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HYPERGEOMETRIC SERIES ASSOCIATED
WITH THE HURWITZ-LERCH ZETA FUNCTION

M. G. BIN-SAAD

Abstract. The present work is a sequel to the papers [3] and [4], and it aims at
introducing and investigating a new generalized double zeta function involving the

Riemann, Hurwitz, Hurwitz-Lerch and Barnes double zeta functions as particular

cases. We study its properties, integral representations, differential relations, series
expansion and discuss the link with known results.

1. Introduction

The double zeta function of Barnes [1] is defined by

ζ2(z; a,w) =
∞∑

m=0

∞∑
n=0

(a+ n+ ωm)−z,(1.1)

where a > 0 and ω is a non-zero complex number with | arg(ω)| < π.
The series (1.1) is absolutely convergent for Re z > 2 and its continuation is

holomorphic with respect to z except for the poles at z = 1 and z = 2.
For m = 0, equation (1.1) reduces to Hurwitz zeta function

ζ(z, a) =
∞∑

n=0

(a+ n)−z, (a 6= {0,−1,−2,−3, . . .}; Re z > 1),(1.2)

which is a generalization of the Riemann zeta function

ζ(z) =
∞∑

n=0

n−z.(1.3)

As a generalization of both Riemann and Hurwitz zeta functions the so-called
Hurwitz-Lerch zeta function is defined by [6, p. 27 (1)]

Φ(y, z, a) =
∞∑

n=0

yn

(a+ n)z
, (a ∈ C \ {0,−1,−2,−3, . . .}; |y| < 1).(1.4)
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Φ is an analytic function in both variables y and z in a suitable region and it
reduces to the ordinary Lerch zeta function when y = e2π i λ:

Φ(e2π i λ, z, a) = φ(λ, z, a) =
∞∑

n=0

e2π i nλ

(a+ n)z
.(1.5)

Next, here we recall a further generalization of the Hurwitz-Lerch zeta function
Φ(y, z, a) in the form (see [10, p. 100, eq. (1.5)])

Φ∗µ(x, z, a) =
∞∑

n=0

(µ)nx
n

(a+ n)zn!
,(1.6)

where (µ)n = Γ(µ+n)
Γ(µ) = µ(µ+1) . . . (µ+n−1) denotes the Pochhammer’s symbol,

µ ∈ C, a 6= {0,−1,−2,−3, . . .} and |x| < 1. Obviously, when µ = 1, (1.6) reduces
to (1.4).

In [4] Bin-Saad and Al-Gonah introduced two hypergeometric type generating
functions of the generalized zeta function defined by (1.6) in the forms:

ζ∗µ(x, y; z, a) =
∞∑

m=0

Φ∗µ(y, z +m,a)
xm

m!
,(1.7)

and

ζ∗µ,ν(x, y; z, a) =
∞∑

m=0

(ν)mΦ∗µ(y, z +m,a)
xm

m!
,(1.8)

which, in the special case when µ = 1, are essentially known formulas of Bin-
Saad [3]. Also, by noting that [21, p. 20, eq. (26)]

lim
|λ|→∞

{
(λ)n

(
xn

λ

)}
= xn,(1.9)

we eventually end up with

lim
|ν|→0

ζ∗µ,ν

(x
ν
, y; z, a

)
= ζ∗µ(x, y; z, a).(1.10)

The present work is a sequel to the author’s papers [3] and [4] and it aims at
introducing and investigating a new kind of hypergeometric-type generating func-
tions ζµ

λ (x, y; z, a) or infinite series associated with the Hurwitz-Lerch zeta func-
tion Φ(y, z, a). The results we will obtain and discuss are a further contribution a
long line developed in [3] and [4]. The layout of the paper is as follows. In Section 2
we introduce and describe some properties and relationships for the function ζµ

λ .
Relevant connections of the function ζµ

λ (x, y; z, a) with those considered in [3] and
[4] are also indicated. In Section 3 we establish several integral representations for
the function ζµ

λ involving integral representations of contour and Mellin-Barenes
type of integrals. Section 4 is devoted to the differentiation of the function ζµ

λ with
respect to the arguments x, y, z, λ, µ and a. In the final section, we present some
series expansions for the function ζµ

λ involving Appell’s function of two variables
F2 and the generalized hypergeometric function 3F2.
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2. The Generalized Double Zeta Function ζµ
λ (x, y; z, a)

Suggested by (1.1), (1.4) and (1.6) here we introduce a generalized double zeta
function of the form

ζµ
λ (x, y; z, a) =

∞∑
m=0

(µ)mΦ(y, z, a+ λm)
xm

m!
,(2.1)

where |x| < 1, |y| < 1; µ ∈ C \ {0,−1,−2, . . .}, λ ∈ C \ {0}; a ∈ C \ {−(n+ λm)},
{n,m} ∈ N ∪ {0} and Φ is the Hurwitz-Lerch zeta function defined by (1.4).

