DISCRETE METHODS AND EXPONENTIAL DICHOTOMY OF SEMIGROUPS

A. L. SASU

Abstract. The aim of this paper is to characterize the uniform exponential dichotomy of semigroups of linear operators in terms of the solvability of discrete-time equations over \(\mathbb{N}\). We give necessary and sufficient conditions for uniform exponential dichotomy of a semigroup on a Banach space \(X\) in terms of the admissibility of the pair \((l^\infty(N, X), c_00(N, X))\). As an application we deduce that a \(C_0\)-semigroup is uniformly exponentially stable if and only if the pair \((C_b(R_+, X), C_00(R_+, X))\) is admissible for it and a certain subspace is closed and complemented in \(X\).

1. Introduction

In the last decades an impressive progress has been made in the study of the exponential dichotomy of evolution equations (see [1]–[5], [8]–[10], [12]–[14], [16], [18], [20]–[22], [24], [25], [27]). New methods have been involved in order to study classical and new concepts of exponential dichotomy. Evolution semigroups have proved to be very interesting tools in the study of the exponential dichotomy of evolution families and of linear skew-product flows (see [3], [8]–[10]). Another important method is the use of the discrete-time techniques (see [2], [4], [7], [8], [10], [13], [14], [25]).

Recent results concerning the exponential dichotomy of \(C_0\)-semigroups have been proved by Phóng in [24], where the author gives necessary and sufficient conditions for exponential dichotomy in terms of the unique solvability of an integral equation on \(BUC(R, X)\) and on \(APR(R, X)\), respectively.

Received January 16, 2004.

2000 Mathematics Subject Classification. Primary 34D05, 34D09.

Key words and phrases. Uniform exponential dichotomy, semigroup of linear operators.
The aim of this paper is to give necessary and sufficient conditions for exponential dichotomy of semigroups in terms of the solvability of a discrete-time equation on \mathbb{N}. We propose a direct approach for the characterization of the uniform exponential dichotomy of an exponentially bounded semigroup in terms of the admissibility of the pair $(l^\infty(\mathbb{N}, X), c_{00}(\mathbb{N}, X))$. As an application we obtain that a C_0-semigroup is uniformly exponentially dichotomic if and only if the pair $(C_b(\mathbb{R}_+, X), C_{00}(\mathbb{R}_+, X))$ is admissible for it and a certain subspace is closed and complemented in X.

2. Main results

Let X be a real or complex Banach space. The norm on X and on $\mathcal{B}(X)$-the Banach algebra of all bounded linear operators on X, will be denoted by $\| \cdot \|$.

Definition 2.1. A family $T = \{T(t)\}_{t \geq 0} \subset \mathcal{B}(X)$ is called *semigroup* if $T(0) = I$ and $T(t+s) = T(t)T(s)$, for all $t, s \geq 0$.

Definition 2.2. A semigroup $T = \{T(t)\}_{t \geq 0}$ is said to be:

(i) *exponentially bounded* if there are $M \geq 1$ and $\omega > 0$ such that $\|T(t)\| \leq Me^{\omega t}$, for all $t \geq 0$;

(ii) *C_0-semigroup* if $\lim_{t \downarrow 0} T(t)x = x$, for all $x \in X$.

Remark. Every C_0-semigroup is exponentially bounded (see [23]).

Definition 2.3. A semigroup $T = \{T(t)\}_{t \geq 0}$ is said to be *uniformly exponentially dichotomic* if there exist a projection $P \in \mathcal{B}(X)$ and two constants $K \geq 1$ and $\nu > 0$ such that:

(i) $T(t)P = PT(t)$, for all $t \geq 0$;

(ii) $T(t)| : \text{Ker } P \to \text{Ker } P$ is an isomorphism, for all $t \geq 0$;

(iii) $\|T(t)x\| \leq Ke^{-\nu t}\|x\|$, for all $x \in \text{Im } P$ and all $t \geq 0$;

(iv) $\|T(t)x\| \geq \frac{1}{K}e^{\nu t}\|x\|$, for all $x \in \text{Ker } P$ and all $t \geq 0$.
Definition 2.4. Let \(T = \{T(t)\}_{t \geq 0} \) be a semigroup on the Banach space \(X \) and let \(Y \) be a linear subspace of \(X \). \(Y \) is said to be \(T \)-invariant if \(T(t)Y \subset Y \), for all \(t \geq 0 \).

