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CUBIC EDGE-TRANSITIVE GRAPHS OF ORDER 4p2

M. ALAEIYAN and B. N. ONAGH

Abstract. A regular graph Γ is said to be semisymmetric if its full automorphism group acts tran-
sitively on its edge-set but not on its vertex-set. It was shown by Folkman [5] that a regular edge-

transitive graph of order 2p or 2p2 is necessarily vertex-transitive, where p is a prime. In this paper, it
is proved that there is no connected semisymmetric cubic graph of order 4p2, where p is a prime.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For
a graph Γ, we denote by V (Γ), E(Γ), A(Γ) and Aut(Γ) its vertex set, edge set, arc set and full
automorphism group, respectively. For u, v ∈ V (Γ), denote by uv the edge incident to u and v in Γ,
and by NΓ(u) the neighborhood of u in Γ, that is, the set of vertices adjacent to u in Γ. If a subgroup
G of Aut(Γ) acts transitively on V (Γ), E(Γ) and A(Γ), we say that Γ is G-vertex-transitive, G-
edge-transitive and G-arc-transitive, respectively. In the special case, when G =Aut(Γ) we say that
Γ is vertex-transitive, edge-transitive and arc-transitive (or symmetric), respectively. A regular G-
edge-transitive but not G-vertex-transitive graph, will be referred to as a G-semisymmetric graph.
In particular, if G =Aut(Γ), then the graph Γ is said to be semisymmetric.

Let N be a subgroup of Aut(Γ). The quotient graph Γ/N or ΓN of Γ relative to N is defined
as the graph such that the set Σ of N -orbits in V (Γ) is the vertex set of Γ/N and B,C ∈ Σ are
adjacent if and only if there exist u ∈ B and v ∈ C such that uv ∈ E(Γ).
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A graph Γ̃ is called a covering of a graph Γ with projection ℘ : Γ̃ → Γ, if ℘ is a surjection from
V (Γ̃) to V (Γ) such that ℘ |NeΓ(ṽ) : NeΓ(ṽ) → NΓ(v) is a bijection for any vertices v ∈ V (Γ) and
ṽ ∈ ℘−1(v). The fibre of an edge or a vertex is its preimage under ℘. If Γ̃ is connected, then any
two vertex or edge fibres are of the same cardinality n. This number is called the fold number of
the covering and we say that ℘ is an n-fold covering. A covering Γ̃ of Γ with a projection ℘ is
said to be regular (or K-covering) if there is a semiregular subgroup K of the automorphism group
Aut(Γ̃) such that graph Γ is isomorphic to the quotient graph Γ̃/K, say by h, and the quotient
map Γ̃ → Γ̃/K is the composition ℘h of ℘ and h.

Covering techniques have been known as a powerful tool in topology and graph theory for a
long time. The study of semisymmetric graphs was initiated by Folkman [5]. There is given
a classification of semisymmetric graphs of order 2pq in [4], where p and q are distinct primes.
Semisymmetric cubic graphs of orders 2p3 and 6p2 are classified in [8, 7], and also in [1] it is
proved that every edge-transitive cubic graph of order 8p2, where p is a prime, is vertex-transitive.
In [3], an overview of known families of semisymmetric cubic graphs is given.

In this paper, we investigate semisymmetric cubic graphs of order 4p2, where p is a prime. The
following is the main result of this paper.

Theorem 1.1. Let p be a prime. Then there is no connected semisymmetric cubic graph of
order 4p2.

2. Primary Analysis

The following proposition is a special case of [7, Lemma 3.2].

Proposition 2.1. Let Γ be a connected G-semisymmetric cubic graph with bipartition sets U(Γ)
and W (Γ), where G ≤ Aut(Γ). Moreover, suppose that N is a normal subgroup of G. If N is
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intransitive on bipartition sets, then N acts semiregularly on both U(Γ) and W (Γ), and Γ is an
N -regular covering of an G/N -semisymmetric graph.

We quote the following propositions.

Proposition 2.2. [8, Proposition 2.4] The vertex stabilizers of a connected G-edge-transitive
cubic graph Γ have order 2r · 3, r ≥ 0. Moreover, if u and v are two adjacent vertices, then
|G : 〈Gu, Gv〉| ≤ 2 and the edge stabilizer Gu ∩Gv is a common Sylow 2-subgroup of Gu and Gv.

Proposition 2.3 ([9]). Every both edge-transitive and vertex-transitive cubic graph is symmet-
ric.

Proposition 2.4 ([2]). If Γ̃ is a bipartite covering of a non-bipartite graph Γ, then the fold
number is even.

3. Proof of Theorem 1.1

Lemma 3.1. Suppose that Γ is a connected semisymmetric cubic graph of order 4p2, where
p ≥ 11 is an odd prime. Set A :=Aut(Γ). Moreover, suppose that Q := Op(A) is the maximal
normal p-subgroup of A. Then |Q| = p2.

