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ON EXPONENTIAL DICHOTOMY OF SEMIGROUPS

B. SASU

Abstract. The aim of this paper is to analyze the connections between the ex-
ponential dichotomy of a semigroup on a Banach space X and the admissibility
of the pair (`p(N, X), `q(N, X)). We obtain necessary and sufficient conditions for
exponential dichotomy of exponentially bounded semigroups using discrete time
techniques.

1. Introduction

Asymptotic behaviour of semigroups in Banach spaces is a classical and well-
studied subject (see [2], [5], [11], [12], [15], [18]). In the last decades an impres-
sive progress has been made in the qualitative theory of evolution equations, by
associating to an evolution family or to a linear skew-product flow an evolution
semigroup on different function spaces and by expressing their asymptotic prop-
erties in terms of the characteristic particularities of this semigroup (see [2], [10]).
In fact, this new approach allowed, in certain situations, the treatment of the non-
autonomous case in the unified setting of the autonomous one. One of the main
results in [2] states that a linear skew-product flow is exponentially dichotomic if
and only if the associated evolution semigroup is hyperbolic. In [10] exponential
stability and exponential dichotomy of an evolution family are related to the prop-
erties of the infinitesimal generator of the evolution semigroup associated to it. An
extensive study concerning the applicability of the theory of evolution semigroups
in dynamical systems has been presented in [2].

Discrete methods in the study of the exponential dichotomy of evolution equa-
tions have proved to be the starting points for important results in this field (see
[1]–[3], [6], [8], [9], [16], [18]). These techniques have the origin in the work of
Henry (see [6]). In [2] and in [9], it is proved by different methods the equivalence
between the exponential dichotomy of a linear skew-product flow and the expo-
nential dichotomy of the discrete linear skew-product flow associated to it. The
main advantage of the discrete characterizations of diverse asymptotic properties
is that they are applicable for a large class of systems without imposing continuity
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or measurability conditions. Therefore in what follows our central concern will be
the study of a very general class of semigroups, without requiring continuity or
measurability properties – the class of exponentially bounded semigroups.

The purpose of the present paper is to obtain characterizations for the exponen-
tial dichotomy of exponentially bounded semigroups in terms of the solvability of
discrete-times equations on lp(N, X)-spaces and to point out the special properties
of the autonomous case. We associate to a semigroup T = {T (t)}t≥0 the subspace

X1 = {x ∈ X :
∞∑

n=0

||T (n)x||p < ∞}

and we discuss the properties implied by the solvability of a discrete-time equation
associated to the semigroup, under the assumption that X1 is closed and comple-
mented. We study when the admissibility of the pair (lp(N, X), lq(N, X)) is a suf-
ficient condition for exponential dichotomy of a semigroup. For p, q ∈ [1,∞), p ≥ q
we prove that an exponentially bounded semigroup T = {T (t)}t≥0 is exponentially
dichotomic if and only if the pair (lp(N, X), lq(N, X)) is admissible for T and X1

is closed and it has a T-invariant complement.

2. Exponential dichotomy of semigroups

Let X be a real or a complex Banach space and let L(X) be the Banach algebra
of all bounded linear operators on X. In what follows we denote by || · || the norm
on X and on L(X), respectively. An operator P ∈ L(X) will be called projection
if P 2 = P .

Definition 2.1. A family T = {T (t)}t≥0 ⊂ L(X) is called a semigroup on X
if T (0) = I and T (t + s) = T (t)T (s), for all t, s ≥ 0.

A semigroup T = {T (t)}t≥0 is said to be exponentially bounded if there are
M ≥ 1 and ω > 0 such that ||T (t)|| ≤ Meωt, for all t ≥ 0.

Definition 2.2. A semigroup T = {T (t)}t≥0 is said to be exponentially di-
chotomic if there exist a projection P ∈ L(X) and two constants K ≥ 1 and ν > 0
such that:
(i) T (t)P = PT (t), for all t ≥ 0;
(ii) ||T (t)x|| ≤ Ke−νt||x||, for all x ∈ Im P and all t ≥ 0;
(iii) ||T (t)x|| ≥ 1

K eνt||x||, for all x ∈ KerP and all t ≥ 0;
(iv) T (t)| : KerP → KerP is an isomorphism, for all t ≥ 0.

Definition 2.3. If T = {T (t)}t≥0 is a semigroup on X and U ⊂ X is a linear
subspace, U is said to be T-invariant if T (t)U ⊂ U , for all t ≥ 0.

Let T = {T (t)}t≥0 be an exponentially bounded semigroup on X and let p ∈
[1,∞). We define the linear subspace

X1 = {x ∈ X :
∞∑

n=0

||T (n)x||p < ∞}.
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In what follows we suppose that X1 is closed and it has a closed T-invariant
complement X2 such that X = X1 ⊕X2.

For p ∈ [1,∞) let `p(N, X) = {s : N → X :
∞∑

n=0
||s(n)||p < ∞} which is a

Banach space with respect to the norm

||s||p = (
∞∑

n=0

||s(n)||p)1/p.

