

NORMAL GENERATION OF UNITARY GROUPS OF CUNTZ ALGEBRAS BY INVOLUTIONS

A. AL-RAWASHDEH

ABSTRACT. In purely infinite factors, P. de la Harpe proved that a normal subgroup of the unitary group which contains a non-trivial self-adjoint unitary contains all self-adjoint unitaries of the factor. Also he proved the same result in finite continuous factors. In a previous work the author proved a similar result in some types of unital AF-algebras. In this paper we extend the result of de la Harpe, concerning the purely infinite factors to a main example of purely infinite C^* -algebras called the Cuntz algebras $\mathcal{O}_n(2 \leq n \leq \infty)$ and we prove that $\mathcal{U}(\mathcal{O}_n)$ is normally generated by some non-trivial involution. In particular, in the Cuntz algebra \mathcal{O}_{∞} we prove that $\mathcal{U}(\mathcal{O}_{\infty})$ is normally generated by self-adjoint unitary of odd type.

1. INTRODUCTION

Let \mathcal{A} be any unital C^* -algebra. The group of unitaries and the set of projections of \mathcal{A} are denoted by $\mathcal{U}(\mathcal{A})$, $\mathcal{P}(\mathcal{A})$ respectively. The involutions of \mathcal{A} are the set of self-adjoint unitaries (*-symmetries). In several types of C^* -algebras, we have that the involutions generate all the unitaries. In the case of von Neumann factors, M. Broise in [3]; proved the following main theorem.

Theorem 1.1. [3, Theorem 1] If \mathcal{B} is a factor of type II_1 or III, then the set of involutions generates $\mathcal{U}(\mathcal{B})$.

Received June 11, 2006; revised January 13, 2008. 2000 Mathematics Subject Classification. Primary 46L05; 46L80. Key words and phrases. Cuntz algebras; involutions; K-Theory.

Also, in the case of simple, purely infinite C^* -algebras, M. Leen proved the following result.

Theorem 1.2. [10, Theorem 3.8] If A is a simple, unital purely infinite C^* -algebra, then the set of *-symmetries of A forms a set of generators for $U_0(A)$, (where $U_0(A)$ denotes the identity component of the unitary group of A).

The Cuntz algebras are interesting examples of simple, unital purely infinite C^* -algebras, which was introduced by Cuntz in [5] this C^* -algebra is generated by isometries that have orthogonal ranges (for more information see [6, V. 4]). As shown in [5] the unitary group of the Cuntz algebras are connected. Now let us recall these definitions.

Definition 1.3. The Cuntz algebra \mathcal{O}_n , where $2 \leq n$, is the universal C^* -algebra which is generated by isometries s_1, s_2, \ldots, s_n , such that

(1)

with $s_i^* s_j = 0$, when $i \neq j$. The Cuntz algebra \mathcal{O}_{∞} is generated by infinite number of such isometries.

Remark 1.4. [6, V. 4] Recall that a universal C^* -algebra \mathcal{O}_n means, whenever $t_1, t_2 \ldots t_n$ form another set of isometries satisfying (1), then there is a unique *-homomorphism ρ of \mathcal{O}_n onto $C^*(\{t_1, t_2, \ldots t_n\})$ such that $\rho(s_i) = t_i$, for all $1 \le i \le n$.

In this paper, the projection $s_i s_i^*$ is denoted by p_i , and these projections are called the standard projections of the Cuntz algebras. The corresponding involution $1 - 2p_i$ is denoted by u_i .

Let us recall the following main results concerning the Cuntz algebras.

Theorem 1.5. [5] The Cuntz algebras $\mathcal{O}_n(2 \leq n \leq \infty)$ are simple unital purely infinite C^* -algebras.

Using the fact that $K_1(\mathcal{O}_n) \cong 0$ (see [4, 3.8]) and $K_1(A) \simeq \mathcal{U}(A)/\mathcal{U}(A)_0$ (see [4, p. 188], M. Leen's result (Theorem 1.2) shows that the set of *-symmetries of $\mathcal{O}_n(2 \leq n \leq \infty)$ generates the unitary group $\mathcal{U}(\mathcal{O}_n)$.

Definition 1.6. A group G is normally generated by an element x if the only normal subgroup of G containing x is G itself.

