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A NUMBER-THEORETIC CONJECTURE AND ITS
IMPLICATION FOR SET THEORY

L. HALBEISEN

Abstract. For any set S let
∣∣ seq1-1(S)

∣∣ denote the cardinality of the set of all finite

one-to-one sequences that can be formed from S, and for positive integers a let
∣∣aS

∣∣
denote the cardinality of all functions from S to a. Using a result from combinatorial
number theory, Halbeisen and Shelah have shown that even in the absence of the
axiom of choice, for infinite sets S one always has

∣∣ seq1-1(S)
∣∣ �= ∣∣2S

∣∣ (but nothing
more can be proved without the aid of the axiom of choice). Combining stronger
number-theoretic results with the combinatorial proof for a = 2, it will be shown
that for most positive integers a one can prove the inequality

∣∣ seq1-1(S)
∣∣ �= ∣∣aS

∣∣
without using any form of the axiom of choice. Moreover, it is shown that a very
probable number-theoretic conjecture implies that this inequality holds for every
positive integer a in any model of set theory.

1. Motivation

It was proved in [3, Theorem 4] that for any set S with more than one element,
the cardinality

∣∣ seq1-1(S)
∣∣ of the set of all finite one-to-one sequences that can be

formed from S can never be equal to the cardinality of the power set of S, denoted
by

∣∣2S
∣∣. The proof does not make use of any form of the axiom of choice and

hence, the result also holds in models of set theory where the axiom of choice fails.
Moreover, in the absence of the axiom of choice,

∣∣ seq1-1(S)
∣∣ �= ∣∣2S

∣∣ is all one can
prove about the relation between these two cardinalities. In other words, for each of
the statements

∣∣ seq1-1(S)
∣∣ <

∣∣2S
∣∣, ∣∣ seq1-1(S)

∣∣ >
∣∣2S

∣∣, and
∣∣ seq1-1(S)

∣∣ incomparable
to

∣∣2S
∣∣, there are models of Zermelo-Fraenkel’s set theory without the axiom of

choice in which the statement is true (cf. [4, §9]). However, in the presence of the
axiom of choice, for any infinite set S we always have

∣∣ seq1-1(S)
∣∣ <

∣∣2S
∣∣. Now, it

is natural to ask whether the power set of S, which can be identified by the set of
all functions from S to 2, can be replaced by a possibly larger set, namely the set
of all functions from S to some integer a > 2, where a = {0, 1, . . . , a − 1}. Again,
in the presence of the axiom of choice, for any infinite set S and for any integer
a ≥ 2 we have

∣∣2S
∣∣ =

∣∣aS
∣∣. On the other hand, it is not difficult to show that for
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example in the ordered Mostowski permutation model (cf. [4, §7.2]) the infinite
set of atoms (or urelements) U satisfies

∣∣aU
∣∣ <

∣∣bU
∣∣ whenever a < b. Moreover,

one can even show that in this model we have
∣∣ seq1-1(U)

∣∣ >
∣∣aU

∣∣ (for each positive
integer a), but

∣∣ seq1-1(U)
∣∣ <

∣∣ ⋃∞
a=1 aU

∣∣. Turning back to our problem we may
ask if it is provable without the aid of the axiom of choice that for any infinite
set S and for every integer a ≥ 2 we always have

∣∣ seq1-1(S)
∣∣ �= ∣∣aS

∣∣. The proof
in [3] for the case of a = 2 uses a purely number-theoretic result which can be
generalized to a large class of numbers a and it is very likely that it holds for all
integers a ≥ 2.

The aim of this paper is to state and give evidence for a number-theoretic
conjecture which implies that for any infinite set S and for every integer a ≥ 2,∣∣ seq1-1(S)

∣∣ �= ∣∣aS
∣∣.