Definition 2.4. Let p, q ∈ [1,∞). The pair (`p(N, X), `q(N, X)) is said to be
admissible for T if for every s ∈ `q(N, X) there is γ ∈ `p(N, X) such that

(Ed) γ(n + 1) = T (1)γ(n) + s(n), ∀n ∈ N.

Remark 2.1. If the pair (`p(N, X), `q(N, X)) is admissible for T, then:
(i) for every s ∈ `q(N, X) there is a unique γs ∈ `p(N, X) such that γs(0) ∈ X2

and (γs, s) satisfies the equation (Ed);
(ii) there is α > 0 such that ||γs||p ≤ α||s||q, for every pair (γs, s) which verifies
the equation (Ed) and γs(0) ∈ X2.

Indeed, if D is the linear subspace of all γ ∈ `p(N, X) with γ(0) ∈ X2 and
there is s ∈ `q(N, X) such that the pair (γ, s) satisfies (Ed), we deduce that the
operator W : D → `q(N, X),Wγ = s is invertible. Considering the graph norm
on D, i.e. ||γ||D = ||γ||p + ||Wγ||q, by the Banach principle there is α > 0 such
that ||γ||p ≤ ||γ||D ≤ α||Wγ||q, for all γ ∈ D.

Theorem 2.1. There are two constants K, ν > 0 such that

||T (t)x|| ≤ Ke−νt||x||, ∀t ≥ 0,∀x ∈ X1.

Proof. Let T1(t) := T (t)|X1 , for all t ≥ 0. Then we have that T1 = {T1(t)}t≥0

is a semigroup on X1.
For every x ∈ X1 we consider the mapping ϕx : N → X, ϕx(n) = T (n)x. We

define the operator
Γ : X1 → `p(N, X1), Γx = ϕx.

Then it is easy to verify that Γ is a closed linear operator, so it is bounded. It
results that

∞∑
n=0

||T1(n)x||p ≤ ||Γ||p ||x||p, ∀x ∈ X1.(2.1)

In particular, from relation (2.1) we have that ||T1(n)|| ≤ ||Γ||, for all n ∈ N. Let
m ∈ N∗ be such that m ≥ 2p||Γ||2p. Then from relation (2.1) we deduce that

m||T1(m)x||p ≤ ||Γ||p
m∑

j=1

||T1(j)x||p ≤ ||Γ||2p ||x||p, ∀x ∈ X1.

This implies that

||T1(m)x|| ≤ 1
2
||x||, ∀x ∈ X1.
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If M,ω are the constants given by Definition 2.1, setting ν = (ln 2/m) and K =
Me(ω+ν)m we obtain the conclusion. �

If A ⊂ N we denote by χA the characteristic function of the set A.

Theorem 2.2. If the pair (`p(N, X), `q(N, X)) is admissible for T, then:
(i) for every t ≥ 0, the restriction T (t)| : X2 → X2 is an isomorphism;
(ii) there are K, ν > 0 such that

||T (t)x|| ≥ 1
K

eνt||x||, ∀x ∈ X2.

Proof. Let α > 0 be given by Remark 2.1 (ii).
(i) It is sufficient to prove that for every h ∈ N∗ the operator T (h)| : X2 → X2

is an isomorphism. Indeed, let h ∈ N∗.
Injectivity. Let x ∈ X2, with T (h)x = 0. We consider the sequence

γ : N → X, γ(n) = χ{0,...,h−1}(n)T (n)x.

It is easy to see that the pair (γ, 0) satisfies the equation (Ed). Since γ(0) =
x ∈ X2 from Remark 2.1 (i) it follows that γ = 0. In particular this implies that
x = γ(0) = 0, so T (h)| is injective.

Surjectivity. Let x ∈ X2. We define

s : N → X, s(n) = −xχ{h−1}(n).

Let γ ∈ `p(N, X) be such that (γ, s) verifies the equation (Ed). From our assump-
tion X = X1⊕X2, so there are x1 ∈ X1 and x2 ∈ X2 with γ(0) = x1 +x2. Taking
into account that γ(h) = T (h)γ(0)−x, it follows that T (h)x2−x = γ(h)−T (h)x1.
Since γ(n) = T (n− h)γ(h), for all n ≥ h, it immediately follows that γ(h) ∈ X1.
Hence x = T (h)x2, so T (h)| is also surjective.
(ii) Let M,ω > 0 be the constants given by Definition 2.1. Let x ∈ X2 and let
n ∈ N∗. We consider the sequences

s, γ : N → X, s(k) = −χ{n}(k) T (1)x γ(k) = χ{0,...,n}(k)T (n− k)−1
| x

where T (j)−1
| is the inverse of the operator T (j)| : X2 → X2. It is easy to see that

the pair (γ, s) satisfies the equation (Ed). Since γ(0) ∈ X2, from Remark 2.1 it
follows that ||γ||p ≤ α||s||q. This shows that

n∑
j=0

||T (j)−1
| x||p ≤ λp ||x||p

where λ = α||T (1)||. Since n ∈ N∗ and x ∈ X2 were arbitrary we obtain that
∞∑

j=0

||T (j)−1
| x||p ≤ λp ||x||p, ∀x ∈ X2.

