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FINITE VOLUME SCHEMES FOR NONLINEAR PARABOLIC
PROBLEMS: ANOTHER REGULARIZATION METHOD

R. EYMARD, T. GALLOUËT and R. HERBIN

Abstract. On one hand, the existence of a solution to degenerate parabolic equa-
tions, without a nonlinear convection term, can be proven using the results of Alt
and Luckhaus, Minty and Kolmogorov. On the other hand, the proof of uniqueness
of an entropy weak solution to a nonlinear scalar hyperbolic equation, first provided
by Krushkov, has been extended in two directions: Carrillo has handled the case
of degenerate parabolic equations including a nonlinear convection term, whereas
Di Perna has proven the uniqueness of weaker solutions, namely Young measure
entropy solutions. All of these results are reviewed in the course of a convergence
result for two regularizations of a degenerate parabolic problem including a non-
linear convective term. The first regularization is classicaly obtained by adding a
minimal diffusion, the second one is given by a finite volume scheme on unstruc-
tured meshes. The convergence result is therefore only based on L∞(Ω × (0, T ))
and L2(0, T ; H1(Ω)) estimates, associated with the uniqueness result for a weaker
sense for a solution.

1. Introduction

The aim of this paper is to review a chain of various results obtained after 1960, for
the approximation of the solution u to the following nonlinear parabolic/hyperbolic
problem:

ut + div
(
q f(u)

)
− ∆ϕ(u) = 0 in Q,(1.1)

with the initial condition

u(·, 0) = u0 on Ω,(1.2)

and the non homogeneous Dirichlet boundary condition

u = ū on ∂Ω × (0, T ),(1.3)

denoting by Q = Ω × (0, T ), under various hypotheses on the domain Ω, the
initial data u0, the boundary conditions ū, the convection velocity q, the nonlinear
transport function f : R → R and the degenerate diffusion ϕ : R → R. Let us
only detail some of these hypotheses:
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1. u0 and ū are bounded functions with uI ≤ u0 ≤ uS and uI ≤ ū ≤ uS a.e.,
and ū is the trace on ∂Ω × (0, T ) of a regular function defined in Q, also
denoted by ū,

2. the velocity field q is Lipschitz continuous on Q and it satisfies divq = 0
(this hypothesis is not necessary, but it corresponds to a large number of
physical situations), and q · n = 0 on ∂Ω × (0, T ) (this hypothesis pre-
vents from the handling of boundary conditions for nonlinear hyperbolic
problems),

3. the function f is Lipschitz continuous and monotonous nondecreasing (this
is only assumed to simplify the expression of the Godunov scheme),

4. the function ϕ is Lipschitz continuous and monotonous nondecreasing, which
implies a degenerate diffusion for (x, t) ∈ Ω×(0, T ) such that ϕ′(u(x, t)) = 0
(the case ϕ = 0 is not excluded).

Using such weak hypotheses, it is necessary to introduce the definition of a weak
entropy solution u to Problem (1.1)–(1.3):

1. u ∈ L∞(Ω × (0, T )),
2. thanks to q · n = 0, the Dirichlet boundary condition has only to be taken

on ϕ(u), namely: ζ(u) − ζ(ū) ∈ L2(0, T ;H1
0 (Ω)) with ζ(s) :=

∫ s

0

√
ϕ′(a) da

(the function ζ such defined verifies − ∫
Ω

v∆ϕ(v) dx =
∫
Ω
(∇ζ(v))2 dx for

all regular function v vanishing at the boundary),
3. to handle the case of strong degeneracy, entropy conditions (necessary to

expect a uniqueness property) are introduced:∫
Ω×(0,T )

[η(u)ψt + Φ(u) q · ∇ψ −∇θ(u) · ∇ψ] dx dt

+
∫

Ω

η(u0(x))ψ(x, 0) dx ≥ 0,

(1.4)

∀ ψ ∈ C, ∀η ∈ C1(R, R), η′′ ≥ 0, Φ′ = η′(·)f ′(·), θ′ = η′(·)ϕ′(·),
where the space of test functions is given by C = {ψ ∈ C∞

c (Rd × R), with
ψ ≥ 0 and ψ = 0 on ∂Ω × (0, T ) ∪ Ω × {T}}.