2. The Shadow of A000522

In the sequel we present some number-theoretic results of a combinatorial integer
sequence. The sequence we are interested in has identification number A000522
in Sloane’s On-Line Encyclopedia of Integer Sequences [5]. For any non-negative
integer n, let n� be the number of one-to-one sequences (i.e., sequences without
repetitions) we can build with n distinct objects. It is not difficult to verify that

n� =
n∑

k=0

(
n

k

)
k! =

n∑
j=0

n!
j!

,

and that for all positive integers n we have n� = �en!�, where �x� denotes the
integer part of a real number x and e is the Euler number. In particular, 0� = 1
and n� = n · (n − 1)� + 1, which implies that

n� = e
∫ ∞

1

tn e−tdt .

The first few numbers of the integer sequence n� are 0� = 1, 1� = 2, 2� = 5,
3� = 16, 4� = 65, 5� = 326, and further we get e.g., 100� ≈ 2.53687 · 10158 and
256� ≈ 2.33179 · 10507.

Let us now recall some results of [1]: For each positive integer a, an easy
calculation modulo a shows that for all non-negative integers n we have n� ≡
(n + a)� mod a. In particular, if a | n�, then a | (n + a)�.
The shadow d(a) of a positive integer a is being defined by stipulating

d(a) := |D(a)| , where D(a) :=
{
n < a : a | n�

}
.

The shadow d(a) counts the sequence entries 0�, 1�, 2�, . . . , (a − 1)� which are di-
visible by a. As an easy consequence we get the following (cf. [1, Corollary 11]):

Fact 2.1. If d(a) is the shadow of some positive integer a and
∏j

i=1 pki
i is the

prime decomposition of a, then d(a) =
∏j

i=1 d(pki
i ).

Therefore, the shadow d(a) of any positive integer a is fully determined by its
values on the powers of prime numbers. Further we have that for all positive
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integers a,

all elements m ∈ D(ak+1) must be of the form m = n + l ak,

where n ∈ D(ak) and l ∈ {0, 1, . . . , a − 1}. Hence, we get inductively that if
d(a) = 0, then d(ak) = 0 for all positive integers k, and a positive integer a with
d(a) = 0 is called annihilating. An integer a ≥ 2 is annihilating if and only if a
is a multiple of some annihilating prime number, and the sequence of annihilating
primes starts with 3, 7, 11, 17, 47, 53, 61, 67, 73, 79, 89, 101, 139, 151, 157, 191,
199, . . .

What can we say about non-annihilating numbers? For example is it the case
that for all positive integers k we have d(a) = d(ak) ? To answer this question, let
us repeat the calculation carried out in [1, p. 144]. For positive integers a, h, k, l, n,
where h ≤ k and a ≥ 2, we have the following:

(n + lak)
�

=
lak+n∑
j=0

(l ak + n)!
j!

=
lak−1∑
j=0

(l ak + n)!
j!

+
l ak+n∑
j=lak

(l ak + n)!
j!

=
(l ak + n))!
(l ak − 1)!

(l ak − 1)
�

+
lak+n∑
j=lak

(l ak + n)!
j!

≡ l ak n! (l ak − 1)
�

+
lak+n∑
j=lak

(l ak + n)!
j!

mod ak+h

≡ l ak n! (l ak − 1)
�

+ n� + l ak
n−1∑
j=0

n∑
i>j

n!
j! i

mod ak+h

≡ n� + l ak

(
n! (l ak − 1)

�
+

n∑
i=1

i−1∑
j=0

n!
j! i

)
mod ak+h

≡ n� + l ak

(
n! (ah − 1)

�
+

n−1∑
j=0

n!
(j + 1)!

j�

)
︸ ︷︷ ︸

=: sah,n

mod ak+h(∗)

As a consequence of (∗) we get that if ak | n� and ak+1 � n� (where a ≥ 2 and
k ≥ 1), then ak+1 | (n + lak)� if and only if (n�/ak) + l sa,n ≡ 0 mod a. In
particular, if a is prime, ak | n�, and sa,n �≡ 0 mod a, then there is a unique
l ∈ {1, . . . , a} such that ak+1 | (n + lak)�. This leads to the following definition:

Let

X(a) :=
∏

n∈D(a)

Mod(sa,n, a) ,
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where Mod(a, b) denotes the reminder of the division of a by b and

sa,n := n! (a − 1)� +
n−1∑
j=0

n!
(j + 1)!

j� .