Lemma 2.5. Let \(T = \{T(t)\}_{t \geq 0} \) be an exponentially bounded semigroup on the Banach space \(X \) and let \(Y \) be a \(T \)-invariant subspace. The following assertions are equivalent:

(i) there are \(K \geq 1 \) and \(\nu > 0 \) such that:

\[
\|T(t)x\| \leq Ke^{-\nu t}\|x\|, \quad \forall t \geq 0, \forall x \in Y;
\]

(ii) there are \(t_0 > 0 \) and \(c \in (0,1) \) such that \(\|T(t_0)x\| \leq c\|x\|, \forall x \in Y \).

Proof. It is a simple exercise. \(\square \)

Lemma 2.6. Let \(T = \{T(t)\}_{t \geq 0} \) be an exponentially bounded semigroup on the Banach space \(X \) and let \(Y \) be a \(T \)-invariant subspace. The following assertions are equivalent:

(i) there are \(K \geq 1 \) and \(\nu > 0 \) such that:

\[
\|T(t)x\| \geq \frac{1}{K} e^{\nu t}\|x\|, \quad \forall t \geq 0, \forall x \in Y;
\]

(ii) there are \(t_0 > 0 \) and \(c > 1 \) such that \(\|T(t_0)x\| \geq c\|x\|, \forall x \in Y \).

Proof. It is a trivial exercise. \(\square \)

We denote by

\[
l^{\infty}(\mathbb{N}, X) = \{s : \mathbb{N} \to X : \sup_{n \in \mathbb{N}} \|s(n)\| < \infty\}
\]

\[
c_0(\mathbb{N}, X) = \{s : \mathbb{N} \to X : \lim_{n \to \infty} s(n) = 0\}
\]

and by \(c_{00}(\mathbb{N}, X) = \{s \in c_0(\mathbb{N}, X) : s(0) = 0\} \). With respect to the norm \(\|s\| = \sup_{n \in \mathbb{N}} \|s(n)\| \), these spaces are Banach spaces.
Let $T = \{ T(t) \}_{t \geq 0}$ be an exponentially bounded semigroup on X. We consider the discrete-time equation:

$$(Ed) \quad \gamma(n + 1) = T(1)\gamma(n) + s(n + 1), \quad n \in \mathbb{N}$$

with $\gamma \in l^\infty(\mathbb{N}, X)$ and $s \in c_{00}(\mathbb{N}, X)$.

Definition 2.7. We say that the pair $(l^\infty(\mathbb{N}, X), c_{00}(\mathbb{N}, X))$ is *admissible* for T if for every $s \in c_{00}(\mathbb{N}, X)$ there is $\gamma \in l^\infty(\mathbb{N}, X)$ such that the pair (γ, s) verifies the equation (Ed).

In what follows we shall establish the connection between the uniform exponential dichotomy and the admis-
sibility of the pair $(l^\infty(\mathbb{N}, X), c_{00}(\mathbb{N}, X))$.

We consider the linear subspace

$$X_1 = \{ x \in X : \sup_{t \geq 0} \| T(t)x \| < \infty \}.$$

Throughout this paper, we suppose that X_1 is a closed linear subspace which has a T-invariant (closed) comple-
ment X_2 such that $X = X_1 \oplus X_2$. We denote by P the projection corresponding to the above decomposition, i.e. $\text{Im} P = X_1$ and $\text{Ker} P = X_2$.

Remark. $T(t)P = PT(t)$, for all $t \geq 0$.

Remark. If $s_1, s_2 \in c_{00}(\mathbb{N}, X)$ and $\gamma \in l^\infty(\mathbb{N}, X)$ such that the pairs (γ, s_1) and (γ, s_2) verify the equation (Ed), then $s_1 = s_2$.

Hence it makes sense to define the linear subspace

$$D(H) = \{ \gamma \in l^\infty(\mathbb{N}, X) : \exists s \in c_{00}(\mathbb{N}, X) \text{ such that } (\gamma, s) \text{ satisfies } (Ed) \}$$

and the linear operator $H : D(H) \to c_{00}(\mathbb{N}, X), H\gamma = s$.

Remark. H is a closed linear operator and $\text{Ker} H = \{ \gamma : \gamma(n) = T(n)\gamma(0) \text{ and } \gamma(0) \in \text{Im} P \}$.