The alternative representation

ζµ
λ (x, y; z, a) =

∞∑
n=0

Φ∗µ

(
x, z,

a+ n

λ

)
yn

λz
,(2.2)

where Φ∗µ is the generalized zeta function defined by (1.6), follows by changing the
order of summations and considering equation (1.6). Clearly, we have the following
relationships

ζµ
λ (0, 1; z, a) = ζ1

1 (1, 0; z, a) = ζ(z, a),(2.3)

ζµ
λ (0, y; z, a) = Φ(y, z, a),(2.4)

ζµ
1 (x, 0; z, a) = Φ∗µ(y, z, a),(2.5)

ζ1
λ(1, 1; z, a) = ζ2(z; a, λ) =

∞∑
n=0

ζ

(
z,
a+ n

λ

)
λ−z.(2.6)

Indeed, the function ζµ
λ is a hypergeometric-type generating function of the func-

tions Φ and Φ∗µ defined by (1.4) and (1.6), respectively. The case when y = 0 of
the definition (2.1) suggests us to define the following further generalization of the
zeta function defined by (1.6)

ζµ
λ (x, 0; z, a) = Φ∗µ,λ(x, z, a) =

∞∑
m=0

(µ)mx
m

m!(a+ λm)z
,(2.7)

where |x| < 1; µ ∈ C \ {0,−1,−2, . . .}; a ∈ C \ {−(λm)}, m ∈ N ∪ {0}.
In the case when z = λ = 1, we have simply

ζµ
1 (x, y; 1, a) =

∞∑
m=0

∞∑
n=0

(µ)mx
myn

m!(a+m+ n)
= a−1

∞∑
m=0

∞∑
n=0

(a)m+n(µ)m(1)nx
myn

(a+ 1)m+nm!n!
,

which implies the next result.

Corollary 2.1. Let max{|x|, |y|} < 1, Re a > 0. Then

ζµ
1 (x, y; 1, a) = a−1F1[a, µ, 1; a+ 1; x, y],(2.8)

where F1 is the Appell’s function of two variables defined by the series [21, p. 22 (1)]

F1 [a, b, b′; c; x, y] =
∞∑

m,n=0

(a)m+n(b)m(b′)n

(c)m+n

xm

m!
yn

n!
.
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According to the relationship (2.4), equation (2.8) yields the following known result
[6, p. 30 (10)]

Φ(y, 1, a) = a−1
2F1[a, 1; a+ 1; y],

where 2F1 is the Gaussian hypergeometric function [6].

Corollary 2.2. Let λ = 1, |x| < 1 and |y| < 1. Then

ζµ
1 (xy, y; z, a) = (1− x)−µ Φ(y, z, a),(2.9)

and

ζµ
1 (x, yx; z, a) =

∞∑
n=0

(µ)n

(a+ n)z 2F1

 −n, 1;
y

1− µ− n;

 xn

n!
.(2.10)

Proof. We have

ζµ
1 (xy, y; z, a) =

∞∑
n=0

∞∑
m=0

(µ)mx
myn+m

m!(a+ n+m)z
.

Then by letting n → n − m and considering the Hurwitz-Lerch zeta function
Φ(y, z, a) defined by (1.4), we get (2.9). Similarly, one can prove the result (2.10).

�

Remark 2.1. In view of the definition (1.4), the results (2.9) and (2.10) can
be rewritten in the forms

∞∑
n=0

(µ)nΦ(y, z, a+ n)
(xy)n

n!
= (1− x)−µ Φ(y, z, a),(2.11)

and
∞∑

n=0

(µ)n

(a+ n)z
Φ(yx, z, a+ n)

xn

n!

=
∞∑

n=0

(µ)n

(a+ n)z 2F1

 −n, 1;
y

1− µ− n;

 xn

n!
,

(2.12)

respectively.

Further, for y = 1, the formulas (2.11) and (2.12) reduce to the interesting
results

∞∑
n=0

(µ)nζ(z, a+ n)
xn

n!
= (1− x)−µ ζ(z, a),(2.13)

and
∞∑

n=0

(µ)nΦ(x, z, a+ n)
xn

n!
= Φ∗µ+1(x, z, a),(2.14)

respectively.
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Remark 2.2. For µ = 1, the formula (2.12) yields the result

∞∑
n=0

Φ(yx, z, a+ n)xn = (1− y)−1 Φ(x, z, a).(2.15)

Whereas, for µ = 1 and x→ 1
y , equation (2.11) yields

∞∑
n=0

ζ(z, a+ n)yn =
(

1− 1
y

)−1

Φ(y, z, a).(2.16)

A similar result as in (2.16) can be obtained from equation (2.12). Next, we
present a series representation for the function ζµ

λ . First, we recall the following
well-known expansion formula of the Hurwitz-Lerch zeta function [6, p. 29 (8)]

Φ(y, z, a) =
Γ(1− z)

ya

[
log

1
y

]z−1

+
1
ya

∞∑
k=0

ζ(z − k, a)
(log y)k

k!
,(2.17)

valid for | log(y)| < 2π, z 6= 1, 2, 3, . . .; a 6= {0,−1,−2,−3, . . .}.