If u = 1 - 2p is an involution in a factor \mathcal{B} , then P. de la Harpe defined the notion of the type of u to be the pair (x, y), where x = D(1-p) and y = D(p), as D denotes a normalized dimension function on \mathcal{B} , see [7]. He proved that any normal subgroup \mathcal{N} of $\mathcal{U}(\mathcal{B})$, which is not contained in the circle \mathbb{S}^1 , contains a non-trivial involution, and then contains all the involutions of \mathcal{B} (see [8, Proposition 2]). Afterwards, P. de la Harpe used Broise's result (Theorem 1.1), and he proved the following theorem.

Theorem 1.7. [8] If \mathcal{B} is a factor of type II_1 or III and \mathcal{N} is any normal subgroup of $\mathcal{U}(\mathcal{B})$, which is not contained in the circle \mathbb{S}^1 , then $\mathcal{N} = \mathcal{U}(\mathcal{B})$.

If v is an involution of $\mathcal{O}_n(2 \leq n \leq \infty)$, then as introduced in [1], we define the type of v to be the element [p] in $K_0(\mathcal{O}_n)$, where v = 1 - 2p. Since the $K_0(\mathcal{O}_n)$ is a cyclic group, the type of v is an integer. In Section 2, we show that a normal subgroup \mathcal{N} of $\mathcal{U}(\mathcal{O}_n)$, $n < \infty$ contains all the involutions if

- 1. \mathcal{N} contains an involution of the type 1 (i.e. [1]), or
- 2. \mathcal{N} contains a non-trivial involution and n-1 is a prime number, or
- 3. \mathcal{N} contains a non-trivial involution such that its type and n-1 are relatively prime. Then using M. Leen's result in Theorem 1.2, we prove that $\mathcal{U}(\mathcal{O}_n)$ is normally generated by a non-trivial involution.

In Section 3, we show that if \mathcal{N} contains an involution of odd type, then \mathcal{N} contains all the involutions of \mathcal{O}_{∞} . Consequently, we use M. Leen's result in order to prove that $\mathcal{U}(\mathcal{O}_n)$ is normally generated by an involution of odd type.

Now, let us recall main results concerning purely infinite C^* -algebras, that might be used throughout this paper.

Proposition 1.8. [4, 1.5] In any C^* -algebra A, the following hold:

- (i) If p, q are infinite projections and pq = 0, then p + q is an infinite projection.
- (ii) If p is an infinite projection, and $p' \sim p$, then p' is an infinite projection.
- (iii) If p and q are infinite projections, then there exists an infinite projection p' such that $p \sim p'$ and p' < q, moreover q - p' is an infinite projection.

Theorem 1.9. [2, 6.11.9] Two infinite projections in a simple unital C^* -algebra are equivalent if and only if they have the same K_0 -class. Two non-trivial projections with the same K_0 -class in a purely infinite C^* -algebra are unitarily equivalent.

2. The $\mathcal{O}_n(2 \leq n < \infty)$ Case

We prove the following result which is valid for the Cuntz algebras $\mathcal{O}_n (2 \le n \le \infty)$. The proof is similar to [1, Lemma 2.2], in the case of the UHF-algebras. For completeness we have.

Lemma 2.1. Let u and v be two involutions of $\mathcal{O}_n(2 \le n \le \infty)$. Then u is conjugate to v if and only if they have the same type.

Proof. If u and v are conjugate involutions of $\mathcal{O}_n(2 \leq n \leq \infty)$, then as in [1, Lemma 2.2], there exists a unitary w in $\mathcal{U}(\mathcal{O}_n)$ such that $u = wvw^*$. But u = 1 - 2e and v = 1 - 2f for some projections e, f in A, so $u = w(1 - 2f)w^* = 1 - 2wfw^*$, therefore $e = wfw^*$ and by Theorem 1.9, [e] = [f].

Conversely, assume that the involutions u and v have the same type. Then u = 1 - 2p and v = 1 - 2q, for some $p, q \in \mathcal{P}(\mathcal{O}_n)$ with [p] = [q] in $K_0(\mathcal{O}_n)$ group. Then by Theorem 1.9, the projections p and q are unitarily equivalent, and therefore $u = wvw^*$ for some $w \in \mathcal{U}(\mathcal{O}_n)$. \Box

Proposition 2.2. In $\mathcal{O}_n(2 \leq n \leq \infty)$, the involution $u_i(i = 1, ..., n)$ has type 1.

