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CHARACTERIZATION OF SIMPLE ORBIT GRAPHS

A. BRETTO, A. FAISANT, C. JAULIN and J. TOMANOVÁ

Abstract. Let G be a (finite) group and let S be a non-empty subset of G. The vertex set of the

orbit graph O(G, S) is the collection of orbits of left translations induced by s, over all s ∈ S. If u

and v are distinct vertices (each representing an orbit of some s and t from S), then for any g ∈ G
appearing in both orbits, there is an edge colored g in O(G, S) joining u and v. Orbit graphs are an
important special case of “G-graphs” introduced by Bretto and Faisant in Math. Slovaca 55 (2005).
In this paper we characterize simple orbit graphs and apply the result to show that a certain class of
simple orbit graphs is closed under the construction of incidence graphs.

1. Introduction

Let G be a (finite) group and let S be a non-empty subset of G. For each s ∈ S, let λs be the
left translation g 7→ sg for all g ∈ G. The orbit graph O(G,S) associated with the pair (G,S) is
defined as follows [13]. For each s ∈ S and each orbit ω of λs, there is a vertex corresponding
to the pair (s, ω). For any unordered pair of distinct vertices (s, ω), (s′, ω′) and for any element
h ∈ G such that h ∈ ω ∩ ω′, there is an edge with colour h that joins (s, ω) and (s′, ω′).

For any given s ∈ S, the set of all orbits of λs forms a partition of G. It follows that the graph
O(G,S) is |S|-partite and the valency of a vertex representing an orbit of λs is equal to |s|(|S|−1)
where |s| is the order of s. It is now easy to see that O(G,S) is a simple graph (that is, a graph
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with no multiple edges) if and only if 〈s〉 ∩ 〈t〉 = {1} for any two distinct elements s, t in S. Note
that in this case for any two distinct elements s, t ∈ S, the set of all orbits of λs is disjoint from the
set of all orbits of λt. We will therefore identify the vertex set of the simple orbit graph O(G,S)
with the union of orbits of left translations λs induced by s, over all s ∈ S. We remark that the
orbits of left translation λs for s ∈ S are the right cosets of the cyclic group 〈s〉 and thus, when
dealing with simple orbit graphs, one can freely use the term “orbit” in place of “coset” and vice
versa. We prefer using orbits in what follows.

Simple orbit graphs can be regarded as a subclass of G-graphs introduced as a potential tool for
group isomorphism testing in [2]. They also appear useful for constructions of various interesting
classes of graphs such as symmetric and semisymmetric graphs [3, 6], small graphs of given degree
and girth [4], Hamming graphs and meshes of d-ary trees [5]. Further, simple orbit graphs are
closely related to Cayley graphs [13] and to vertex-transitive non-Cayley graphs [14]. Also, simple
orbit graphs can be understood as a generalization of double-coset graphs introduced in [9] and
studied in connection with constructions of semisymmetric graphs [12, 10].

The objective of this note is to characterize simple orbit graphs in terms of their automorphism
groups. With the help of our characterization we will prove that the incidence graph of a simple
d-regular bipartite orbit graph (d ≥ 2) is a simple orbit graph provided that AutG contains an
involutory automorphism swappping the two elements contained in S.

2. Main result

We aim at characterizing simple orbit graphs O(G,S). We begin by collecting some simple, but
relevant facts about simple orbit graphs. Since any orbit graph O(G,S) such that |S| = 1 consists
of m copies of a one-vertex graph where m = [G : 〈S〉], we may assume that |S| ≥ 2. Further, for
any given element g ∈ G, the graph O(G,S) contains a clique on |S| vertices induced by the set
of all the edges coloured g. Finally, the complete graph K2 cannot be a component of any simple
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O(G,S) graph. To see this it is sufficient to realize that if K2 were a component of O(G,S) then
the above gives |S| = 2, and the valency of any vertex v ∈ O(G,S) would be equal to |s| = 1 for
all s ∈ S, a contradiction.

Thus, we may limit our attention to the class of k-partite graphs where k ≥ 2 such that any
graph belonging to the class contains a clique on k vertices and has no component isomorphic to
K2.