Proof. Let Γ be a semisymmetric cubic graph of order 4p2 and set A :=Aut(Γ). Then Γ is a
bipartite graph. Denote by U(Γ) and W (Γ) the bipartition sets of Γ, where |U(Γ)| = |W (Γ)| = 2p2.
By Proposition 2.2, |A| = 2r3p2, where r ≥ 1 as A is transitive on the bipartition sets of Γ of
size 2p2. We claim that A is solvable. Otherwise, by the classification of finite simple groups, its
composition factors would have to be an A5 or PSL(2, 7) (see [6]), which is a contradiction to
order of A. Let Q := Op(A) be the maximal normal p-subgroup of A. We will show that |Q| = p2.

First, suppose that |Q| = 1. Let N be a minimal normal subgroup of A. By solvability of A,
N is solvable and so N is elementary Abelian. Therefore, N is intransitive on each of the both
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bipartition sets U(Γ) and W (Γ), and hence by Proposition 2.1, N acts semiregularly on U(Γ) (also
on W (Γ)). Therefore, |N | = 2. Now, we consider the quotient graph ΓN of Γ relative to N , where
ΓN is A/N -semisymmetric. We have |U(ΓN )| = |W (ΓN )| = p2. Let M/N is a minimal normal
subgroup of A/N . Since A/N is solvable, M/N is also solvable and hence is elementary Abelian.
It is easy to check that |M/N | = p or p2. So it follows that the order of normal subgroup M of
A is equal to 2p or 2p2. Suppose that P is a Sylow p-subgroup of M . Then one can see that P is
normal and hence is characteristic in M . Therefore, A has a normal subgroup of order p or p2. It
is a contradiction, and thus |Q| 6= 1.

Now, suppose that |Q| = p. Let ΓQ be the quotient graph of Γ relative to Q, where ΓQ is
A/Q-semisymmetric. We have |U(ΓQ)| = |W (ΓQ)| = 2p. Suppose that N/Q is a minimal normal
subgroup of A/N . Similar to before, N/Q is elementary Abelian. So by Proposition 2.1, N/Q is
semiregular on each of the both bipartition sets U(ΓQ) and W (ΓQ) and hence |N/Q| = 2. Now,
suppose that ΓN is the quotient graph Γ relative to N with |U(ΓN )| = |W (ΓN )| = p, where ΓN is
A/N -semisymmetric. Further, let M/N be a minimal normal subgroup of A/N . Then as above,
we must have |M/N | = p and hence M is a normal subgroup of A of order 2p2. Therefore, A has
a normal subgroup of order p2. Now we can get a contradiction. The result now follows. �

Proof of Theorem 1.1. Suppose to the contrary that Γ is a (connected) semisymmetric cubic
graph of order 4p2. By [3], there is no semisymmetric cubic graph of order 4p2, where p ≤ 7.
We can assume that p ≥ 11 is an odd prime. By Lemma 3.1, Q := Op(A) is of order p2. So by
Proposition 2.1, Γ is a Q-covering of A/Q-semisymmetric graph ΓQ, where ΓQ is an edge-transitive
cubic graph of order 4. But by [3] and Proposition 2.3, ΓQ is symmetric. Hence ΓQ is the complete
graph K4. Since Γ is bipartite, K4 is non-bipartite and also p2 is odd, we come to a contradiction
to Proposition 2.4. Thus the proof of Theorem 1.1 is completed. �

By Theorem 1.1, Theorem 2 of [5], Theorem 1.1 of [1] and Proposition 2.4, we have the following
corollary
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Corollary 3.2. Every connected edge-transitive cubic graph of order 2αp2 is symmetric, where
α ∈ {1, 2, 3} and p is a prime.

Now one may ask the following problem.

Problem 3.3. Classify all connected semisymmetric cubic graphs of order 2αpn, where p is a
prime and n, α ≥ 1.
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3. Conder M., Malnič A., Marušič D. and Potočnik P., A census of semisymmetric cubic graphs on up to 768
vertices, J. Algebr. Comb., 23 (2006), 255–294.

4. Du S. F. and Xu M. Y., A classification of semisymmetric graphs of order 2pq, Com. in Algebra, 28(6) (2000),
2685–2715.

5. Folkman J., Regular line-symmetric graphs, J. Combin. Theory, 3 (1967), 215–232.

6. Gorenstein D., Finite Simple Groups, New York: Plenum Press, 1982.

7. Lu Z., Wang C.Q. and Xu M. Y., On semisymmetric cubic graphs of order 6p2, Science in China Ser. A
Mathematics, 47 (2004), 11–17.
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