Proof. As $u_i = 1 - 2p_i$, the type of u_i is $[p_i]$. By definition $p_i = s_i s_i^*$ and $s_i^* s_i = 1$; therefore by Theorem 1.9, we have $[p_i] = [1]$.

The following result is based on [4, 3.7, 3.8]; that is $K_0(\mathcal{O}_n) \simeq \mathbb{Z}_{n-1}$.

Proposition 2.3. If $0 \le k \le n-2$; $n < \infty$, then there exists an involution in \mathcal{O}_n of type k (in fact, of type k[1]).

Proof. Let $p_1, p_2, \ldots p_n$ be the standard projections of \mathcal{O}_n , and $v_k = 1 - 2(p_1 + p_2 + \cdots + p_k)$; for $0 \le k \le n-2$. Then v_k is an involution in \mathcal{O}_n of type equal to k.

Lemma 2.4. If \mathcal{N} is a normal subgroup of $\mathcal{U}(\mathcal{O}_n)(n < \infty)$, which contains an involution of the type 1([1]), then \mathcal{N} contains an involution of any given type.

Proof. As \mathcal{N} is a normal subgroup of $\mathcal{U}(\mathcal{O}_n)$, and it contains an involution of the type 1, then by Lemma 2.1, \mathcal{N} contains $u_i(i = 1, ..., n)$. Then $u_1u_2 = (1 - 2p_1)(1 - 2p_2) = 1 - 2(p_1 + p_2)$, which is an involution of type 2, contained in \mathcal{N} . Also $u_1u_2u_3$ is an involution in \mathcal{N} of type 3. Keep going we have $u_1u_2...u_k = 1 - 2(p_1 + p_2 + \cdots + p_k)$ is an involution in \mathcal{N} of type $k(1 \le k \le n-2)$, hence \mathcal{N} contains an involution of any given type, which proves the required. \Box

Lemma 2.5. Let \mathcal{N} be a normal subgroup of $\mathcal{U}(\mathcal{O}_n)$, and suppose that n-1 is a prime number. If \mathcal{N} contains a non-trivial involution of \mathcal{O}_n , then \mathcal{N} contains the involution u_1 .

Quit

Proof. Suppose that $v \in \mathcal{N}$ such that v = 1 - 2p and v is of type k, i.e. [p] = k. If k = n - 1, then $[p] = 0 \in K_0(\mathcal{O}_n)$, by Proposition 1.8(ii) we must have p = 0 and then v = 1 which gives a contradiction as v is non-trivial. Therefore we consider $1 \leq k \leq n-2$. We may assume that p < 1, since if p = 1, then v = -1 which is an involution of type one, and this ends the proof. As n-1 is a prime, there exist integers s and t such that sk + t(n-1) = 1, then sk = 1 in \mathbb{Z}_{n-1} . By Proposition 1.8(iii), we can find mutually orthogonal projections $q_1, q_2, \ldots q_s$, with $[q_i] = [p]$, $i = 1, \ldots s$. Let $v_i = 1 - 2q_i$, $i = 1, \ldots s$. Then for every i, v_i there is an involution of the type k, which belongs to \mathcal{N} as it is conjugate to v. Therefore

$$v_1 v_2 \dots v_s = 1 - 2(q_1 + q_2 + \dots + q_s)$$

is an involution in \mathcal{N} , and the type of $v_1v_2\ldots v_s$ is $sk = 1 \in \mathbb{Z}_{n-1}$.

By imitating the same proof in the previous result, we can rewrite Lemma 2.5 as follows:

Lemma 2.6. Let \mathcal{N} be a normal subgroup of $\mathcal{U}(\mathcal{O}_n)$. If \mathcal{N} contains an involution of type k such that k and n-1 are relatively primes, then \mathcal{N} contains an involution of type 1.

Therefore, we have the following theorem.

Theorem 2.1. A non-trivial involution u normally generates the group $\mathcal{U}(\mathcal{O}_n)$ if either

- (1) n-1 is a prime number, or
- (2) the type of u is relatively prime to n-1.

Proof. If \mathcal{N} is a normal subgroup of $\mathcal{U}(\mathcal{O}_n)$ that contains a non-trivial involution with hypothesis of either (1) or (2), then by either Lemma 2.5 or Lemma 2.6, \mathcal{N} contains an involution of type 1, therefore by Lemma 2.4, \mathcal{N} contains an involution of any given type, then by Lemma 2.1 it contains all involutions, hence by Leen's result $\mathcal{N} = \mathcal{U}(\mathcal{O}_n)$.