Theorem 1. Let Γ be a k-partite graph, where k ≥ 2, and let Γ have no component isomorphic
to K2. Then Γ is a simple orbit graph if and only if

i) Aut Γ contains a subgroup H whose orbits are precisely the partition classes of Γ;
ii) Γ contains a clique K on k vertices such that for each vertex v ∈ K and any given u 6= v,

u ∈ K, the stabilizer Hv of the vertex v is a cyclic group which acts regularly on the set of
all the vertices adjacent to v contained in the same partition class the vertex u belongs to.

Proof. We first consider the automorphism group AutO(G,S) of a simpleO(G,S) graph with
|S| ≥ 2. Observe that for any given h ∈ G and each s ∈ S, the action of G by right multiplication
on itself induces an action of G on the set of all orbits of λs given by {g, sg, . . . , s|s|−1g} 7→
{gh, sgh, . . . , s|s|−1gh} for g ∈ G, which is transitive, but not regular in general, as was already
noted in [13]; we denote the action rh. As the adjacency relation in the graph O(G,S) is induced
by the set intersection, R(G) = {rh : h ∈ G} is the desired subgroup of AutO(G,S), proving part
i).

Combining |S| ≥ 2 with 〈s〉 ∩ 〈t〉 = {1} for any two distinct elements s, t in S, one can see that
the mapping h 7→ rh for h ∈ G is an isomorphism from the group G onto R(G). From this we
derive that for each s ∈ S, the stabilizer R(G)v of the vertex v representing the orbit 〈s〉1 is the
cyclic group 〈rs〉 ∼= 〈s〉. Obviously, the subgraph induced by the set of all orbits containing the
unit element of G is a clique on |S| vertices, completing the proof of part ii).
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For the reverse direction, let Γ be a k-partite graph where k ≥ 2, and let Γ have no component
isomorphic to K2. Assume that there is a subgroup H ⊆ Aut Γ and a clique C on k vertices to
which i) and ii) apply. We will show that Γ is a simple orbit graph O(H,S) for a suitable S ⊂ H.

Let u, v be two distinct vertices contained in the clique C. Then from ii) applied to the stabilizers
of u and v together with our assumption K2 * Γ we have Hu ∩Hv = {1} and Hu 6= Hv. Letting
S = {fv : v ∈ C} where 〈fv〉 = Hv, we conclude that O(H,S) is a simple orbit graph with |S| = k.
We point out that for any two distinct vertices u, v ∈ C, the partition classes corresponding to λfu

and λfv are disjoint.
We will now verify that Γ ∼= O(H,S). To do so, for any given vertex v ∈ C, we let Cv denote

the partition class of Γ which contains v, and by Fv we mean the partition class of O(H,S)
corresponding to λfv

. Thus, ∪{Cv : v ∈ C} and ∪{Fv : v ∈ C} are partitions of the graphs Γ and
O(H,S) into independent sets of vertices, respectively.

We define a 1-1 correspondence between the vertex set of the graph O(H,S) and Γ. Take an
arbitrary, but fixed vertex v ∈ C. By i) the group H is transitive on the set Cv and so Hu and Hv

are conjugate for all u ∈ Cv. This together with the fact that H fixes the class Cv set-wise ensures
that |Cv| = [H : Hv], that is, the sets Cv and Fv have the same cardinalities. Obviously, for any two
elements g, h appearing in the same orbit of λfv

, we have (v)g = (v)h. It follows that the mapping
αv : Fv → Cv given by 〈fv〉h 7→ (v)h for h ∈ H is bijective. Since any two distinct partition
classes of the graph O(H,S) are disjoint, the natural extension α : {Fv : v ∈ C} → {Cv : v ∈ C},
α|Fv = αv for v ∈ C is bijective, too.

We wish to show that α preserves adjacencies. Let u, v ∈ O(H,S) be two adjacent vertices.
Then the two orbits u′ and v′ they represent, say u′ ∈ Fw and v′ ∈ Fz, have a (unique) element h
in common. Thereby α maps u to (w)h and v to (z)h. Note that the two images are adjacent as
both w and z belong to the clique C.