An integer a ≥ 2 with X(a) �= 0 is called regular, otherwise it is called irregular.
Since the empty product is by definition equal to 1, all annihilating numbers

are regular. The following fact, which is Lemma 15 and Proposition 16 of [1], gives
a connection between the shadow d(a) of an integer a ≥ 2 and its regularity:

Fact 2.2. (i) An integer a ≥ 2 is regular if and only if for all positive integers
k we have d(ak) = d(a).
(ii) If d(a) is the shadow of some positive integer a and

∏j
i=1 pki

i is the prime
decomposition of a, then

d(a) =
j∏

i=1

d(pi) ,

provided each prime pi is regular or one of the primes is annihilating. In particular,
an integer a ≥ 2 is regular if and only if each prime pi is regular or one of the
primes is annihilating.

The smallest irregular prime is 383, and indeed, d(383) = 3 but for all k ≥ 2 we
have d(383k) = 2, so, 3832 is regular. All other primes smaller than ten millions
are regular. However, motivated by statistical observations it was conjectured in
[1, Section 4] that the expected value for the number of irregular primes below
some integer n is asymptotically

c ·
∑
p≤n

p prime

1
p

,

where c ≈ 0.9 is constant. We also like to mention that similar arguments support
the conjecture made in [2] that there are infinitely many primes p, such that
2p−1 ≡ 1 mod p2. These primes seem to have the same distribution type as
irregular primes, which makes them equally difficult to find. In the next section
we will use similar heuristic arguments to support Conjectures A, B, and C below.

3. Statistical Investigations

3.1. The random behaviour of n� and D(a)

A positive regular integer a is called 1-regular if d(a) ≤ 1. Since 1-regular numbers
play an important role in Theorem 5.2, let us first investigate the distribution of
1-regular numbers.
As a consequence of Fact 2.2 and (∗) we get the following:

Corollary 3.1. If ar is regular, d(ar) = 1, k ≥ r, ak | n�, and ak | (n + t)�,
then ak | t.
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Are there many 1-regular numbers? Analyzing random samples indicate that
1-regular numbers are quite frequent, so the answer is “yes”. The first ten 1-regular
numbers are 2, 3, 4, 6, 7, 8, 9, 11, 12, and 14.
The following table gives the percentage of 1-regular numbers in the interval [u,w]:

u w percentage
2 100 75.6%
2 1,000 78.9%
2 10,000 81.0%
2 100,000 81.5%

50,000 60,000 83.1%
90,000 100,000 79.3%

100,000 110,000 77.9%
150,000 155,000 75.9%
200,000 205,000 74.2%

A similar picture we get if we consider just the percentage of 1-regular prime
numbers in the interval [u,w]:

u w percentage
2 100 72.00%
2 1,000 75.60%
2 10,000 74.20%
2 100,000 73.20%

50,000 60,000 74.54%
90,000 100,000 71.18%

100,000 110,000 75.28%
150,000 155,000 74.46%
200,000 205,000 74.03%

The two preceding tables lead to the following

Observation 1. More than 80% of the positive integers smaller than 100, 000
as well as more than 73% of the prime numbers smaller than 100, 000 are 1-regular.
However, it seems that this percentage decreases for larger intervals, but anyway,
since the prime numbers 3, 7, 11, and 17 are annihilating, by Fact 2.2 (ii), the
percentage can never be smaller than 50.9%.