Quit

3. The \mathcal{O}_{∞} Case

In this section, we discuss the case of the Cuntz algebra \mathcal{O}_{∞} . We may ask, if a normal subgroup of $\mathcal{U}(\mathcal{O}_{\infty})$ contains a non-trivial involution u_0 , then does it contain all the involutions of \mathcal{O}_{∞} ? Hence by using Leen's result in Theorem 1.2, \mathcal{O}_{∞} is normally generated by a non-trivial involution u_0 . We give a positive answer to the question under some conditions on the non-trivial involution u_0 .

Recall that the Cuntz algebra \mathcal{O}_{∞} is the universal unital C^* -algebra generated by an infinite sequence of isometries s_1, s_2, s_3, \ldots with mutually orthogonal projections $p_j = s_j s_j^*$. The involution $1 - 2p_j$ is denoted by u_j $(1 \le j \le \infty)$.

Now let us recall the following main results concerning \mathcal{O}_{∞} .

Theorem 3.1. [4, 3.11]

- (i) $K_0(\mathcal{O}_\infty) \cong \mathbb{Z}$.
- (ii) $K_1(\mathcal{O}_\infty) \cong 0.$

Theorem 3.2. [4, 3.12] In \mathcal{O}_{∞} , every projection is equivalent to a projection either of the form $\sum_{i=1}^{k} s_i s_i^*$ $(1 \le k < \infty)$ or $1 - \sum_{i=1}^{k} s_i s_i^*$ $(1 \le k < \infty)$.

In \mathcal{O}_{∞} , the type of an involution v is n[1], for some $n \in \mathbb{Z}$, and we write that v has the type $n \in \mathbb{Z}$. Recall that Lemma 2.1 is also valid for \mathcal{O}_{∞} .

Now we start by proving the following lemma, which is similar to Lemma 2.4 in the case of \mathcal{O}_n , where n is a finite number.

Lemma 3.3. If \mathcal{N} is a normal subgroup of $\mathcal{U}(\mathcal{O}_{\infty})$, which contains an involution of the type 1, then \mathcal{N} contains an involution of any given type.

Proof. As \mathcal{N} contains an involution of type 1, and \mathcal{N} is a normal subgroup of $\mathcal{U}(\mathcal{O}_{\infty})$, we have that N contains all the involutions $u_i i = 1, 2, \ldots$ Then $u_1 u_2$ is an involution in \mathcal{N} of type 2

Quit

indeed, if $k \in \mathbb{Z}^+$, then $u_1 u_2 \dots u_k = 1 - 2(p_1 + p_2 + \dots + p_k)$ is an involution in \mathcal{N} of type k. Also, \mathcal{N} contains an involution of type 0, as $1 \in \mathcal{N}$.

Now it is enough to prove that \mathcal{N} contains an involution of any negative type. Recall that if p is a projection of \mathcal{O}_{∞} , then by Theorem 3.2, either p is equivalent to $\sum_{i=1}^{k} s_i s_i^*$, hence [p] = k[1] or p is equivalent to $1 - \sum_{i=1}^{k} s_i s_i^*$, hence [p] = (1-k)[1], for some $k \in \mathbb{Z}^+$. As \mathcal{N} contains involutions of type 1, then the involution -1 belongs to \mathcal{N} . Hence for each $k \in \mathbb{Z}^+$, $-u_1 u_2 \ldots u_k \in \mathcal{N}$, and

$$-u_1u_2\dots u_k = -(1-2(p_1+p_2+\dots+p_k))$$

= -1+2(p_1+p_2+\dots+p_k)
= 1-2(1-(p_1+p_2+\dots+p_k)),

 \square

therefore, $-u_1u_2...u_k$ is an involution of type 1-k and the lemma has been checked.

Therefore, we have the following main result

Theorem 3.4. Any involution of type 1 normally generates the group $\mathcal{U}(\mathcal{O}_{\infty})$.

Proof. Suppose that \mathcal{N} is a normal subgroup of $\mathcal{U}(\mathcal{O}_{\infty})$ that contains an involution of the type 1. By using Lemma 3.3, we have that \mathcal{N} contains an involution of any given type, therefore by Lemma 2.1, \mathcal{N} contains all the involutions, hence by Leen's result in Theorem 1.2, $\mathcal{N} = \mathcal{U}(\mathcal{O}_{\infty})$. \Box

Let us now prove our main result.