Results of existence and uniqueness were developed for such a solution. Let
us first remark that, in the case where ϕ = 0, the problem resumes to a scalar
nonlinear hyperbolic equation, for which Krushkov’s works [7] were fundamental.
These works include the introduction of entropies and that of the doubling variable
technique for the uniqueness proof of a solution. In the case where ϕ �= 0, Carrillo’s
works [2] have led to a clever and essential adaptation of Krushkov’s method to
the presence of a degenerate diffusion term. Let us examine, on a numerical
simulation, the effect of a degenerate diffusion on a linear convection problem. We
consider the example where ϕ(u) = max(u, .5), f(u) = u, Ω = (0, 1) × (0, 1) and
q(x1, x2) = curl (x1(1 − x1)x2(1 − x2)). Figure 1 shows the approximate solution
for u at different times. We see that in such a case, the degenerate parabolic term
makes only disappear the initial bump from u = 0.5 to u = 1 (black color in the
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Figure 1.1. Approximate solutions u at times 0.00, 0.01, 0.04, 0.16, 0.40, from left to right.
Color white stands for u = 0 and black for u = 1.

figure), whereas the initial bump from u = 0.5 to u = 0 is convected and only
smeared by the numerical diffusion.

2. Two regularization methods

We consider two types of regularized solutions. The first one is the classical
strongly parabolic regularization uε, for ε > 0, solution of

(uε)t + div
(
q f(uε)

)
− ∆

(
ϕ(uε) + εuε

)
= 0 in Q,(2.1)

with initial and boundary conditions (1.2) and (1.3). The second one is defined us-
ing a finite volume scheme. Within the notations of [4], we use an admissible mesh
M, the control volumes of which satisfying an orthogonality property between the
“centers” of the control volumes and the edges (see Figure 2).

We then introduce a constant (for simplicity) time step δt > 0, and we define
the convected flux qn+1

K,L = 1
δt

∫ (n+1)δt

nδt

∫
K|L q(x, t) ·nK,L dγ(x) dt at time step n and

at each edge K|L, denoting by nK,L the unit vector, normal to K|L and oriented
from K to L. We denote by NK ⊂ M the set of the neighbours of K, by Eext ⊂ E
(resp. Eint) the set of the exterior (resp. interior) edges, by Eext,K ⊂ Eext the
set of the edges of K belonging to Eext, for all s ∈ R we set s+ = max(s, 0) and
s− = max(−s, 0). Using the notations of Figure 2, we define the finite volume
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Figure 2.1. Notations and example of two control volumes of an admissible mesh..

scheme by

(un+1
K − un

K) meas(K) + δt
∑

L∈NK

(
(qn+1

K,L )+f(un+1
K ) − (qn+1

K,L )−f(un+1
L )

)

− δt
∑

L∈NK

meas(K|L)
dK|L

(
ϕ(un+1

L ) − ϕ(un+1
K )

)

− δt
∑

σ∈Eext,K

meas(σ)
dK,σ

(
ϕ(ūn+1

σ ) − ϕ(un+1
K )

)
= 0,

(2.2)

in association with a standard definition for the approximation of the initial con-
dition u0

K for all K ∈ M, and the boundary condition ūn+1
σ for all exterior edge σ

and time step n. Scheme (2.2) appears to be implicit, using the Godunov scheme
for the convection term (which is the upstream weighting scheme in the present
case where f is non decreasing). It is then possible to show that the implicit
scheme (2.2) has at least one solution, which allows to define the function uD(x, t)
by the value un+1

K for a.e. x ∈ K and t ∈ (nδt, (n + 1)δt). The remaining of this
paper is devoted to the analysis of the convergence of these regularizations to the
weak entropy solution of Problem (1.1)–(1.3).

