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A MEAN VALUE PROPERTY FOR PAIRS OF INTEGRALS

A. B. MINGARELLI, J. M. PACHECO and A. PLAZA

Abstract. We show that for any two continuous real valued functions f, g on [0, 1], the problemZ 1

0
f(x) dx ·

Z c

0
w(x) g(x) dx =

Z 1

0
g(x) dx ·

Z c

0
w(x) f(x) dx,

always has at least one solution c ∈ (0, 1), for a general class of weight-functions. Some applications
are given.

Mean value theorems for the integral calculus lie at the heart of analytical estimations of all kinds
in mathematical analysis, see e.g., [3], [5]. In some cases they can be used to determine the sign
of a given complicated looking integral without its actual evaluation, or estimation of the sizes of
remainders in the study of infinite series, etc. (see [4, pp. 65 ff.]). Although many different kinds
of mean value theorems for integrals now exist and have been generalized to all sorts of spaces
and situations, we return to the basic one-dimensional real scenario and present one more such
theorem with interesting applications.

The problem under consideration is this: there is given a real valued fixed continuous function
w(x) on [0, 1] (thought of as a weight-function), to determine those real valued continuous functions
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f, g on [0, 1] for which there exists a number c ∈ (0, 1) such that∫ 1

0

f(x) dx ·
∫ c

0

w(x) g(x) dx =
∫ 1

0

g(x) dx ·
∫ c

0

w(x) f(x) dx.(1)

Note that (1) may be satisfied for given w, f, g: For example, if
∫ 1

0
f(x) dx =

∫ 1

0
g(x) dx = 0

then (1) has infinitely many solutions, namely the whole c-interval [0, 1]. It may have exactly one
solution as in the case, say, where for every x ∈ [0, 1], f(x) := 1, w(x) := x, and g(x) := x2, where
the value of c is near 0.8. Finally, (1) may have no solution c ∈ (0, 1) whatsoever, e.g., in the case
where w(x) = 1, g(x) = 1, f(x) = x.

In the original question [1] the weight-function is simply the identity function, w(x) = x, where
it is alleged that (1) holds for all real valued continuous functions on [0, 1]. We show that (1)
always has a solution for any given pair f, g of continuous functions so long as the weight is
suitably restricted (a situation which of course includes the case w(x) = x in [1] and which was
solved separately in [2]). We also observe that our restrictions on the weight are essentially best
possible for (1) to hold for all continuous functions, in that counterexamples exist if the weight
fails to be of the type given here.

In the sequel we let

W = {w : [0, 1] → R+|w ∈ C1(0, 1), w′(x) ≥ 0, x ∈ [0, 1]}

and S = C[0, 1]. One of the consequences of our main theorem, Theorem 1 below, is the following
mean value theorem for integrals: Let w ∈ W be a non-constant function on [0, 1]. If f ∈ S satisfies∫ 1

0

f(s) ds = 0



JJ J I II

Go back

Full Screen

Close

Quit

then there is a point c ∈ (0, 1) such that∫ c

0

w(s) f(s) ds = 0,

that is, the mean value of wf over (0, c) is zero.
Another application of our main result is the investigation that the notion of orthogonality in

the ordinary space of square integrable functions is pervasive (see Example 4 below). This is to be
taken in the sense that such an orthogonality relation between two functions implies (for a general
class of weights) orthogonality in an associated space of weighted square integrable functions, but
on a subinterval of (0, 1). This is all a consequence of the following main result.

Theorem 1. Let w ∈ W be a non-constant function on [0, 1]. For any f, g ∈ S problem (1)
always has at least one solution c ∈ (0, 1).

Proof. To see this note that if
∫ 1

0
f(x) dx = 0 and

∫ 1

0
g(x) dx = 0 then (1) holds for every c ∈

[0, 1]. So, without loss of generality we may assume that
∫ 1

0
g(x) dx 6= 0. Write h(t) = f(t)−mg(t)

where the real number m is chosen so that∫ 1

0

h(s) ds = 0.(2)

Thus, m =
∫ 1

0
f(x) dx/

∫ 1

0
g(x) dx. Observe that (1) has a solution c ∈ (0, 1) if and only if∫ c

0

w(s) h(s) ds = 0(3)
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(for the same value of c). If possible, assume that (3) fails for all c ∈ (0, 1). Write H(t) =
∫ t

0
h(s) ds.