Theorem 2.1. Let λ > 0, | log(y)| < 2π and
∣∣∣ x
yλ

∣∣∣ < 1. Then

ζµ
λ (x, y; z, a) =

1
ya

[
Γ(1− z)

[
log

1
y

]z−1 (
1− x

yλ

)−µ

+
∞∑

k=0

ζµ
λ (x, 1; z − k, a)

(log y)k

k!

]
,

(2.18)

valid for z 6= 1, 2, 3, . . .; a 6= −(n+ λm), {m,n} ∈ N ∪ {0}.

Proof. Use the series representation (2.17) in the definition (2.1). �

If µ = x = 1, in formula (2.18), we get an expansion for the zeta function of
Barnes (1.1):

∞∑
k=0

ζ2(z − k; a, λ)
(log y)k

k!
= ya

∞∑
k=0

Φ(y, z, a+ λm)

− Γ(1− z)
[
log

1
y

]z−1 [
1− 1

yλ

]−1

,

(2.19)

valid for
∣∣∣ 1
yλ

∣∣∣ < 1, λ 6= 0, z 6= 1, 2, 3, . . .; a 6= −(n+ λm), {m,n} ∈ N ∪ {0}.
Finally, putting µ = α + β in (2.1) and using the classical formula of Nörlund

for the Pochhammer symbol (cf. [2, Section 1, Chapter 3])

(a+ b)k =
k∑

m=0

(
k

m

)
(a)k−m (b)m,(2.20)
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we find the form (2.1) that

ζα+β
λ (x, y; z, a) =

∞∑
m=0

(α)m Φ(y, z, a+ λm)

× 2F1

 −m,β;
1

1− α−m;

 xm

m!
.

(2.21)

By exploiting the results

(a+ n+ λm)−zΓ(z) =
∫ ∞

0

e(a+n+λm)t tz−1dt,(2.22)

and

(a+ n)−(z+m)(z)m =
1

Γ(z)

∫ ∞

0

e(a+n)t tz−1dt,(2.23)

which follow from the Eulerian integral [2]

a−zΓ(z) =
∫ ∞

0

e(a)t tz−1dt,(2.24)

we can derive the following connection formula for the function ζµ
λ with the func-

tions ζ∗µ and ζ∗µ,ν (see (1.7) and (1.8)).

Theorem 2.2. Let Re a > 0 and Re z > 0, then
ζz
λ(x, y; z, a)

=
1

(Γ(z))2

∫ ∞

0

∫ ∞

0

ζ∗1 (xu eλt, y eu+t;−z, a) ea(u+t) uz−1tz−1dudt,
(2.25)

(2.26)
ζz
λ(x, y; z, a)

= lim
ν→0

{
1

(Γ(z))2

∫ ∞

0

∫ ∞

0

ζ∗1,ν(xuν−1 eλt, y eu+t;−z, a) ea(u+t) uz−1tz−1dudt
}
.

Proof. Denote, for convenience, the right-hand side of formula (2.25) by I.
Then, in view of definition (1.7) it is easily seen that

I=
∞∑

m,n=0

xmyn

(a+ n)−(z+m)

∫ ∞

0

e(a+n+λm)t tz−1dt
1

Γ(z)

∫ ∞

0

e(a+n)t tz−1dt.(2.27)

Now, with the help of the results (2.22) and (2.23) and the definition (2.1), equation
(2.27) gives us the left-hand side of formula (2.25). By empolying relation (1.9)
and expoliting the same procedure leading to (2.25) one can derive the formula
(2.26). �

In order to derive the inversion of Theorem 2.2, we first recall the definition of
the integral operator D−1

x (see [17] and [5])

D−m
x xλ =

Γ(λ+ 1)
Γ(λ+m+ 1)

xλ+m, m ∈ N ∪ {0},(2.28)
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and once acting on unity yields to

D−m
x {1} =

xm

m!
.(2.29)

Now, it is not difficult to infer the following theorem.

Theorem 2.3. Let Re a > 0 and Re z > 0, then

ζ∗z (x, y; z, a)

=
1

(Γ(z))2

∫ ∞

0

∫ ∞

0

ζ1
λ(u eλtD−1

x , eu+tD−1
y ;−z, a) ea(u+t) uz−1tz−1dudt,

(2.30)

ζ∗µ,z(x, y; z, a)

=
1

(Γ(z))2

∫ ∞

0

∫ ∞

0

ζµ
λ (xu eλt, eu+tD−1

y ;−z, a) ea(u+t) uz−1tz−1dudt.
(2.31)

Proof. We refere to the proof of Theorem 2.2. �

3. Integral Representations

In many situations an integral representation of zeta function is more convenient to
use than its series representation. First of all, we establish an integral representa-
tion for ζµ

λ that is derived directly from the corresponding integral representation
of the Hurwitz-Lerch zeta function Φ [6, p. 27 (3)]

Φ(y, z, a) =
1

Γ(z)

∫ ∞

0

tz−1 e−at(1− y e−t)−1dt,(3.1)

where Re a > 0 and either |y| ≤ 1, y 6= 1, Re z > 0 or y = 1, Re z > 1.