Recall that by (∗), where l = h = k = 1, for any integer a ≥ 2 we have (n + a)� ≡
(n� + a · sa,n) mod a2. Thus, if a | n� and a2 � n�, then a2 | (n + a)� if and only
if Mod(n�, a2)/a + Mod(sa,n, a) ≡ 0 mod a. So, for a ≥ 2 and n ∈ D(a) let

ε(a, n) =
Mod(ñ + sa,n, a)

a
∈ [0, 1) ,

where ñ ≡ Mod(n�, a2)/a.
For positive integers w let ν(w) be the set of integers a with 2 ≤ a ≤ w such

that ε(a, n) = 0 for some n ∈ D(a), and let ∆(w) :=
∑w

a=2 d(a). If we assume that
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the probability for a ∈ ⋃∞
w=2 ν(w) is d(a)/a, then, since

(
ln(w)−0.5

) ≈ ∑w
a=2 1/a,

for large integers w we would expect that |ν(w)| is approximately
∆(w)

w
· ( ln(w) − 0.5

)
=: N(w) .

Let us check if this assumption makes sense:

w ∆(w) |ν(w)| N(w)
1,000 741 4 4.8
5,000 3,582 6 5.7

10,000 7,140 6 6.2
50,000 35,075 8 7.4

100,000 71,689 8 7.9
500,000 358,063 9 9.0

1,000,000 716,100 10 9.5

Further we have ν(1, 000, 000) = {2, 5, 185, 460, 1520, 2521, 12974, 20683,
127430, 923663} with d(2) = 1, d(5) = 2, d(185) = 6, d(460) = 4, d(1520) = 4,
d(2521) = 1, d(12974) = 9, d(20683) = 9, d(127430) = 4, d(923663) = 18.

Observation 2. The preceding table shows that 0.71 < ∆(w)/w < 0.75 and
that the probability to have a | n� and a2 | (n + a)� is indeed roughly between
0.71/a and 0.75/a.

3.2. More randomness

Let us now investigate the frequency of integers a ≥ 2 such that D(a) ∩ D(a2) is
non-empty, i.e., a2 | n� for some n ∈ D(a). In order to do so, let us first consider
the distribution of the set-function

ϕ(a) :=
{

(n�/a) mod a

a
: n ∈ D(a)

}
⊆ [0, 1) .

For each of the twenty intervals Ij = [0.05 · (j − 1), 0.05 · j), where 1 ≤ j ≤ 20,
and for a few intervals [u,w], let us compute

100 ·
∑w

a=u

∣∣{r ∈ ϕ(a) : r ∈ Ij}
∣∣∑w

a=u

∣∣ϕ(a)
∣∣ .

The result of this calculations is shown in the following four graphics:

5 10 15 20

3

3.5

4

4.5

5.5

6

6.5

2 ≤ a ≤ 1, 000

5 10 15 20

3

3.5

4

4.5

5.5

6

6.5

1, 000 ≤ a ≤ 10, 000
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5 10 15 20

4.8

4.9

5.1

5.2

10, 000 ≤ a ≤ 100, 000

5 10 15 20

4.8

4.9

5.1

5.2

10, 000 ≤ a ≤ 1, 000, 000

Observation 3. These four graphics show that for integers a ≤ 1000, the
distribution of ϕ is far away from being uniform. On the other hand, for inte-
gers a ≥ 10000, the distribution of ϕ becomes more and more uniform (note the
different scales).

For a ≥ 2, D(a) ∩ D(a2) �= ∅ is the same as saying 0 ∈ ϕ(a). Thus, if ϕ would
be uniform, then in the interval [u,w] we would expect to find about

w∑
a=u

d(a)
a

≈ ∆(u,w)
w − u

w∑
a=w

1
a
≈ ∆(u,w)

w − u

(
ln(w) − ln(u)

)
=: E(u,w)

such numbers a, where ∆(u,w) =
∑w

a=u d(a).
Now, let us compare the value of 3

4E(u,w) and 2E(u,w) with the actual number
of such integers a, which is denoted by η(u,w):

u w 3
4E(u,w) η(u,w) 2E(u,w)

1 1,000 3.84 11 10.24

1,000 10,000 1.23 1 3.27

10,000 100,000 1.24 1 3.30

10,000 500,000 2.10 4 5.60

10,000 1,000,000 2.47 5 6.60

The following is the list of pairs (a, n) such that n ∈ D(a)∩D(a2) and 2 ≤ a ≤
1,000,000: (4, 3), (10, 7), (20, 19), (29, 23), (38, 33), (58, 23), (65, 12), (370, 219),
(386, 255), (920, 819), (977, 704), (9727, 2747), (19454, 2747), (170536, 157427),
(226735, 153319), (453470, 153319), (788339, 666681).

