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ON BLOW-UP AT SPACE INFINITY
FOR SEMILINEAR HEAT EQUATIONS

Y. GIGA and N. UMEDA

We are interested in solutions of semilinear heat equations which blow up at
space infinity.

In [7], we considered a nonnegative blowing up solution of

ut = ∆u + up, x ∈ R
n, t > 0

with initial data u0 satisfying

0 ≤ u0(x) ≤ M, u0 �≡ M and lim
|x|→∞

u0(x) = M,

where p > 1 and M > 0 is a constant. We proved in [7] that the solution u blows
up exactly at the blow-up time for the spatially constant solution with initial data
M . We moreover proved that u blows up only at the space infinity. In this paper
we would like to generalize this result in the following directions.

(i) (Initial data) We consider more general initial data u0 which may not con-
verge to M for all directions of x, for example u0 → M as |x| → ∞ only for
x in some sector. It is convenient to introduce a notion of blow up direction
at the space infinity. We are able to give necessary and sufficient condition
so that a particular direction is a blow-up direction.

(ii) (Nonlinear term) We extend the class of nonlinearities. It includes eu and
up + uq for p, q > 1.

In [8] we consider solutions of the initial value problem for the equation{
ut = ∆u + f(u), x ∈ R

n, t > 0,

u(x, 0) = u0(x), x ∈ R
n.

(1)

The nonlinear term f is assumed to be nonnegative and locally Lipschitz in R with
the property that

lim inf
b≥b0, δ∈(δ0,1)

δpf(b)
f(δb)

> 0 for b0 > 0, δ0 ∈ (0, 1), p > 1.(2)
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We take two constants M and N satisfying M + N > 0 and

f(M) > 0.(3)

The initial data u0 is assumed to be a measureable function in R
n satisfying

−N ≤ u0 ≤ M a.e. and u0 �≡ M a.e.(4)

We are interested in initial data such that u0 → M as |x| → ∞ for x in some
sector of R

n. We assume that

essinfx∈B̃m
(u0(x) − Mm(x − xm)) ≥ 0 for m = 1, 2, . . . ,(5)

where

B̃m = Brm
(xm)(6)

with a sequence {rm} and a sequence of vectors {xm}∞m=1 and a sequence of
functions {Mm(x)} satisfying

lim
m→∞ rm = ∞, Mm(x) ≤ Mm+1(x) for m ≥ 1

lim
m→∞ inf

s∈[1,rm]

1
|Bs|

∫
Bs(0)

Mm(x) dx = M.

Here Br(x) denotes the closed ball of radius r centered at x. (In fact, it follows
from (4) that |xm| → ∞ as m → ∞.)

Problem (1) has a unique bounded solution at least locally in time. However,
the solution may blow up in finite time. For a given initial value u0 and nonlinear
term f let T ∗ = T ∗(u0, f) be the maximal existence time of the solution. If
T ∗ = ∞, the solution exists globally in time. If T ∗ < ∞, we say that the solution
blows up in finite time. It is well known that

lim sup
t→T∗

‖u(·, t)‖∞ = ∞,(7)

where ‖ · ‖∞ denotes the L∞-norm in space variables.
In this paper, we are interested in the behavior of a blowing up solution near

space infinity as well as the location of blow-up points defined below. A point
xBU ∈ R

n is called a blow-up point (with value ±∞) if there exists a sequence
{(xm, tm)}∞m=1 such that

tm ↑ T ∗, xm → xBU and u(xm, tm) → ±∞ as m → ∞.

If there exists a sequence {(xm, tm)}∞m=1 such that

tm ↑ T ∗, |xm| → ∞ and u(xm, tm) → ±∞ as m → ∞,

then we we say that the solution blows up to ±∞ at space infinity.
A direction ψ ∈ Sn−1 is called a blow-up direction for the value ±∞ if there

exists a sequence {(xm, tm)}∞m=1 with xm ∈ R
n and tm ∈ (0, T ∗) such that

u(xm, tm) → ±∞ (as m → ∞) and
xm

|xm| → ψ as m → ∞.(8)
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We consider the solution v(t) of an ordinary differential equation{
vt = f(v), t > 0,

v(0) = M.
(9)

Let Tv = T ∗(M,f) be the maximal existence time of the solution of (9), i. e.,

Tv =
∫ ∞

M

ds

f(s)
.

We are now in position to state our main results.

Theorem 1. Assume that f is locally Lipschitz in R and satisfies (2) and (3).
Let u0 be a continuous function satisfying (4) and (5), and Tv ≤ T ∗(−N, f). Then
there exists a subsequence of {xm}∞m=1 (still denoted by {xm}, independent of t)
such that

lim
m→∞u(xm, t) = v(t).

The convergence is uniform in every compact subset of {t : 0 ≤ t < Tv}. Moreover,
the solution blows up at Tv.