We consider the linear subspace $\tilde{D}(H) = \{ \gamma \in D(H) : \gamma(0) \in \text{Ker} P \}$.
Proposition 2.8. If the pair \((l^\infty(N, X), c_{00}(N, X))\) is admissible for \(T\), then

(i) there is \(\nu \in (0, 1)\) such that \(\|H\gamma\| \geq \nu \|\gamma\|\), for all \(\gamma \in \tilde{D}(H)\);

(ii) for every \(t \geq 0\), the restriction \(T(t) : \text{Ker } P \to \text{Ker } P\) is an isomorphism.

Proof. (i) It is easy to see that the restriction \(H| : \tilde{D}(H) \to c_{00}(N, X)\) is bijective. Considering the graph norm \(\|\gamma\|_H = \|\gamma\| + \|H\gamma\|\) on \(\tilde{D}(H)\), we have that \((\tilde{D}(H), \|\cdot\|_H)\) is a Banach space and hence there is \(\nu \in (0, 1)\) such that

\[\|H\gamma\| \geq \nu \|\gamma\|, \quad \forall \gamma \in \tilde{D}(H)\]

which completes the proof of (i).

(ii) It is sufficient to show that \(T(1) : \text{Ker } P \to \text{Ker } P\) is an isomorphism. Let \(x \in \text{Ker } P\) and \(s, \gamma : N \to X\) given by

\[s(n) = \begin{cases} -T(1)x, & n = 1 \\ 0, & n \neq 1 \end{cases} \quad \gamma(n) = \begin{cases} x, & n = 0 \\ 0, & n \in \mathbb{N}^*. \end{cases}\]

It is easy to see that the pair \((\gamma, s)\) verifies the equation \((E_d)\). Since \(\gamma(0) \in \text{Ker } P\), from (i) we obtain that

\[\|T(1)x\| = \|s\| \geq \nu \|\gamma\| = \nu \|x\|, \quad (2.1)\]

Since \(\nu\) does not depend on \(x\), from (2.1) we deduce that \(T(1)|\) is injective.

Let \(x \in \text{Ker } P\) and

\[s : N \to X, \quad s(n) = \begin{cases} -x, & n = 1 \\ 0, & n \neq 1. \end{cases}\]

From hypothesis there is \(\gamma \in l^\infty(N, X)\) such that the pair \((\gamma, s)\) verifies the equation \((E_d)\). Then, we have that \(\gamma(n) = T(n)\gamma(1), \quad \forall n \geq 2\), which shows that \(\gamma(1) \in X_1 = \text{Im } P\).

Let \(x_1 \in \text{Im } P\) and \(x_2 \in \text{Ker } P\) such that \(\gamma(0) = x_1 + x_2\). Since \(\gamma(1) = T(1)\gamma(0) - x\), we obtain that \(\gamma(1) - T(1)x_1 = T(1)x_2 - x\), so \(x = T(1)x_2\). This shows that \(T(1)| : \text{Ker } P \to \text{Ker } P\) is surjective, which completes the proof. \(\square\)
Theorem 2.9. If the pair \((l^\infty(N, X), c_{00}(N, X))\) is admissible for the semigroup \(T = \{T(t)\}_{t \geq 0}\), then there exist \(K \geq 1\) and \(\nu > 0\) such that
\[
\|T(t)x\| \leq Ke^{-\nu t}\|x\|, \quad \forall t \geq 0, \forall x \in \text{Im } P.
\]

Proof. By Proposition 2.8 (i), there is \(\nu \in (0, 1)\) such that
\[
|||H\gamma||| \geq 2\nu |||\gamma|||, \quad \forall \gamma \in \tilde{D}(H).
\]
(2.2)

Let \(p \in N, \ p \geq 2\) be such that \(\nu e^{\nu(p-1)} \geq \|T(1)\|\).

