminus (B \cup C)$ and $|B| \leq \frac{2}{3}n$, $|C| \leq 2k(\varepsilon + 1) + 1$, it follows that $|A| \geq n - \frac{2}{3}n - (2k(\varepsilon + 1) + 1)$. Combining the last four inequalities and solving for n yields

$$n \le (6k(\varepsilon+1)+3) \ \frac{d((d-1)^{\lfloor k/2 \rfloor}-2)}{d-2}$$

which completes the proof.

Corollary 1. For $d \ge 3$, $k \ge 1$, and an arbitrary surface S of Euler genus ε we have

$$1 + \frac{d((d-1)^{\lfloor k/2 \rfloor} - 2)}{d-2} \le n_S(d,k) \le c_{S,k} \ \frac{d((d-1)^{\lfloor k/2 \rfloor} - 2)}{d-2} \ ,$$

where $c_{S,k} = 6k(\varepsilon + 1) + 3$.

Proof. The upper bound follows from the preceding theorem. The lower bound is obtained from the fact that a tree of radius $\lfloor k/2 \rfloor$, maximum degree d, and of order $1 + d + d(d - 1) + \cdots + d(d - 1)^{\lfloor k/2 \rfloor - 1}$, extended by ε suitable edges

joining some of the leaves, yields a graph of maximum degree d and diameter k that embeds (with a single face) on S.

This corollary suggests that it is worthwhile to study the limit

$$\lim_{d \to \infty} \frac{n_S(d,k)}{d^{\lfloor k/2 \rfloor}} \, .$$

If the limit exists then its value is between 1 and $c_{S,k} = 6k(\varepsilon + 1) + 3$; narrowing this gap is likely to be a hard problem.

Acknowledgment. The first author would like to acknowledge partial support from the VEGA grant No. 1/9176/02.

References

- 1. Bollobás B., Extremal graph theory, Academic Press, 1978.
- Djidjev H. N., A separator theorem for graphs of fixed genus, SERDICA Bulgariae Math. Pub. 11 (1985), 319–329.
- Fellows M., Hell P. and Seyffarth K., Large planar graphs with given diameter and maximum degree, Discrete Applied Mathematics 61 (1995), 133–153.
- Gilbert J. R., Hutchinson J. P. and Tarjan R. E., A Separator Theorem for Graphs of Bounded Genus, Journal of Algorithms 5 (1984), 391–407.
- Knor M. and Širáň J., Extremal graphs of diameter two and given maximum degree, embeddable in a fixed surface, Journal of Graph Theory 24 (1997), 1–8.
- 6. Miller M. and Širáň J., Moore graphs and beyond: A survey, Preprint (submitted).
- Lipton R. J. and Tarjan R. E., A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979), 177–189.

J. Šiagiová, Department of Mathematics, SvF, Slovak University of Technology, Radlinského 11, 813 68 Bratislava, Slovakia, *e-mail:* siagiova@math.sk

R. Simanjuntak, Mathematics Department, Institut Teknologi Bandung, Bandung 40132, Indonesia, *e-mail*: rino@dns.math.itb.ac.id