Observation 4. Since ∆(u,w)/(w − u) is somewhere between 0.71 and 0.75,
the preceding table indicates that for large numbers a, the probability to have
D(a) ∩ D(a2) �= ∅ seems to be somewhere between 1/2a and 3/2a, or roughly
about 1/a.

4. Number-Theoretic Conjectures

In the following we state three number-theoretic conjectures. Conjecture A is
the strongest one and states that there are only finitely many positive integers
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n such that n� = ak, where a and k are integers both greater than or equal to
2. Conjecture B, which is motivated by Observation 4, is a weakened version of
Conjecture A, but in fact, just Conjecture C, which is the weakest of the three
conjectures, will be used later (see Corollary 5.3).

For every integer a ≥ 2 let
Pa =

{
n : n� = ak for some k ≥ 2

}
,

and let
P =

∞⋃
a≥2

Pa.

The only known number in the set P is 16, since 16 = 3�. Even though there is no
obvious reason why the set P should be finite, this seems very likely and motivates

Conjecture A. The set P is finite.

Let us consider now the set Pa for some integer a ≥ 2. Let k0 ≥ 1 be such that
ak0 > 104 and assume that there exists k1 > k0 such that ak1 = n� for some integer
n. Let k = �k1/2�, then, since n� = �en!�, we must have ak > n which implies that
n ∈ D(ak)∩D

(
(ak)2

)
. Now, if we assume—motivated by Observation 4—that the

probability for this is roughly 1/ak, then, since
∑∞

k=1 1/ak is finite, this would
imply that the set Pa is finite and motivates

Conjecture B. For each integer a ≥ 2, the set Pa is finite.

By Observation 1 it follows that for more than 50% of the integers a ≥ 2 we have
Pa = ∅. So, Conjecture B is right for more than half of the positive integers. An
even weaker conjecture than Conjecture B we get if we just conjecture that for
each integer a ≥ 2, the numbers in Pa become more and more rare.

Conjecture C. For each integer a ≥ 2, the set{
n : n� = ak for some k ≥ 2 and (n + t) ∈ Pa for some 1 ≤ t ≤ k

}
Notice that by Corollary 3.1, Conjecture C is right for all regular integers a ≥ 2

with d(a) ≤ 1 (compare with Theorem 5.2). In the next section we will see
that if Conjecture C is right, then for any infinite set S and any integer a ≥ 2,∣∣ seq1-1(S)

∣∣ �= ∣∣aS
∣∣ is provable without using any form of the axiom of choice.

5. A Link to Set Theory

Before we can state the main result of this section we would like to explain how
to compare the cardinalities of infinite sets in ZF, which is Zermelo-Fraenkel’s set
theory without the axiom of choice.

For any two sets A and B we say that A has the same cardinality as B, denoted
by |A| = |B|, if there is a bijection between A and B, i.e., a one-to-one function
from A onto B. Further, the cardinality of A is less than or equal to the cardinality
of B, denoted by |A| ≤ |B|, if |A| = |B′| for some B′ ⊆ B. If we have neither
|A| ≤ |B| nor |B| ≤ |A|, then we say that the cardinalities of the sets A and B are
incomparable.
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Let ℵ0 be the cardinality of the non-negative integers. A set S is called trans-
finite if ℵ0 ≤ |S|, i.e., if S contains an infinite one-to-one sequence.