Let \(x \in \text{Im } P \setminus \{0\}\) and \(\Delta_x = \{n \in N : T(n)x \neq 0\}\). We have the following situations:

1. \(\{0, \ldots, p\} \subset \Delta_x\). Define the sequences \(s, \gamma : N \to X\) by

\[
s(n) = \frac{\chi_{\{1, \ldots, p\}}(n)}{\|T(n)x\|} T(n)x \quad \gamma(n) = \sum_{k=0}^{n} \frac{\chi_{\{1, \ldots, p\}}(k)}{\|T(k)x\|} T(n)x
\]

where \(\chi_{\{1, \ldots, p\}}\) denotes the characteristic function of the set \(\{1, \ldots, p\}\). Then \(s \in c_{00}(N, X)\) and since \(x \in \text{Im } P\), it follows that \(\gamma \in l^\infty(N, X)\). It is easy to see that the pair \((\gamma, s)\) verifies the equation \((E_d)\). Since \(\gamma(0) = 0\) we have that \(\gamma \in \tilde{D}(H)\). Then, from relation (2.2) we have that

\[
1 = |||s||| = |||H\gamma||| \geq 2\nu |||\gamma|||.
\]

This inequality shows that

\[
2\nu \sum_{j=1}^{k} \frac{1}{\|T(j)x\|} \leq \frac{1}{\|T(k)x\|}, \quad \forall k \in \{1, \ldots, p\}.
\]
(2.3)

Let

\[
\delta(k) = \sum_{j=1}^{k} \frac{1}{\|T(j)x\|}, \quad k \in \{1, \ldots, p\}.
\]
If \(k \in \{2, \ldots, p\} \), then
\[
\frac{1}{\|T(k)x\|} \geq 2\nu \delta(k - 1) \geq (e^\nu - 1)\delta(k - 1)
\]
so \(\delta(k) \geq e^\nu \delta(k - 1) \). It follows that
\[
(2.4) \quad \frac{1}{\|T(p)x\|} \geq 2\nu \delta(p) \geq 2\nu e^\nu(p-1)\delta(1) = \frac{2\nu e^\nu(p-1)}{\|T(1)x\|}.
\]
By relation (2.4) we obtain that
\[
\|T(p)x\| \leq \frac{\|T(1)x\|}{2\nu e^\nu(p-1)} \leq \frac{1}{2} \|x\|.
\]

2. \(p \notin \Delta_x \). Then \(T(p)x = 0 \).
It follows that
\[
(2.5) \quad \|T(p)x\| \leq \frac{1}{2} \|x\|, \quad \forall x \in \text{Im } P.
\]
By relation (2.5) and Lemma 2.5 we conclude the proof.

\textbf{Theorem 2.10.} If the pair \((l^\infty(N, X), c_00(N, X))\) is admissible for the semigroup \(T = \{T(t)\}_{t \geq 0} \), then there are \(K \geq 1 \) and \(\nu > 0 \) such that
\[
\|T(t)x\| \geq \frac{1}{K} e^{\nu t} \|x\|, \quad \forall t \geq 0, \forall x \in \text{Ker } P.
\]

\textit{Proof.} By Proposition 2.8 (i) there exists \(\nu \in (0, 1) \) such that
\[
\|H\gamma\| \geq \nu \|\gamma\|, \quad \forall \gamma \in \tilde{D}(H).
\]
Let \(x \in \text{Ker } P \setminus \{0\} \). By Proposition 2.8 (ii) we deduce that \(T(n)x \neq 0 \), for all \(n \in \mathbb{N} \).
For every $p \in \mathbb{N}^*$, we consider the sequences
\[s_p : \mathbb{N} \to X, \quad s_p(n) = -\frac{X\{1,\ldots,p\}(n)}{\|T(n)x\|} T(n)x \]
\[\gamma_p : \mathbb{N} \to X, \quad \gamma_p(n) = \sum_{k=n+1}^{\infty} \frac{X\{1,\ldots,p\}(k)}{\|T(k)x\|} T(n)x. \]

Then $s_p \in c_{00}(\mathbb{N}, X)$ and $\gamma_p \in l^\infty(\mathbb{N}, X)$. Moreover, since
\[\gamma_p(0) = \left(\sum_{k=1}^{p} \frac{1}{\|T(k)x\|} \right) x \in \text{Ker } P \]
we deduce that $\gamma_p \in \hat{D}(H)$. It is easy to see that the pair (γ_p, s_p) verifies the equation (E_d), so
\[1 = \|s_p\| = \|H\gamma_p\| \geq \nu \|\gamma_p\|, \quad \forall p \in \mathbb{N}^*. \]

It follows that
\[\nu \sum_{k=n+1}^{p} \frac{1}{\|T(k)x\|} \leq \frac{1}{\|T(n)x\|}, \quad \forall n, p \in \mathbb{N}, n < p. \tag{2.6} \]