Using similar arguments as in the proof of Theorem 2.1 it follows that there is
h ∈ N∗ such that

||T (h)−1
| x|| ≤ 1

2
||x||, ∀x ∈ X2.



ON EXPONENTIAL DICHOTOMY OF SEMIGROUPS 59

This implies that
||T (h)x|| ≥ 2||x||, ∀x ∈ X2.

Taking K = 1/(Meωh) and ν = (ln 2)/h we deduce that

||T (t)x|| ≥ 1
K

eνt||x||, ∀t ≥ 0,∀x ∈ X2.

�

The first main result of this paper is

Theorem 2.3. If the pair (`p(N, X), `q(N, X)) is admissible for the exponen-
tially bounded semigroup T and the subspace X1 is closed and it has a T-invariant
complement, then T is exponentially dichotomic.

Proof. From our assumption X = X1 ⊕ X2. We denote by P the projection
corresponding to the above decomposition, i.e. Im P = X1 and Ker P = X2.
Then it is easy to see that

T (t)P = PT (t), ∀t ≥ 0.

Applying Theorem 2.1 and Theorem 2.2 we obtain the conclusion. �

In what follows we study when the admissibility of the pair (`p(N, X), `q(N, X))
is a sufficient condition for exponential dichotomy.

Lemma 2.1. Let p, q ∈ [1,∞) with p ≥ q and let ν > 0. If s ∈ `q(N,R+) and

δs, βs : N → R+, δs(n) =
n∑

k=0

e−ν(n−k)s(k) βs(n) =
∞∑

k=n+1

e−ν(k−n)s(k)

then δs, βs ∈ `p(N,R+).

Proof. It immediately follows applying Hölder’s inequality. �

The second main result of this paper is

Theorem 2.4. Let p, q ∈ [1,∞) with p ≥ q. Then T is exponentially di-
chotomic if and only if the pair (`p(N, X), `q(N, X)) is admissible for T and the
subspace X1 is closed and it has a T-invariant complement.

Proof. Necessity. Let P be the projection and let K, ν > 0 be the constants
given by Definition 2.2. If s ∈ `q(N, X) setting s(−1) = 0 we consider the sequence

γ : N → X, γ(n) =
n∑

k=0

T (n− k)Ps(k− 1)−
∞∑

k=n+1

T (k− n)−1
| (I −P )s(k− 1)

where T (k)−1
| is the inverse of the operator T (k)| : Ker P → Ker P . Using

Lemma 2.1 we deduce that γ ∈ `p(N, X) and an immediate computation shows
that the pair (γ, s) verifies the equation (Ed). It follows that the pair (`p(N, X),
`q(N, X)) is admissible for T.
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It is easy to see that Im P ⊂ X1. Conversely, let x ∈ X1. Then

||x− Px|| ≤ Ke−νn||T (n)(I − P )x|| ≤ K(1 + ||P ||) e−νn||T (n)x||, ∀n ∈ N

so x − Px = 0, which yields that x ∈ Im P . It results that X1 = Im P , so it is
closed and it has a complement – Ker P – which is T-invariant.

Sufficiency. It follows from Theorem 2.3. �

We present now an example in order to illustrate that for p < q the expo-
nential dichotomy of a semigroup does not imply the admissibility of the pair
(`p(N, X), `q(N, X)).

Example 2.1. On X = R2 endowed with the norm ||(x1, x2)|| = |x1|+ |x2| we
define T (t) : X → X by

T (t)(x1, x2) = (e−tx1, e
tx2), ∀x = (x1, x2) ∈ R2,∀t ≥ 0.

Then the semigroup T = {T (t)}t≥0 is exponentially dichotomic.

Let p, q ∈ [1,∞) with p < q. Suppose by contrary that the pair (`p(N,R2),
`q(N,R2)) is admissible for T.

Let r ∈ (p, q). We define s : N → R2, s(n) = (0, s̃(n)), where s̃(n) =
(n + 1)−1/r. Then s ∈ `q(N,R2) \ `p(N,R2). From the supposed admissibil-
ity there is γ̃ ∈ `p(N,R) such that

γ̃(n + 1)
e

= γ̃(n) +
s̃(n)

e
, ∀n ∈ N.(2.2)

Using relation (2.2) and the fact that lim
n→∞

γ̃(n) = 0 we deduce that

γ̃(n) = −en
∞∑

k=n

s̃(k)
ek+1

, ∀n ∈ N.(2.3)

Using Stolz-Cesaro theorem and relation (2.3) we have that

lim
n→∞

|γ̃(n)|
s̃(n)

= lim
n→∞

−e−(n+1)s̃(n)
e−(n+1)s̃(n + 1)− e−ns̃(n)

= lim
n→∞

1
e− (n+1

n+2 )1/r
=

1
e− 1

.

Since s̃ /∈ `p(N,R) it follows that γ̃ /∈ `p(N,R), which is absurd.
In conclusion the pair (`p(N,R2), `q(N,R2)) is not admissible for T.

Remark 2.2. The above example points out the fact that in Theorem 2.4 the
condition p ≥ q is essential.
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