Then, by (2), H(1) = 0 while an integration by parts shows that∫ t

0

w(s)h(s) ds = w(t)H(t)−
∫ t

0

w′(s)H(s) ds.(4)

Since the left side of (4) is necessarily of one sign by our assumption, we may assume that it is
positive for every t ∈ (0, 1), that is∫ t

0

w(s) h(s) ds > 0, t ∈ (0, 1).(5)

Thus,

H(t) >
1

w(t)

∫ t

0

H(s) w′(s) ds := H1(t)(6)

for t ∈ (0, 1). Writing R(t) =
∫ t

0
w′(s) H(s) ds, (6) gives w(t) H(t) > R(t). Since w is non-

decreasing there follows w(t) H(t) w′(t) ≥ R(t)w′(t). On the other hand, H(t)w′(t) = R′(t).
Hence,

R′(s) ≥ w′(s)
w(s)

R(s)(7)

for s ∈ (0, 1). For 0 < s < t we divide both sides of (7) by w(s) to find, upon rearranging terms,

d

ds

(
R(s)
w(s)

)
≥ 0.

Integrating the latter over the s-interval, 0 < α < s < t, and simplifying we obtain

R(t)−R(α)
w(t)
w(α)

≥ 0.
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This implies that R(t)/w(t) = H1(t) is non-decreasing over (0, 1). Observe that H1(t) may be
defined so as to be right-continuous at t = 0 by defining H1(0) = 0. So, passing to the limit as
t → 1− in (6) we see that H(1) ≥ H1(1) ≥ 0, or H1(1) = 0 (since H(1) = 0). Hence H1(t) ≡ 0 on
[0, 1] which implies R(t) ≡ 0 on [0, 1]. Using this fact in (4) it yields∫ t

0

w(x)h(x) dx = w(t)
∫ t

0

h(s) ds,(8)

for all t ∈ [0, 1]. Differentiating this identity and collecting terms we get that

w′(t)
∫ t

0

h(s) ds ≡ 0, t ∈ (0, 1).(9)

Since w′(t) is not identically zero on (0, 1), there is a t0 ∈ (0, 1) such that w′(t0) 6= 0 and so, by
(9), we must have

∫ t0
0

h(s) ds = 0. Therefore, the left side of (8) must vanish at t = t0 and this
contradicts (5).

If the left side of (4) is negative for all t ∈ (0, 1), then the previous argument may be used with
the necessary changes to show that H1(t) is now non-increasing for all t ∈ (0, 1) and this leads to a
contradiction once again. It follows that the left side of (4) cannot be of one sign for all t ∈ (0, 1)
and so there must exist a point c such that (1) holds. On the other hand, if

∫ 1

0
g(x) dx = 0, we

simply redefine h(x) by interchanging f and g and proceed as above. �

We consider the optimality of the conditions on the weight-function w in Theorem 1 and show
that the conditions imposed upon w here are essentially best possible.

Firstly, w(x) cannot be non-negative everywhere in (0, 1). It may be easily seen by considering
the choice f(x) = cos πx, g(x) = 1, and by defining w as a C1(0, 1)-function whose support is
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[0, 1/2] (hence w(x) ≡ 0 on (1/2, 1]) with, in addition, w(x) > 0 on its support. In this case,
since w(x)f(x) > 0 on (0, 1/2) and is identically zero on (1/2, 1), there is no c ∈ (0, 1) such that∫ c

0
w(s)f(s) ds = 0, hence (1) fails.
Secondly, consider the possibility that w may be negative somewhere in (0, 1). Then the func-

tions g(x) = cos πx, f(x) = 1, w(x) = g(x), show that Theorem 1 is also false for this choice of
functions.

Next, consider the possibility that w may be decreasing and positive. In this case observe that
the choice g(x) = cos πx, f(x) = 1, w(x) = 1 − x, shows that Theorem 1 fails, i.e., there is no
value of c ∈ (0, 1) such that (1) holds. Thus, the condition on the sign of the derivative of w may
not be removed in general.