For any set S, let seq1-1(S) be the set of all finite one-to-one sequences that can
be formed from S, and for any positive integer a, let aS be the set of all functions
from S to a = {0, 1, . . . , a − 1}. Notice that the set 2S can be identified with the
power set of S.

As it was mentioned before, each of the following statements is consistent with
ZF (see [4, §9]):

• ∣∣ seq1-1(S)
∣∣ <

∣∣2S
∣∣ ;

• ∣∣ seq1-1(S)
∣∣ >

∣∣2S
∣∣ ;

• the cardinalities of the sets seq1-1(S) and 2S are incomparable.
On the other hand, it is provable in ZF that for any set S with more than one

element, the cardinality of seq1-1(S) is never equal to the cardinality of the power
set of S (cf. [3, Theorem 4]). The crucial point in the proof of Theorem 4 in [3]
was the fact that—in the terminology of the preceding section—the number 2 is
regular and d(2) = 1. This leads to the following definition:

An integer a ≥ 2 is called eventually regular if there is a positive integer r such
that ar is regular. In view of the fact that there is just one irregular prime known
which is even eventually regular, one would expect that all integers a ≥ 2 are
eventually regular. Further, an integer a ≥ 2 is called eventually 1-regular if ar is
regular (for some r ≥ 1) and d(ar) ≤ 1.

In the following we will see that—even in the absence of the axiom of choice—
for any eventually 1-regular number a ≥ 2 and for any infinite set S we always
have

∣∣ seq1-1(S)
∣∣ �= ∣∣aS

∣∣, i.e., there is no bijection between seq1-1(S) and aS . The
proof will essentially follow that of Theorem 4 in [3], and the first step is to show
that if the infinite set S contains a countable infinite one-to-one sequence, then∣∣ seq1-1(S)

∣∣ �
∣∣aS

∣∣:
Lemma 5.1 (ZF). Let S be an infinite set. If S is transfinite, then for each

integer a ≥ 2 we have
∣∣ seq1-1(S)

∣∣ �
∣∣aS

∣∣.
Proof. In [3, §3] it is shown that if the power set is transfinite, then

∣∣ seq1-1(S)
∣∣ �∣∣2S

∣∣. Firstly, if S is transfinite, then also the power set 2S is transfinite. Secondly,
for any integer a ≥ 2 we have

∣∣2S
∣∣ ≤ ∣∣aS

∣∣, and Lemma 5.1 follows immediately. �

Theorem 5.2 (ZF). For any infinite set S, if the integer a ≥ 2 is eventually
1-regular, then

∣∣ seq1-1(S)
∣∣ �= ∣∣aS

∣∣.
Proof. By Lemma 5.1 it is enough to prove that if

∣∣ seq1-1(S)
∣∣ =

∣∣aS
∣∣, then S is

transfinite. Thus, towards a contradiction, let us assume that
∣∣ seq1-1(S)

∣∣ =
∣∣aS

∣∣
and let

B : seq1-1(S) −→ aS

σ �−→ fσ : S → a

be a bijection between seq1-1(S) and aS . We shall use this bijection to construct
an infinite one-to-one sequence (s0, s1, . . . , sn . . .) of elements of S. In fact it is
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enough to show that every finite one-to-one sequence σn ∈ seq1-1(S) of length n
can be extended to a one-to-one sequence σn

�
s ∈ seq1-1(S) of length n + 1.

Since a is eventually 1-regular, there is an r ≥ 2 such that ar is regular and
d(ar) ≤ 1. Pick ar + 1 distinct elements s0, s1, . . . , sar from S.

Assume that for some n > ar we already have constructed a one-to-one sequence
σn = (s0, s1, . . . , sn−1) of elements of S and let Sn = {si : 0 ≤ i < n}. The
sequence σn induces in a natural way an ordering on the set seq1-1(Sn), e.g., order
seq1-1(Sn) by length and lexicographically. Let us define an equivalence relation
on S by stipulating

x ∼ y ⇐⇒ ∀σ ∈ seq1-1(Sn)
(
fσ(x) = fσ(y)

)
, where fσ = B(σ).