2.1. L∞(Q) estimate

Both regularizations satisfy the same bounds as the initial and boundary condi-
tions:

uI ≤ uε(x, t) ≤ uS , for a.e. (x, t) ∈ Q,(2.3)

and, for the discrete approximation,

uI ≤ uD(x, t) ≤ uS , for a.e. (x, t) ∈ Q.(2.4)

These L∞(Q) estimates allows for the application of the non linear weak-� com-
pactness property [3, 4]: for any sequence (un)n∈N with un ∈ L∞(Q) for all
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n ∈ N, which is bounded in L∞(Q), one can extract a subsequence, again denoted
(un)n∈N, and u ∈ L∞(Q× (0, 1)), such that for all continuous function g ∈ C0(R),
(g(un))n∈N converges to

∫ 1

0
g(u(·, α)) dα for the weak-� topology of L∞(Q). This

function u is then called a “process limit” of (un)n∈N, the word process being used
with analogy to the trajectories defined by u(·, α) for a.e. α ∈ (0, 1). This notion
of process limit (used in [4]) happens to be a way to define a Young measure
(x, t) 
→ µx,t (used in [3]), thanks to the relation

∫
g dµx,t =

∫ 1

0
g(u(x, t, α)) dα.

The advantage of the notion of process limit is that the measurability properties
of the function u become explicit, allowing for easier applications of the theorem
of continuity in means during the course of the uniqueness proof.

We thus get the existence of a process limit uc for uε as ε −→ 0, and ud for uD
as δ(D) −→ 0 (where δ(D) is the maximum of the space steps and time step).

2.2. L2(0, T ;H1(Ω)) estimate

We now consider, again using the function defined by ζ(s) =
∫ s

0

√
ϕ′(a) da, the

continuous function zε = ζ(uε) − ζ(ū) and the discrete one zD, defined by the
discrete values zn+1

K = ζ(un+1
K ) − ζ(ūn+1

K ) in a same manner as uD. We then get
the existence of a real C1c > 0, which does not depend on ε and of a real C1d > 0,
which does not depend on the size of the discretization δ(D), such that:

‖zε‖L2(0,T ;H1
0 (Ω)) ≤ C1c,(2.5)

and

N∑
n=0

δt

⎛
⎝ ∑

K|L∈Eint

meas(K|L)
dK|L

(zn+1
K − zn+1

L ))2 +
∑

σ∈Eext

meas(σ)
dK,σ

(zn+1
K )2

⎞
⎠≤ C1d,(2.6)

where N ∈ N is such that Nδt ≤ T < (N + 1)δt. Each of these relations implies a
space translate estimate, which writes in the first case∫ T

0

∫
Rd

(zε(x + ξ, t) − zε(x, t))2 dx dt ≤ C1c|ξ|2, ∀ξ ∈ R
d,(2.7)

and in the second one (see [4])

∫ T

0

∫
Rd

(zD(x + ξ, t) − zD(x, t))2 dx dt ≤ C1d|ξ|(|ξ| + 4 δ(D)), ∀ξ ∈ R
d.(2.8)

Both results are a first step in direction to the application of Kolmogorov’s theo-
rem, proving the relative compactness of the families zε, for ε > 0 and zD, for all
admissible discretization D. The second step is handled in the next subsection.

2.3. Time translate estimate

The use of time translate estimates for degenerate parabolic equations is first due
to Alt and Luckhaus [1], since standard functional arguments cannot be easily
adapted to the time derivatives of functions zε and zD. The existence of some
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C2c > 0, which does not depend on ε and of some C2d > 0 which does not depend
on δ(D), such that:

∫ T−s

0

∫
Rd

(zε(x, t + s) − zε(x, t))2 dx dt ≤ C2c s, ∀s ∈ (0, T )(2.9)

and ∫ T−s

0

∫
Rd

(zD(x, t + s) − zD(x, t))2 dx dt ≤ C2d s, ∀s ∈ (0, T )(2.10)

are proven (in the case of degenerate equations without convective terms, inequal-
ity (2.10) has been proven in [6]). Note that in the case of variable time steps, one
must replace s in the right hand side of (2.10) by s + δ(D), which leads to a slight
modification in the verification of the hypotheses of Kolmogorov’s theorem. It is
now possible to express a relative compactness property.

3. Compactness and monotony

Thanks to the space and time translate estimates, we have now got some strong
convergence for zε and zD. For the continuous regularization, we thus have proven
the following results: there exists a sequence (uεn

)n∈N with εn tends to 0 as n → ∞
such that

1. uεn
converges to some function uc ∈ L∞(Q×(0, 1)) in the nonlinear weak-�

sense,
2. zεn

= ζ(uεn
) − ζ(ū) → zc in L2(Q) as ε −→ 0, and zc ∈ L2(0, T ;H1

0 (Ω)).