Theorem 3.1. Let Re a > 0, Reµ > 0, Reλ > 0 and either |x| ≤ 1, |y| ≤ 1,
y 6= 1, x 6= 1, Re z > 0 or x = 1, y = 1, µ = 1, Re z > 2. Then

ζµ
λ (x, y; z, a) =

1
Γ(z)

∫ ∞

0

tz−1 e−at(1− x e−λt)−µ(1− y e−t)−1dt

=
1

Γ(z)

∫ ∞

0

tz−1 e−(a−1)t(1− x e−λt)−µ

(et−y)
dt.

(3.2)

Proof. From (2.1) and (3.1) we have

ζµ
λ (x, y; z, a) =

∞∑
m=0

(µ)m

m!

[
1

Γ(z)

∫ ∞

0

tz−1 e−(a+λm)t(1− y e−t)−1dt
]
xm.

The desired result now follows by changing the order of summation and integration
and employing the binomial expansion. �

Another integral representation for the function ζµ
λ is based upon the simple

observation that (see e.g. [21, p. 281 (25)])

(λ)m =
1

Γ(λ)

∫ ∞

0

e−t tλ+m−1dt, Reλ > 0; m = 0, 1, 2, . . . ,(3.3)
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which indeed follows immediately from (2.24).

Theorem 3.2. Let Re a > 0, Reµ > 0, Reλ > 0, |x| < +∞ and either
|y| ≤ 1, y 6= 1, Re z > 0 or y = 1, Re z > 1. Then

ζµ
λ (x, y; z, a)

=
1

Γ(z) Γ(µ)

∫ ∞

0

∫ ∞

0

tz−1sµ−1 e−at e−(1−x e−λt)s(1− y e−t)−1dsdt.
(3.4)

Proof. The identities

(a+ n+ λm)−zxmyn =
1

Γ(z)

∫ ∞

0

(x e−λ)mtz−1 e−at(y e−t)ndt,

and

(µ)m =
1

Γ(µ)

∫ ∞

0

sµ+m−1 e−s ds,

follow from the integral representation (2.24). The result now follows from the
definition of ζµ

λ . �

The Hurwitz-Lerch zeta function has the following contour integral representa-
tion [6, p. 28 (5)]

Φ(y, z, a) =
−Γ(1− z)

2πi

∫ 0+

∞
(−t)z−1 e−at(1− y e−t)−1dt,(3.5)

valid for Re a > 0, z ∈ C and | arg(−t)|, π, assuming as in [6] that the contour
does not enclose any of the points t = log z± 2nπi, (n = 0, 1, 2, . . .), which are the
poles of the integrand of (3.5).

Similarly, for the function ζµ
λ we have the following contour integral represen-

tation.

Theorem 3.3. Let Re a > 0, Reλ > 0 and | arg(−t)| < π. Then

(3.6) ζµ
λ (x, y; z, a) =

−Γ(1− z)
2πi

∫ 0+

∞
(−t)z−1 e−at(1−x e−λt)−µ(1−y e−t)−1dt.

Proof. It follows from (2.1) and (3.5) that

ζµ
λ (x, y; z, a) =

∞∑
m=0

(µ)m

m!

[
−Γ(1− z)

2πi

∫ 0+

∞
(−t)z−1 e−(a+λm)t(1− y e−t)−1

]
xm.

The desired result now follows by changing the order of summation and integration
and employing the binomial expansion. �

Now, we shall prove ζµ
λ as an application of the Mellin-Barnes type of integral.

Our starting point is the same as the starting point of Katsurada’s argument in
([12] and [13]), that is the formula [22, Section 14.51, p. 289, Corollary]

(1− ω)−z =
1

2π i

∫
c

Γ(z + ν)Γ(−ν)(−ω)ν

Γ(z)
dν,(3.7)
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where z and ω are complex with Re z > 0, | arg(ω)| < π, ω 6= 0 and the path is
the vertical line from c− i∞ to c+ i∞. In [21] this formula is stated with c = 0,
(with suitable modification of the path near the point z = 0), but it is clear that
the formula is also valid for −Re z < c < 0.

Theorem 3.4. Let Re z > 0, Re (a− b) > 0, Re b > 0 and λ 6= 0. Then

ζµ
λ (x, y; z, a) =

1
2πi

∫
c

(Γ(ν + z)Γ(−ν)
Γ(z)

Φ(y, z + ν, b)

× Φ∗µ

(
x,−ν, a− b

λ

)
λνdν, |x| < 1, |y| < 1.

(3.8)

Proof. Let ω = (b− a− λm)/(b+ n) in (3.7) and multiply both sides by

(µ)mx
myn

m!
, (m,n = 0, 1, 2, . . .)

to obtain(
(µ)mx

myn

m!