By relation (2.6) we obtain that
\[\nu \sum_{k=n+1}^{\infty} \frac{1}{\|T(k)x\|} \leq \frac{1}{\|T(n)x\|}, \quad \forall n \in \mathbb{N}. \tag{2.7} \]

From (2.7) we have that
\[\sum_{k=n}^{\infty} \frac{1}{\|T(k)x\|} \geq (\nu + 1) \sum_{k=n+1}^{\infty} \frac{1}{\|T(k)x\|}, \quad \forall n \in \mathbb{N}. \tag{2.8} \]
Let $n \in \mathbb{N}^*$ such that $c = \nu(1 + \nu)^n > 1$. By relations (2.7) and (2.8) we deduce that

$$\frac{1}{\|x\|} \geq \nu \sum_{k=1}^{\infty} \frac{1}{\|T(k)x\|} \geq \nu(1 + \nu)^n \sum_{k=n+1}^{\infty} \frac{1}{\|T(k)x\|} \geq \frac{c}{\|T(n + 1)x\|}.$$

It follows that $\|T(n + 1)x\| \geq c\|x\|$. Taking into account that n and c do not depend on x, we obtain that

$$\|T(n + 1)x\| \geq c\|x\|, \quad \forall x \in \text{Ker } P.$$

Then, from Lemma 2.6 we deduce the conclusion. \hfill \Box

Lemma 2.11. Let $T = \{T(t)\}_{t \geq 0}$ be a semigroup on the Banach space X. If T is uniformly exponentially dichotomic relative to the projection P, then $X_1 = \text{Im } P$.

Proof. Obviously $\text{Im } P \subset X_1$. Let K, ν be given by Definition 2.2. If $x \in X_1$, then from

$$\|x - Px\| \leq Ke^{-\nu t}\|T(t)(I - P)x\|$$

$$\leq Ke^{-\nu t}(\|T(t)x\| + Ke^{-\nu t}\|Px\|), \quad \forall t \geq 0$$

we obtain that $x \in \text{Im } P$. So $\text{Im } P = X_1$. \hfill \Box

The main result of this section is given by:

Theorem 2.12. An exponentially bounded semigroup $T = \{T(t)\}_{t \geq 0}$ is uniformly exponentially dichotomic if and only if the following statements hold:

(i) the pair $(l^\infty(\mathbb{N}, X), c_{00}(\mathbb{N}, X))$ is admissible for T;
(ii) the subspace X_1 is closed and it has a T-invariant complement.
Proof. Necessity. Let P be given by Definition 2.2. If $s \in c_{00}(\mathbb{N}, X)$, consider the sequence $\gamma : \mathbb{N} \to X$ defined by

$$
\gamma(n) = \sum_{k=0}^{n} T(n-k)Ps(k) - \sum_{k=n+1}^{\infty} T(k-n)^{-1}(I-P)s(k)
$$

where $T(k)^{-1}$ denotes the inverse of the operator $T(k)_1 : \text{Ker} P \to \text{Ker} P$. Then $\gamma \in l^\infty(\mathbb{N}, X)$ and the pair (γ, s) verifies the equation (E_d). It follows that the pair $(l^\infty(\mathbb{N}, X), c_{00}(\mathbb{N}, X))$ is admissible for T.

From Lemma 2.11 we deduce that $X_1 = \text{Im} P$. It follows that X_1 is closed and it has a complement $\text{Ker} P$ which is T-invariant.

Sufficiency. It results from Proposition 2.8, Theorem 2.9 and Theorem 2.10. \square

3. Applications for the case of C_0-semigroups

Let X be a Banach space. We denote by $C_b(\mathbb{R}_+, X)$ the space of all bounded continuous functions $v : \mathbb{R}_+ \to X$ and by $C_{00}(\mathbb{R}_+, X) = \{ v \in C_b(\mathbb{R}_+, X) : v(0) = \lim_{t \to \infty} v(t) = 0 \}$.

Let $T = \{ T(t) \}_{t \geq 0}$ be a C_0-semigroup on X. We consider the integral equation

$$(Ec) \quad f(t) = T(t-s)f(s) + \int_{s}^{t} T(t-\tau)v(\tau) \, d\tau, \quad \forall t \geq s \geq 0$$

with $f \in C_b(\mathbb{R}_+, X)$ and $v \in C_{00}(\mathbb{R}_+, X)$.