In the discrete case, we have proven that there exists a sequence (Dn)n∈N with
δ(Dn) tends to 0 as n → ∞ such that

1. uDn
converges to some function ud ∈ L∞(Q×(0, 1)) in the nonlinear weak-�

sense,
2. zDn

= ζ(uDn
)−ζ(ūDn

) → zd in L2(Q) as n → ∞, and zd ∈ L2(0, T ;H1
0 (Ω)).

Then, using the Minty monotony argument [8], classicaly used in this framework,
we get that, for a.e. (x, t, α) ∈ Q × (0, 1), zc(x, t) = ζ(uc(x, t, α)) − ζ(ū(x, t)) and
zd(x, t) = ζ(ud(x, t, α)) − ζ(ū(x, t)). Intuitively, this result means that the strong
convergence of zε or zD prevents uε or uD from oscillating around values such that
ϕ′ > 0, which implies that ζ(uc(x, t, α)) and ζ(ud(x, t, α)) do not depend on α for
a.e. (x, t) ∈ Q. At this stage, there is not yet an evidence that uc and ud don’t
depend on α for a.e. (x, t) ∈ Q. This will be handled in the next section.

4. Uniqueness theorem

Thanks to the passage to the limit in the equations leading to the definition of both
regularizations, we show that the functions uc and ud are entropy weak process
solutions [5] to Problem (1.1)–(1.3), where we say that a function u is an entropy
weak process solution to Problem (1.1)–(1.3) if it satisfies

1. u ∈ L∞(Q × (0, 1)),
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2. ζ(u(x, t, α)) does not depend on α for a.e. (x, t) ∈ Ω × (0, T ) and ζ(u) −
ζ(ū) ∈ L2(0, T ;H1

0 (Ω)),
3. a first kind of entropy inequalities is satisfied∫

Q

[ ∫ 1

0

(µ(u(·, α)) ψt + ν(u(·, α)) q · ∇ψ) dα

−∇η(ϕ(u)) · ∇ψ − η′′(ϕ(u))(∇ϕ(u))2ψ
]

dx dt

+
∫

Ω

µ(u0)ψ(·, 0) dx ≥ 0,

(4.1)

for all ψ ∈ C and for all regular convex function η, setting µ′ = η′(ϕ(·)),
ν′ = η′(ϕ(·))f ′(·),

4. a second kind of entropy inequalities is satisfied∫
Q

[ ∫ 1

0

(|u − κ|ψt + (f(max(u, κ)) − f(min(u, κ))) q · ∇ψ) dα

−∇|ϕ(u) − ϕ(κ)| · ∇ψ

]
dx dt +

∫
Ω

|u0 − κ|ψ(·, 0) dx ≥ 0,

(4.2)

for all ψ ∈ C and for all κ ∈ R, where one recognizes the Krushkov entropy
pair | ·−κ|, f(max(·, κ))−f(min(·, κ)) = |f(·)−f(κ)| in the particular case
where f is monotonous nondecreasing (remark that the two entropy criteria
cannot be deduced one from each other).

We then have the following result: the entropy weak process solution to Problem
(1.1)–(1.3) is unique, and thus does not depend on α, resuming to the entropy
weak solution, which is also unique. This result is proven in [5], following the
doubling variable technique introduced by Krushkov, adapted to Young measures
by Di Perna [3]. The proof uses Carrillo’s method, which is an adaptation to
the doubling variable technique of the following simple result: for all η ∈ C2(R)
with η′′ ≥ 0, and for all u, v such that ut − ∆u = 0 and vt − ∆v = 0, then
η(u − v)t − ∆η(u − v) ≤ 0.

5. Conclusion: strong convergence of the regularizations

We have now obtained that both regularizations converge to the entropy weak
solution in the nonlinear weak-� sense. In fact, the uniqueness result implies that
the convergence is strong in all Lp(Q), for all p ∈ [1,+∞). This result is an
immediate consequence of the definition of the nonlinear weak-� sense and of the
fact that u(x, t, α) does not depend on α (see [3] or [4]). This concludes the
proof that both regularizations strongly converge to the entropy weak solution of
Problem (1.1)–(1.3). This conclusion shows that the finite volume scheme, which
permits to define piecewise constant functions and therefore to handle simple real
values, indeed behaves as a standard regularization method. A large advantage
of such an approximation is that all algebraic operations are possible, without
functional space considerations.
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