)
(a+ n+ λm)−z =

∫
c

(Γ(ν + z)Γ(−ν)
Γ(z)

× (µ)mx
m

m! (a− b+ λm)−ν

× yn

(b+ n)z+ν
dν, for m ≥ 0, n > 0.

Therefore, if we assume (1 − Re ν) < c < −1, then from (1.4) and (1.6) we get
(3.8). �

Further, by using the definition (2.7) and (1.4), we can derive the following
double integral representations for the function ζµ

λ .

Theorem 3.5. Let Re a > 0, Re z > 0 and Re ν < 0. Then

ζµ
λ (x, y;z, a)

=
1

Γ(z) Γ(1− ν)

∫ ∞

0

∫ ∞

0

tz−1s−ν e−a(t+s)

(1− y e−t)
Φ∗µ,λ

(
x e−λ(t+s), ν − 1, a

)
ds dt,(3.9)

=
1

Γ(z) Γ(1− ν)

∫ ∞

0

∫ ∞

0

tz−1s−ν e−a(t+s)

(1− x e−t)µ
Φ

(
y e−(t+s), ν − 1, a

)
ds dt.

(3.10)

Proof. The results follow directly from the definitions (2.7), (1.4) and the inte-
gral representation of gamma function (3.3). �

Furthermore, we can easily prove the following inversion relations of the Theo-
rem 3.5.

Theorem 3.6. Let Re a > 0, Re z > 0 and Re ν < 0. Then

Φ∗µ,λ(x, z, a) =
1

Γ(z) Γ(1− ν)(1− y)−1

∫ ∞

0

∫ ∞

0

t−νsz−1 e−a(t+s)

× ζµ
λ

(
x e−λ(s+t), y e−t; ν − 1, a

)
dsdt,

(3.11)
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Φ(x, z, a) =
1

Γ(z) Γ(1− ν)(1− x)−µ

∫ ∞

0

∫ ∞

0

t−νsz−1 e−a(t+s)

× ζµ
λ

(
x e−λt, y e−(t+s); ν − 1, a

)
dsdt.

(3.12)

Proof. We refer to the proof of Theorem 3.5. �

Other integral representations of the functions Φ∗µ,λ and φ(λ, z, a) can be de-
duced from the formulas (3.2), (3.4), (3.5) and (3.6). For instance, when y = 0,
the formula (3.4) yields the integral representation

Φ∗µ,λ(x, z, a) =
1

Γ(z)Γ(µ)

∫ ∞

0

∫ ∞

0

tz−1sµ−1 e−at e−(1−x e−λt)s ds dt.(3.13)

Similarly, for the Hurwitz-Lerch zeta function Φ equation (3.6) yields the following
Mellin-Barenes integral formula

Φ(y, z, a) =
1

2π i

∫
c

(Γ(ν + z)Γ(−ν)
Γ(z)

Φ(y, z + ν, a− λ)λνdν.(3.14)

More interestingly, based on the relation (1.5), the representation (3.14) reduces
further to a known result due to Katsurada [14, p. 168 (2.6)]

(3.15) φ(e2π i α, a+ λ, z) =
1

2π i

∫
c

(Γ(ν + z)Γ(−ν)
Γ(z)

φ(e2π i α, a, z + ν)λνdν.

4. Differential Relations

The generalized zeta function ζµ
λ as a function satisfies some differential recurrence

relations. Fortunately these properties of ζµ
λ can be developed directly from the

definition (2.1). First, by recalling the familiar derivative formula from calculus in
terms of the gamma function [17]

Dm
x x

n =
Γ(n+ 1)

Γ(n−m+ 1)
xn−m, n−m ≥ 0, Dx =

d
dx
,(4.1)

where m ∈ N , we aim now to derive the following differential relation for ζµ
λ .

Theorem 4.1. Let λ 6= 0 and µ− n 6= {0,−1,−2, . . .}. Then

ζµ
λ (x, y; z, a) =

∞∑
n=0

(−1)nyn

(1− µ)n
Dn

x

[
Φ∗µ−n

(
x, z,

a+ (1− λ)n
λ

)
λ−z

]
.(4.2)

Proof. In view of (1.6) and (4.1) we have

∞∑
n=0

(−1)nyn

(1− µ)n
Dn

x

[
Φ∗µ−n

(
x, z,

a+ (1− λ)n
λ

)
λ−z

]

=
∞∑

m=0

m∑
n=0

(−1)nyn

(1− µ)n

(µ− n)mx
m−n

(m− n)!(a+ λm+ (1− λ)n)z
.

(4.3)
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Now, by using the identities
∞∑

n=0

n∑
k=0

A(k, n) =
∞∑

n=0

∞∑
k=0

A(k, n+ k)

and

(a)−n =
(−1)n

(1− a)n
,

it leads to the result (4.2). �

Secondly, we show that the Hurwitz-Lerch zeta function Φ is related to the
function ζµ

λ for µ ∈ N by the following differential relation.