Remark. Our assumption Tv ≤ T ∗(−N, f) says that the solution does not
blow up to minus infinity before it blows up to plus infinity. From the condition
(4), it follows that limm→∞ |xm| = ∞.

This result in particular implies that

sup
0<t<T∗

v−1(t)‖u(·, t)‖∞ < ∞.(10)

When we set f(u) = |u|p−1u, such a blow-up rate estimate is known for subcritical
p; see e.g. [3], [5], [6] for general bounded initial data without assuming (4)
and (5). However, for supercritical p such a blow-up rate estimate (10) may not
hold in general; see e.g. [1], [9]. If one considers only radial solutions of (1) for
supercritical p less than 1 + 4/(n − 4 − 2(n − 1)1/2) or n ≤ 10, then the estimate
(10) holds [11]. We would like to emphasize that Theorem 1 does not require any
restriction on p.

Our second main result is on the location of blow-up points.

Theorem 2. Assume the same hypotheses as in Theorem 1. Then the solution
of (1) has no blow-up points with +∞ in R

n. (It blows up only at space infinity.)

There is a huge literature on location of blow-up points since the work of
Weissler [13] and Friedman-McLeod [2]. (We do not intend to list references
exhaustively in this paper.) However, most results consider either bounded do-
mains or solutions decaying at space infinity; such a solution does not blow up at
space infinity [4].

As far as the authors know, before the result of [7] the only paper discussing
blow-up at space infinity is the work of Lacey [10]. He considered the Dirichlet
problem in a half line. He studied various nonlinear terms and proved that a
solution blows up only at space infinity.
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In particular, his result implies that the solution of⎧⎪⎪⎨
⎪⎪⎩

ut = uxx + f(u), x > 0, t > 0,

u(0, t) = 1, t > 0,

u(x, 0) = u0(x) ≥ 1, x > 0

blows up only at space infinity, where u0 satisfies 0 ≤ u0 ≤ M with M > 1, and
f(s) = sp and es.

His method is based on construction of suitable subsolutions and supersolutions.
However, the construction heavily depends on the Dirichlet condition at x = 0 and
does not apply to the Cauchy problem even for the case n = 1.

As previously described, the authors [7] proved the statement of Theorems 1
and 2 assuming that u0(x) ≤ M for sufficiently large M for positive solutions of
ut = ∆u + up. Later, Shimojyo [12] had the same results as in [7] by relaxing
the assumptions of initial data u0 ≥ 0 which is similar to that in the present
paper. His approach is a construction of a suitable supersolution which implies
that a ∈ R

n is not a blow-up point. Although he restricted himself to f(s) = sp,
his idea works for our f under slightly stronger assumption on u0. Here we give a
different approach.

From Shimojyo’s results [12], there arises a problem of “blow-up direction”
defined in (8). We next study this “blow-up direction” for the value +∞. Our
third result is on this blow-up direction. It is convenient to introduce the function
Am defined by

Am(s) =
1

|Bs(ym)|
∫

Bs(ym)

u0(z) dz(11)

for a given sequence {ym}∞m=1. This Am(s) represents the mean value of u0 over
the ball Bs(ym).

Theorem 3. Assume the same hypotheses as in Theorem 1 and let {sm}∞m=1

be a sequence diverging to ∞ in R. For a given direction ψ ∈ Sn−1, the following
alternatives hold.

(i) If there exists a sequence {ym}∞m=1 satisfying limm→∞ ym/|ym| = ψ it holds
that

lim sup
m→∞

inf
s∈(1,sm)

Am(s) = M,

then ψ is a blow-up direction.
(ii) If for any sequence {ym}∞m=1 satisfying limm→∞ ym/|ym| = ψ there exists

a constant c ∈ (1/(M + N),∞) such that

lim sup
m→∞

inf
s∈(1,c)

Am(s) ≤ M − 1
c
,

then ψ is not a blow-up direction.

This characterizes blow up directions by profiles of initial data. This is a new
result even if f(u) = |u|p−1u or n = 1.
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Here are the main ideas of the proofs. To prove Theorem 1 we construct a
suitable subsolution. To prove Theorem 2 we derive a non blow-up criterion. We
do not appeal any energy arguments for rescaled function as is done in our previous
paper [7]. Our argument consists of two parts. First we observe that

u(x, t) ≤ δv(t)

near a point a ∈ R
n with some δ ∈ (0, 1) when t is close to the blow-up time.

By a bootstrap argument we derive that u is actually bounded near a when t is
close to the blow-up time. To prove Theorem 3 we use a comparison argument as
in Theorems 1 and 2 and a non blow-up criterion as in the proof of Theorem 2.
Moreover, we give conditions on the direction ψ ∈ Sn−1 for being the blow-up
direction or not cover all of Sn−1 exclusively.

The detailed proofs will be discussed in paper [8].
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