Definition 3.1. The pair $(C_b(\mathbb{R}_+, X), C_{00}(\mathbb{R}_+, X))$ is said to be admissible for T if for every $v \in C_{00}(\mathbb{R}_+, X)$ there is $f \in C_b(\mathbb{R}_+, X)$ such that the pair (f, v) verifies the equation (Ec).

The central result of this section is:

Theorem 3.2. The C_0-semigroup $T = \{ T(t) \}_{t \geq 0}$ is uniformly exponentially dichotomic if and only if
(i) the pair \((C_b(\mathbb{R}_+, X), C_{00}(\mathbb{R}_+, X))\) is admissible for \(T\);
(ii) the subspace \(X_1\) is closed and it has a \(T\)-invariant complement.

Proof. Necessity. For \(v \in C_{00}(\mathbb{R}_+, X)\), we consider the function \(f : \mathbb{R}_+ \to X\) defined by

\[
f(t) = \int_0^t T(t - s)Pv(s) \, ds - \int_t^\infty T(s - t)^{-1}(I - P)v(s) \, ds
\]

where \(T(s)^{-1}\) denotes the inverse of the operator \(T(s) : \text{Ker } P \to \text{Ker } P\). It is easy to see that \(f \in C_b(\mathbb{R}_+, X)\) and the pair \((f, v)\) verifies the equation \((E_c)\), so the pair \((C_b(\mathbb{R}_+, X), C_{00}(\mathbb{R}_+, X))\) is admissible for \(T\). From Lemma 2.11 we deduce that \(X_1 = \text{Im } P\), so it is closed and it has a complement – \(\text{Ker } P\) – which is \(T\)-invariant.

Sufficiency. Let \(\alpha : [0, 1] \to [0, 2]\) be a continuous function with the support contained in \((0, 1)\) and \(\int_0^1 \alpha(\tau) \, d\tau = 1\). For \(s \in c_{00}(\mathbb{N}, X)\) we consider the function

\[v : \mathbb{R}_+ \to X, \quad v(t) = T(t - \lfloor t \rfloor)s(\lfloor t \rfloor)\alpha(t - \lfloor t \rfloor).\]

Then \(v\) is continuous and \(v(0) = 0\). Moreover, if \(M \geq 1\) and \(\omega > 0\) are chosen such that \(\|T(t)\| \leq Me^{\omega t}\), for all \(t \geq 0\), then we have \(\|v(t)\| \leq 2Me^{\omega t}\|s(\lfloor t \rfloor)\|\), for all \(t \geq 0\), so \(v \in C_{00}(\mathbb{R}_+, X)\). By hypothesis, there is \(f \in C_b(\mathbb{R}_+, X)\) such that

\[
f(t) = T(t - s)f(s) + \int_s^t T(t - \tau)v(\tau) \, d\tau, \quad \forall t \geq s \geq 0.
\]

Then, for every \(n \in \mathbb{N}\), we obtain that

\[
f(n + 1) = T(1)f(n) + \int_n^{n+1} T(n + 1 - \tau)v(\tau) \, d\tau
\]

\[
= T(1)f(n) + T(1)s(n).
\]
Denoting by $\gamma(n) = f(n) + s(n)$, for all $n \in \mathbb{N}$, from (3.1) we deduce that

$$\gamma(n + 1) = T(1)\gamma(n) + s(n + 1), \quad \forall n \in \mathbb{N}$$

so the pair (γ, s) verifies the equation (E_d). Since $s \in c_{00}(\mathbb{N}, X)$ and $f \in C_b(\mathbb{R}^+, X)$, it follows that $\gamma \in l^\infty(\mathbb{N}, X)$. So the pair $(l^\infty(\mathbb{N}, X), c_{00}(\mathbb{N}, X))$ is admissible for T. By Theorem 2.12 we obtain the conclusion. □

16. _____, *Perron conditions for pointwise and global exponential dichotomy of linear skew-product flows*, accepted for publication in Integral Equations Operator Theory.

21. _____, *Exponential dichotomies, the shadowing lemma and transversal homoclinic points*, Dynamics reported 1 (1988), 265–306.

A. L. Sasu, Faculty of Mathematics and Computer Science, West University of Timişoara, Romania, e-mail: sasu@math.uvt.ro, lbsasu@yahoo.com, http://www.math.uvt.ro/alsasu