Theorem 4.2. Let λ 6= 0 and µ > 1 be a positive integer number. Then

ζµ
λ (x, y; z, a) =

1
Γ(µ)

∞∑
n=0

Dµ−1
x

[
Φ

(
x, z,

a+ n+ λ(1− µ)
λ

)
λ−z

]
yn.(4.4)

Proof. We refer to the proof of Theorem 4.1. �

For λ = 1 with y = 0, equation (4.4) reduces to the following differential relation
connecting the functions Φ and Φ∗µ

Dµ−1
x

[
1

Γ(µ)
Φ(x, z, a− µ+ 1)

]
= Φ∗µ(x, z, a).(4.5)

On the other hand, from (4.5) and with the aid of the formula (4.1), we can easily
derive the following inversion relation of equation (4.5) in the form

D1−µ
x

[
Γ(µ)Φ∗µ(x, z, a+ µ− 1)

]
= Φ(x, z, a).(4.6)

Next, we establish the derivative of the function ζµ
λ with respect to the argu-

ment λ.

Theorem 4.3. Let b ∈ R. Then
∂

∂λ
ζµ
λ (x, y; z − 1, a+ λb)

= (1− z)
[
xµ ζµ+1

λ (x, y; z, a+ λ(b+ 1)) + bζµ
λ (x, y; z, a+ λb)

]
.

(4.7)

Proof. We have

∂

∂λ
ζµ
λ (x, y; z − 1, a+ λb) = (1− z)

[ ∞∑
m=1

∞∑
n=0

(µ)mx
myn

(m− 1)!(a+ n+ λ(m+ b))z

+ b
∞∑

m=0

∞∑
n=0

(µ)mx
myn

m!(a+ n+ λ(m+ b))z

]
.

(4.8)

Now, let m→ m+ 1 in the first summation of (4.8) and then use the identity

(µ)m+n = (µ)n(µ+ n)m

to obtain (4.7). �
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The same type of differentiation gives the next result.

Theorem 4.4. Let q ∈ R. Then
∂

∂q
ζµ
λ (x, y; z − 1, a+ bq) = b(1− z)ζµ

λ (x, y; z, a+ bq).(4.9)

Proof. We refer to the proof of Theorem 4.3. �

It is easily observed that the relations (4.7) and (4.9) are generalizations of the
known results (see e.g. [7, p. 451]):

∂

∂q
ζ(z − 1, a+ λb) = b(1− z)ζ(z, a+ qb),

and

∂

∂λ
ζ(z, λ) = −zζ(z + 1, λ).

Further, we show that the function ζµ
λ satisfies the following theorem

Theorem 4.5. Let k ∈ N . Then

Dk
xζ

µ
λ (x, y; z, a) = (µ)k ζ

µ+k
λ (x, y; z, a+ λk),(4.10)

Dk
yζ

µ
λ (x, y; z, a) = k!

∞∑
m=0

(µ)m

m!
Φ∗k+1(y, z, a+ k + λm) xm,(4.11)

Dk
aζ

µ
λ (x, y; z, a) = (−1)k(z)kζ

µ
λ (x, y; z + k, a).(4.12)

Proof. Using (4.1), we get

Dk
xζ

µ
λ (x, y; z, a) =

∞∑
m=k

∞∑
n=0

(µ)mx
m−kyn

(m− k)! (a+ n+ λm)z
.(4.13)

Now, letting m→ m+ k in (4.13) and considering the definition (2.1), we get the
right-hand side of formula (4.10). Similarly, one can proof the formulas (4.11) and
(4.12). �

Note that the results (4.10), (4.11) and (4.12) can be obtained directly from
equation (4.2) by differentiating both sides of (4.2) with respect to x, y and a,
respectively.

In view of the relationship (2.6), we find from equation (4.12) that

Dk
aζ2(z; a, λ) = (−1)k(z)kζ2(z + k; a, λ).(4.14)

Similarly, according to the relation (2.3) formula (4.12) reduces to the result

Dk
aζ(z, a) = (−1)k(z)kζ(z + k, a),(4.15)

which is a known result (see e.g. [8, p. 2 (1.8)]). A function closely associated with
the derivative of the gamma function is the diagamma function, defined by

ψ(x) =
d
dx

lnΓ(x) =
Γ
′
(x)

Γ(x)
, x 6= 0,−1,−2, . . .(4.16)
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Now, we wish to establish the derivative of the function ζµ
λ with respect to the

parameter µ.

Theorem 4.6. Let µ ∈ C \ {0,−1,−2, . . .}. Then

∂

∂µ
ζµ
λ (x, y; z, a) =

∞∑
m=0

(µ)mΦ(y, z, a+ λm) [ψ(µ+m)− ψ(µ)]
xm

m!
.(4.17)

Proof. By noting that

∂

∂µ
[(µ)m] =

∂

∂µ

[
Γ(µ+m)

Γ(µ)

]
= (µ)m [ψ(µ+m)− ψ(µ)] ,(4.18)

we obtain the result (4.17). �

According to the algebraic identity (cf. [17, p. 295 (6.7)]):

ψ(x+ 1)− ψ(x+m+ 1) =
m∑

k=1

(−1)km!Γ(x+ 1)
k(m− k)!Γ(x+ k + 1)

,(4.19)

the formula (4.17) can be rewritten in the following more compact form

(4.20)
∂

∂µ
ζµ
λ (x, y; z, a) =

∞∑
m=0

m∑
k=1

(−1)k+1Γ(µ+m)
k (m− k)! Γ(µ+ k)

Φ(y, z, a+ λm)xm.