Let Eq(n) = S/∼ be the set of all equivalence classes. The ordering on
seq1-1(Sn) induces an ordering on Eq(n). Let

k = |Eq(n)| ,
then ak is equal to the cardinality of the set of functions from k = {0, 1, . . . , k−1}
to a, where each such function corresponds to a function Eq(n) → a, which again
corresponds to a function in aS . In particular we can identify the set ak with the
cardinality of the set aEq(n) of all functions f̄ : S → a such that f̄ is constant on
each member of Eq(n). Now, the ordering on Eq(n) induces in a natural way an
ordering on the set of functions aEq(n) ⊆ aS .

By construction we have n� = | seq1-1(Sn)| ≤ ak.
Case 1: If n� < ak, then there exists the least (with respect to the ordering on
aEq(n)) function f̄0 ∈ aEq(n) such that f̄0 /∈ {

B(σ) : σ ∈ seq1-1(Sn)
}
, which implies

that B−1(f̄0) /∈ seq1-1(Sn). Let sn ∈ S be the first element in the sequence B−1(f̄0)
which does not belong to Sn. Now, σn

�
sn ∈ seq1-1(S) is a one-to-one sequence of

length n + 1.

Remark. Notice that if Conjecture B is right, then we can choose n such that
for all m ≥ n, m /∈ Pa, which implies that we are always in Case 1. In particular,
Conjecture B implies that for every infinite set S we have

∣∣ seq1-1(S)
∣∣ �= ∣∣aS

∣∣.
Further notice that we are always in Case 1 if d(a) = 0, which, by Observation 1,
holds for more than 50% of the integers a ≥ 2.

Case 2: Suppose that n� = ak. For arbitrary elements x ∈ S \Sn let us resume the
construction with the sequence σn

�
x. By a parity argument one easily sees that

(n + 1)� is not an integer power of a, and thus, we are in Case 1. We proceed as
long as we are in Case 1. If there is an element x ∈ S \Sn such that we are always
in Case 1, then we can construct an infinite one-to-one sequence of elements of S
and we are done. So, assume that for every x ∈ S \ Sn we get back in Case 2,
where we then have the following situation: The one-to-one sequence in S we
have constructed is of length n + � + 1 (for some positive integer �), depends on
x ∈ S \Sn, and (n + � + 1)� is an integer power of a. Let σx

n+� = (s0, s1, . . . , sn+�)
be this sequence and let S̄x = {s0, s1, . . . , sn+�}. By construction we have x ∈ S̄x.

A subset of S is called good if it is not the union of elements of Eq(n).
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For any set X ⊆ S let χX : S → {0, 1} be such that χX(z) = 1 iff z ∈ X. Now,
for every good set T ⊆ S we have B−1(χT ) /∈ seq1-1(Sn), and therefore, there is
a first element in the sequence B−1(χT ) which does not belong to the set Sn.

Consider now the set

Tmin := {x : S̄x is good and of least cardinality } .

Since S is infinite, Tmin �= ∅. If Tmin is good, use B−1(χTmin) to construct a one-
to-one sequence in S of length (n + 1), and we are done.

Let mT :=
∣∣S̄x

∣∣ for some x in Tmin. For each x ∈ Tmin let us construct a one-
to-one sequence SEQx in S̄x of length mT such that

S̄x = S̄y =⇒ SEQx = SEQy .

In order to do so, let x ∈ Tmin be arbitrary. Because S̄x is good,

B−1
(
χS̄x

)
/∈ seq1-1(Sn) ,

and hence there is a first element z in B−1
(
χS̄x

)
which is not in Sn. Resume the

construction with σn
�
z and consider S̄z. It is easy to see that if S̄z � S̄x, then S̄z

is not good (because x ∈ Tmin). But then

B−1
(
χS̄x\S̄z

)
/∈ seq1-1(S̄z)

and we may proceed building the sequence SEQx, which depends only on the set
S̄x. For i < mT define

Qi := {s ∈ S : s is the ith element in SEQx for some x ∈ Tmin} .