We have seen by means of an example that if w(x) is identically constant on [0, 1] then Theorem 1
may fail as well (see the Introduction). On the other hand, it is perfectly possible for w(x) to be
identically constant on a subinterval J ⊂ (0, 1) so long as w′(x)

∫ x

0
h(t) dt 6= 0 for x ∈ [0, 1]\J . For

example, let f(x) = cos πx, g(x) = 1. Define a weight-function w ∈ W by

w(x) =

{
1− (x− 1/2)2, if 0 ≤ x ≤ 1/2,

1, if 1/2 < x ≤ 1.

Then w′(x)
∫ x

0
h(t) dt = 0 for x ∈ [1/2, 1) and is non-zero in (0, 1/2). Since w ∈ W , Theorem 1

guarantees that the corresponding relation (1) given by∫ c

0

g(x) w(x) dx = 0,

has at least one root c ∈ (0, 1). Using Newton iterations one can readily verify the location of such
a root at x ≈ 0.9631.

In another vein, the smoothness of w may be weakened to absolute continuity without affecting
the conclusion of the main theorem although the proof needs further technical interpretations
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(e.g., inequalities and equalities are generally in the almost everywhere sense and integrals are to
be thought of as Lebesgue integrals). In fact, the proof as presented here may be used with the
stated interpretations to show that the theorem admits an extension to functions f, g ∈ Lp

w(0, 1),
with a suitable interpretation for the weight.

Our main result is in the spirit of a “mean value theorem” for integrals because of the following
simple consequence of Theorem 1 (say, with g(x) = 1).

Example 2. Let w ∈ W be a non-constant function on [0, 1]. If f ∈ S satisfies∫ 1

0

f(s) ds = 0

then there is a point c ∈ (0, 1) such that∫ c

0

w(s) f(s) ds = 0,

that is, the mean value of wf over (0, c) is zero.

Example 3. Replacing f , g ∈ S by their squares gives a more appealing inequality reminiscent
of the theory of Hilbert spaces: For example, consider the equality∫ 1

0

f(x)2 dx ·
∫ c

0

w(x) g(x)2 dx =
∫ 1

0

g(x)2 dx ·
∫ c

0

w(x) f(x)2 dx

obtained by replacing f, g by their squares in (1). This really says that given any f, g ∈ S (each
non-identically zero), w ∈ W a non-constant function, there always exists a point c ∈ (0, 1] such
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that
‖f‖

L2w(0,c)

‖g‖
L2w(0,c)

=
‖f‖

L2 (0,1)

‖g‖
L2 (0,1)

where the quantities are the norms in the respective spaces of (weighted) square integrable func-
tions. Thus, for instance, if f, g ∈ S have equal L2(0, 1)-norms, then for given w ∈ W a non-
constant function, there is a point c ∈ (0, 1) such that their norms in the weighted space L2

w(0, c)
are also equal. A more curious example deals with functions orthogonal in spaces of square inte-
grable functions.

Example 4. For fixed i 6= j let f(x) = Pi(x) Pj(x) be the product of two orthogonal functions
on [0, 1] (e.g., orthogonal polynomials like the shifted Legendre polynomials), i.e., let∫ 1

0

Pi(x)Pj(x) dx = 0.

Setting g(x) = 1, Theorem 1 implies that for every non-identically constant function w(x) ∈ W ,
there is a point cij ∈ (0, 1] such that∫ cij

0

Pi(x) Pj(x) w(x) dx = 0.

In other words, given any set of orthogonal functions in the space commonly known as L2(0, 1) (but
using continuous functions for simplicity) and given any weight-function w(x) satisfying the usual
conditions above, there exists an interval [0, cij ] such that these functions are also L2-orthogonal
with respect to the weight-function w(x) on [0, cij ]. Loosely speaking, we get that L2-orthogonality
always implies weighted L2-orthogonality on some other intervals, or in other words, that orthog-
onality is pervasive in the weighted Lebesgue spaces of square integrable functions. This is a
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surprising result and one which is not easy to conceive. Of course, changing the pair of functions
will usually change the interval (and thus the space where orthogonality prevails).
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