Finally, let us recall the definition of the Weyl fractional derivative of the expo-
nential function e−at, a > 0 of order ν in the form (see [17, p. 248 (7.4)])

Dν e−at = aν e−at, (ν is not restricted to be postive integer).(4.21)

We now proceed to find the fractional derivative of the function ζµ
λ with respect

to z.

Theorem 4.7. Let ν > 0. Then

(4.22) Dν
z [ζµ

λ (x, y; z, a)] =
∞∑

m=0

∞∑
n=0

(µ)mx
myn

m!(a+ n+ λm)z
× [log(a+ n+ λm)]ν .

Proof. Since
(a+ n+ λm)−z = e−z log(a+n+λm),

we have

ζµ
λ (x, y; z, a) =

∞∑
m=0

∞∑
n=0

(µ)mx
myn

m!
e−z log(a+n+λm) .

The desired result now follows by applying the formula (4.21) to the above identity.
�
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5. Series Expansions

Series expansions play an important role in the investigation of various useful prop-
erties of the sequences which they expand. This section aims at establishing some
series relations for the double series zeta function ζµ

λ . First, based on two forms
of Taylor’s theorem for the deduction of addition and multiplication theorems for
the confluent hypergeometric function (cf. [9, p. 63, eq. (2.8.8) and (2.8.9)] or [20,
p. 21–22]):

(5.1) f(x+ y) =
∞∑

m=0

f (m)(x)
ym

m!
,

and

(5.2) f(xy) =
∞∑

m=0

f (m)(x)
[(y − 1)x]m

m!
,

where |y| < ρ, ρ being the radius of convergence of the analytic function f(x),
we aim to discuss certain addition and multiplication theorems of the generalized
double zeta function ζµ

λ .

Theorem 5.1. Let |ω| < 1. Then

ζµ
λ (x+ ω, y; z.a) =

∞∑
k=0

(µ)kζ
µ+k
λ (x, y; z, a+ λk)

ωk

k!
,(5.3)

ζµ
λ (x, y + ω; z.a) =

∞∑
m,n=0

(µ)mΦ∗n+1(ω, z, a+ n+ λm)
xm yn

m!
,(5.4)

ζµ
λ (xω, y; z.a) =

∞∑
k=0

(µ)kζ
µ+k
λ ((ω − 1)x, y; z, a+ λk)

xk

k!
,(5.5)

ζµ
λ (x, yω; z.a) =

∞∑
m,n=0

(µ)mΦ∗n+1 (y(ω − 1), z, a+ n+ λm)
xm yn

m!
.(5.6)

Proof. The proof is a direct application of the formulas (5.1), (5.2) and the first
two results of Theorem 4.5. �

Next, we derive the Taylor expansion of ζµ
λ in the fourth variable a.

Theorem 5.2. Let |ω| < Re (a). Then

ζµ
λ (x, y; z, a+ ω) =

∞∑
k=0

(−1)kΦ(y, z + k, a)× Φ∗µ,λ(x,−k, ω)
(z)k

k!
.(5.7)

Proof. We have

ζµ
λ (x, y; z, a+ ω) =

∞∑
m=0

∞∑
n=0

(µ)mx
myn

m!
(a+ n)−z

(
1 +

ω + λm

a+ n

)−z

.
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The result now follows from the binomial expansion and the definitions (1.4)
and (2.7). �

In fact, equation (5.7) gives a number of known and new series expansions as
particular cases. For instance, in view of the relation (2.4) we find from (5.7) that

Φ(y, z, a− ω) =
∞∑

k=0

(z)kΦ(y, z + k, a)
ωk

k!
, (z 6= 1, |ω| < |a),(5.8)

which is a known result due to Raina and Chhajed [18, p. 93 (3.3)]. Moreover
according to the relationship (2.3), equation (5.7) yields

ζ(z, a+ ω) =
∞∑

k=0

(−1)k(z)kζ(z + k, a)
ωk

k!
.(5.9)

Note that, formula (5.9) is a known result due to Kanemitsu et al. [11, p. 5, (2.6∗)].
Further, in view of the relation (2.6), formula (5.7) yields

ζ2(z; a+ ω, λ) =
∞∑

k=0

(−1)k(z)kζ(z + k, a)× ζ
(
−k, ω

λ

) λk

k!
.(5.10)

Furthermore, if in (5.8) we let y = e2πiα (in conjunction with (1.5)), formula
(5.8) reduces to a known power series expansion due to Klusch [15]

φ(α, a+ ω, z) =
∞∑

k=0

(−1)k(z)kφ(α, a, z + k)ωk, |ω| < a.(5.11)