Claim. There is a smallest j < mT such that Qj is good.

Then B−1(χQj
) /∈ seq1-1(Sn), but B−1(χQj

) ∈ seq1-1(S) and we can construct a
one-to-one sequence in S of length n + 1.

It remains to prove the Claim: For any x ∈ Tmin let

x= := {y : S̄y = S̄x} ,

which are the elements of the finite set S̄x we cannot distinguish, and further let
t0 denote the least cardinality of the sets x=, where x ∈ Tmin.

Note that if for some i �= j, z ∈ Qi ∩ Qj , then S̄z cannot be good (otherwise,
SEQz would not be unique). Consequently, for each x ∈ Tmin there is exactly one
ix such that x ∈ Qix

and for all y, z ∈ x= with y �= z we have iy �= iz. Hence, if
there are no good Qi’s, then t0 cannot exceed k = |Eq(n)|. Let us now show that
indeed, t0 must exceed k: Recall that ar is regular, d(ar) ≤ 1, and n ≥ ar + 1.
Further recall that n� = ak and that (n + � + 1)� is an integer power of a, where
� + 1 = mT − n. As a consequence of Corollary 3.1, for any positive integer t we
get:

n� = ak and (n + t)�
is an integer power of a implies t > k . (∗∗)

Take any x ∈ Tmin with |x=| = t0. For any y ∈ S̄x \Sn, where S̄y is not necessarily
good, we have the following:
• |S̄y| = n + t where (n + t)� = ak′

for some k′ > k, and
• either y ∈ x= or S̄y is not good.
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Hence, for some non-negative integer t′ we have

mT = n + � + 1 = n + t′ + t0 = |S̄x| ,
where (n + t′)� and (n + t′ + t0)

� are both integer powers of a. Hence, by (∗∗),
t0 > k which completes the proof. �

As a consequence of the proof of Theorem 5.2 we get the following:

Corollary 5.3. If Conjecture C is right, then for any infinite set S and for any
integer a ≥ 2 we always have

∣∣ seq1-1(S)
∣∣ �= ∣∣aS

∣∣, even in the absence of the axiom
of choice.

Proof. The crucial point in the proof of Theorem 5.2 was that the assumptions
on ak imply (∗∗). Now, if Conjecture C is right, then we can choose n0 such that
the set

{
n ≥ n0 : n� = ak for some k ≥ 2 and (n + t) ∈ Pa for some 1 ≤ t ≤ k

}
is empty, which implies (∗∗). �

6. Conclusion

Let S be any infinite set and let a ≥ 2 be an integer. Then we may ask:
Is

∣∣ seq1-1(S)
∣∣ �= ∣∣aS

∣∣ provable in ZF ?
In fact, the question just depends on the integer a and therefore it would not

be surprising if some number-theoretical arguments are involved in an affirmative
answer. Even though it is possible that

∣∣2S
∣∣ �= ∣∣aS

∣∣ is provable in ZF without
using any number-theoretical results, we do not know any such proof, not even in
the case of a = 2.

However, we have seen above that for a large class of numbers a the answer
is affirmative: Theorem 5.2 tells us that the answer is “yes” if a is eventually 1-
regular and according to the statistics in Section 3.1 and Observation 1, eventually
1-regular numbers are quite frequent.

Further, by the remark in the proof of Theorem 5.2 we see that the answer is
also “yes” if Conjecture B is right. Moreover, by Corollary 5.3, even Conjecture C
implies that the answer is “yes”. Using some heuristic methods we have seen in
Section 4 that Conjecture C is very likely to be right. Thus, if there is a model
of ZF in which the equation

∣∣2S
∣∣ =

∣∣aS
∣∣ holds for some infinite set S and some

integer a ≥ 2, then this number a must be extremely peculiar.
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