Conversely, let u, v ∈ Γ be two adjacent vertices. Then there are two (uniquely determined)
vertices w, z ∈ C such that u ∈ Cw and v ∈ Cz. Since Cw and Cz are orbits of H, there must be
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an element h ∈ H such that (w)h = u and (z)h ∈ Cz. Moreover, Hu and Hw are conjugate and so
there is an element g ∈ Hu such that (z)hg = v. Let x, y be two (uniquely determined) orbits of
λfw and λfz respectively, which share the element hg. Then the vertices x, y ∈ O(H,S) are joined
by an edge coloured hg, and their images under the mapping α are (w)hg = u and (z)hg = v,
respectively. We conclude that the graph Γ is isomorphic to O(H,S). �

For completeness we remark that a certain version of Theorem 1 was announced in [7].

Corollary 1. All components of a simple orbit graph O(G,S) are isomorphic to the simple
orbit graph O(〈S〉, S).

Proof. In [2] it was proved that a simple orbit graph O(G,S) is connected if and only if S is a
generating set for G. It follows that the restriction of the domain of λs onto 〈S〉 for all s ∈ S, gives
rise to the connected graph O(〈S〉, S) which is clearly a component of O(G,S). Since the clique
induced by the set of all orbits containing the unit element of G is a subgraph of O(〈S〉, S), the
assertion follows from Theorem 1. �

3. Application

The incidence graph IΓ of a (simple) graph Γ = (V,E) is the graph with the vertex set V ∪ E in
which two vertices v ∈ V and e ∈ E are joined by an edge if and only if v ∈ e.

In this section we consider the question whether the incidence graph of a simple orbit graph
O(G,S) is also a simple orbit graph. We need the elementary fact that the automorphism group
of the incidence graph of a simple graph Γ contains a subgroup isomorphic to Aut Γ. To see this
it is sufficient to realize that IΓ is obtained from Γ by subdividing of each edge and thus, as the
action of Aut Γ on the vertex set of Γ induces an action on the set of all its edges, the mapping
α : Aut Γ → Aut IΓ given by h 7→ h′, where (v)h′ = (v)h and ({u,w})h′ = {(u)h, (w)h} for
v ∈ V and {u,w} ∈ E, is an insertion of the group Aut Γ into Aut IΓ. For a subgroup H of the
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automorphism group of a simple graph Γ we will write H ′ to denote the image of H under the
mapping α.

This observation together with Theorem 1 impose strong restrictions on the automorphism
group of a simple orbit graph O(G,S) whose incidence graph is a simple orbit graph. Namely, if
IO(G,S) ∼= O(H,T ), then as the graph O(H,T ) is bipartite, by Theorem 1 the orbits of the group
R(H) are the bipartition sets of O(H,T ) and thus, by the above fact, O(G,S) is a vertex and edge-
transitive graph. Moreover, the stabilizer argument gives that O(G,S) is in fact an arc-transitive
graph.

The simplest way to produce anO(G,S) graph which meets the properties we have just described
(that is a simple orbit graph whose incidence graph is at least potentially a simple orbit graph)
is to make sure that S is an orbit of a subgroup of Aut(G); this guarantees that O(G,S) is a
vertex-transitive graph [13]. Consequently, to end up with an arc-transitive graph it is sufficient
to choose S = {s, t} and require that there is an involutory element in AutG which swaps the two
elements contained in S

Proposition 1. Let O(G,S) be d ≥ 2 regular bipartite simple orbit graph. Assume that AutG
contains an involutory element f which swaps the two elements contained in S. Then IO(G,S) ∼=
O(Goφ Z2, {(s, 0), (1, 1)}), where s ∈ S and (1)φ = f .