Another expansion function for ζµ
λ can be derived by using the result [16, p. 374,

exercise 9.4(7)]

2F1

[
a, a+

1
2
;
1
2
;x

]
=

1
2

(
1 +

√
x
)−2a +

1
2

(
1−

√
x
)−2a

.(5.12)

Theorem 5.3. Let µ ≥ 1, Re (a) > 0, |x| < 1, |y| < 1 and |ω| < |a|. Then
∞∑

k=0

(
z + 2k − 1

2k

)
ζµ
λ (x, y; z + 2k, a)ω2k =

1
2

[ζµ
λ (x, y; z, a −ω)

+ ζµ
λ (x, y; z, a+ ω)] .(5.13)

Proof. We have
∞∑

k=0

(
z + 2k − 1

2k

)
ζµ
λ (x, y; z + 2k, a)ω2k

=
∞∑

m=0

∞∑
n=0

(µ)mx
myn

m!(a+ n+ λm)z

∞∑
k=0

(z)2kω
2k

(2k)!(a+ n+ λm)2k
.(5.14)

By applying the formula (5.12) to the last summation in the right-hand side of
equation (5.14), we come to the result (5.13). �
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Next, we derive a series expansion for the function ζµ
λ involving Appell’s function

F2 of two variables defined by the series (see e.g. [21, p. 23 (3)])

F2 [a, b, b′; c, c′;x, y] =
∞∑

m,n=0

(a)m+n(b)m(b′)nx
myn

(c)m(c′)nm! n!
.(5.15)

Theorem 5.4. Let max{|x/b|, |y/b|} < 1, |b| < Re a and λ 6= 0. Then

∞∑
k=0

(ν)kζ
µ
λ (x, y; z + k, a+ b)

ωk

k!
=

∞∑
m=0

∞∑
n=0

(µ)mx
myn

m!

× F2

[
z, ν, 1; z, 1;

ω

a+ n+ λm
,

−b
a+ n+ λm

]
(a+ n+ λm)−z.(5.16)

Proof. Since

(a+ n+ λm+ b)−(z+k) = (a+ n+ λm)−(z+k)

(
1 +

b

a+ n+ λm

)−(z+k)

,

it follows that
∞∑

k=0

(ν)kζ
µ
λ (x, y; z + k, a+ b)

ωk

k!
=

∞∑
m=0

∞∑
n=0

(µ)mx
myn

m!(a+ n+ λm)z

∞∑
k=0

∞∑
s=0

(z)k+s(ν)k

k!s!(z)k

×
(

ω

a+ n+ λm

)k (
−b

a+ n+ λm

)s

.(5.17)

The result (5.16) now follows from the definition (5.15). �

Indeed, equation (5.16) is a generalization and unification of the well-known
result of Ramanujan

ζ(ν, 1 + x) =
∞∑

n=0

(ν)n

n!
ζ(ν + n)(−x)n.

In view of the relations (2.3), (2.4) and (2.5) formula (5.16) yields the following
interesting special cases:
(5.18)

∞∑
k=0

(ν)kζ(z + k, a+ b)
ωk

k!
=

∞∑
n=0

F2

[
z, ν, 1; z, 1;

ω

a+ n
,
−b
a+ n

]
(a+ n)−z,

∞∑
k=0

(ν)kΦ(y, z + k, a+ b)
ωk

k!
=

∞∑
n=0

F2

[
z, ν, 1; z, 1;

ω

a+ n
,
−b
a+ n

]
yn

(a+ n)z
,

(5.19)
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and
∞∑

k=0

(ν)kζ2(z + k; a+ b, λ)
ωk

k!

=
∞∑

n=0

F2

[
z, ν, 1; z, 1;

ω

a+ n+ λm
;

−b
a+ n+ λm

]
(a+ n+ λm)−z,

(5.20)

respectively.
Finally, we recall here a generating function of the Hurwitz-Lerch zeta function

due to Raina and Srivastava in the form (see [19, p. 302] or [18, p. 96 (3.11)])
∞∑

n=0

(ν)n(β)n

(γ)n
Φ(y, ν + β − γ + n, a)

ωn

n!

=
∞∑

k=0

yk

(a+ k)ν+β−γ 2F1

[
ν, β; γ;

ω

(a+ k)

]
.

(5.21)

A further generalization of the above known formula (5.21) is given by the fol-
lowing theorem.

Theorem 5.5. Let Re ν > 0, Reβ > 0, Re γ > 0, Reµ > 0, λ 6= 0 and
|ω/a| < 1. Then
∞∑

n=0

(ν)n(β)n

(γ)n
ζµ+n
λ (x, y; ν + β − γ + k, a)

ωn

n!

=
∞∑

m=0

∞∑
k=0

(µ)my
k

(a+ k + λm)ν+γ−β
× 3F2

 ν, β, µ+m;
ω

(a+ k + λm)
γ, µ;

 xm

m!
.

(5.22)

Proof. We refer to the proof of Theorem 5.4. �

Clearly, in view of the relationship (2.4) formula (5.22) reduces to (5.21).
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