Theorem 3.5. Any involution of odd type normally generates the group $\mathcal{U}(\mathcal{O}_{\infty})$.

Proof. Case 1: Suppose that \mathcal{N} contains an involution of type 2k + 1, for some positive integer k. By normality of \mathcal{N} , we may assume that $v = 1 - 2\sum_{i=1}^{2k+1} p_i \in \mathcal{N}$, also $u = 1 - 2\sum_{i=2}^{2k+2} p_i \in \mathcal{N}$.

Therefore, we have that

$$vu = (1 - 2\sum_{i=1}^{2k+1} p_i)(1 - 2\sum_{i=2}^{2k+2} p_i) = 1 - 2(p_1 + p_{2k+2}),$$

which is an involution in \mathcal{N} of type 2, hence \mathcal{N} contains all involutions of the type 2. Then

$$(1-2(p_1+p_2))(1-2(p_3+p_4))\dots(1-2(p_{2k-1}+p_{2k})) = 1-2\sum_{i=1}^{2k} p_i \in \mathcal{N}.$$

Therefore \mathcal{N} contains the involution

$$(1-2\sum_{i=1}^{2k+1}p_i)(1-2\sum_{i=1}^{2k}p_i) = 1-2p_{2k+1},$$

which is of the type 1, hence by Theorem 3.4, we have the desired.

Case 2: Suppose that \mathcal{N} contains an involution v of the type -k, where $k \in \mathbb{Z}^+$, which is odd. Then by normality of \mathcal{N} and Lemma 2.1, the involution $w_1 = 1 - 2(1 - (p_1 + p_2 + \cdots + p_{k+1}))$ belongs to \mathcal{N} , as its type is -k. In fact, $w_1 = -u_1u_2 \dots u_ku_{k+1}$. Similarly, the involution $w_2 = 1 - 2(1 - (p_2 + p_3 + \cdots + p_{k+2}))$ belongs to \mathcal{N} and $w_2 = -u_2u_3 \dots u_{k+2}$. Therefore, the involution $w_1w_2 = u_1u_{k+2} \in \mathcal{N}$, hence \mathcal{N} contains all involutions of type 2, by using Lemma 2.1. As k+1 is an even integer, we get $w_3 = (u_1u_2)(u_3u_4) \dots (u_ku_{k+1}) \in \mathcal{N}$. Therefore we have that $w_1w_3 = -1 \in \mathcal{N}$, which is an involution of type 1, hence by Theorem 3.4, the proof is completed. \Box

Finally, we conclude by noting that similar arguments show that a normal subgroup of $\mathcal{U}(\mathcal{O}_n)$ which contains a non-trivial involution (of any type) necessarily contains all the involutions of even type.

Quit

- 1. Al-Rawashdeh A., On Normal Subgroups of Unitary Groups of Some Unital AF-Algebras, Sarajevo Journal of Mathematics, **3**(16), (2007), 233–240.
- 2. Blackadar B., *K-Theory for Operator Algebras*, Second Edition, MSRI Publications, **5**, Cambridge University Press, Cambridge 1998.
- 3. Broise M., Commutateurs Dans le Groupe Unitaire d'un Facteur, J. Math. Pures et appl., 46 (1967), 299–312.
- 4. Cuntz J., K-Theory for Certain C*-Algebras, Ann. of Math., 113 (1981), 181–197.
- 5. _____, Simple C*-Algebras Generated by Isometries, Comm. Math. Phys., 57 (1977), 173–185.
- Davidson K. R., C*-Algebras by Example, Fields Institute Monographs, 6, Amer. Math. Soc., Providencs, RI 1996.
- 7. Dixmier J., Les algébres d'opérateurs dans l'espace hilbertien (algébres de von Neumann), Sécond Édition, Gauthier-Villars 1969.
- 8. de la Harpe P., Simplicity of the Projective Unitary Groups Defined by Simple Factors, Comment. Math. Helv., 54 (1979), 334–345.
- 9. de la Harpe P. and Jones V. F. R, An Introduction to C^{*}-Algebras, Université de Genève, 1995.
- 10. Leen M., Factorization in the Invertible Group of a C*-Algebra, Canad. J. Math., 49(6) (1997), 1188–1205.

A. Al-Rawashdeh, Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan, *e-mail*: rahmed720just.edu.jo