Proof. We begin by showing that IO(G,S) is a simple orbit graph. The mapping given by
〈a〉g 7→ 〈(a)f〉(g)f for g ∈ G and a = s, t is an automorphism of O(G,S) [2]; we denote it by
τ . Obviously, the order of τ is equal to 2 as f2 = 1. Consider the group H ⊆ AutO(G,S)
generated by R(G) and 〈τ〉. By the observation at the beginning of this section, the group H ′ is
a subgroup of Aut IO(G,S) isomorphic to H. We claim that H ′ fulfils both conditions i) and ii)
stated in Theorem 1. Realizing that R(G) is transitive on each bipartition set and that τ swaps
the bipartition sets we obtain that the group H is transitive. The graph O(G,S) is bipartite and in
this case Theorem 1 says that R(G) acts regularly on the set of all its edges. Thus H ′ is the desired



JJ J I II

Go back

Full Screen

Close

Quit

group, proving part i). To show ii), let u, v ∈ IO(G,S) be two vertices such that u = 〈s〉1 and
v = 〈t〉1. Then the subgraph induced by the set {u, {u, v}} is a clique and obviously, H ′u = 〈r′s〉
and H ′{u,v} = 〈τ ′〉. We conclude that IO(G,S) is a simple orbit graph O(H ′, {r′s, τ ′}).

We now describe the structure of H ′. It is clear that R(G) ∩ 〈τ〉 = {1}, and it is easy to check
that τrgτ = r(g)f for g ∈ G. This is equivalent to saying that H = R(G) oψ 〈τ〉, where the
mapping ψ : 〈τ〉 −→ AutR(G) is defined by τ 7→ [rg 7→ r(g)f for g ∈ G]. In the proof of Theorem 1
we have seen that the mapping h 7→ rh for h ∈ G is an isomorphism from the group G onto R(G).
This together with f ∈ AutG imply that R(G) oψ 〈τ〉 ∼= G oid 〈f〉 and this group is obviously
isomorphic to Goφ Z2 where (1)φ = f . Briefly, H = R(G) oψ 〈τ〉 ∼= Goφ Z2. Since the groups H
and H ′ are abstractly isomorphic, we have H ′ ∼= Goφ Z2.

Taking into account that any two simple orbit graphs O(G,S) and O(G′, S′) are isomorphic
whenever there is an isomorphism h from the group G onto G′ such that (S)h = S′ [2], we may
conclude that IO(G, {s, t}) ∼= O(Goφ Z2, {(s, 0), (1, 1)}. �

We use Proposition 1 to give an alternative proof of the following Theorem proved in [5]. We
introduce a new concept.

For d ≥ 2, n ≥ 1, let T (d, n) be a complete d-ary tree of depth n. Consider a dn × dn matrix
of vertices. On each row (resp. column) of the matrix, put T (d, n) such that the vertices of the
row (column) are the leaves of the tree. The resulting graph is the mesh MT (d, n) of T (d, n).
We remark that the graph MT (d, n) is a generalization of the well-known mesh of trees [11], i.e.
MT (2, n), and was proposed as a possible interconnection network for parallel computers [1, 8]
for it combines together the mesh and tree structure.

Let {s, t} be the standard basis for the group Zd×Zd. Let 0 be the unity of Zd×Zd, and f an
element in Aut(Zd × Zd) which swaps s and t. We define the mapping φ : Z2 → Aut(Zd × Zd) by
(1)φ = f .
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Theorem A. (Bretto et al., [5]) The mesh of a d-ary tree MT (d, 1), where d ≥ 2, is isomorphic
to the simple orbit graph O((Zd × Zd) oφ Z2, {(s, 0), (0, 1)}).

Proof. First we show that MT (d, 1) is, in fact, the incidence graph of a complete bipartite
graph Kd,d. To observe the correspondence, for any given i, j ∈ {1, . . . , d} let ui and vj denote
the root of T (d, 1) whose leaves are entries of the i-th row and the j-th column of the matrix,
respectively. By (ui, vj) we denote the (i, j)-th entry of the matrix. Identifying the set U ∪ V ,
where U = {ui : i = 1, . . . , d} and V = {vi : i = 1, . . . , d}, with a partition of Kd,d we can see that
the mapping given by {ui, vj} 7→ (ui, vj) for i, j ∈ {1, . . . , d} is a bijection from the set of all the
edges of the graph Kd,d onto the set of all the vertices of MT (d, 1) corresponding to the set of all
the entries of the matrix. It is now easy to check that MT (d, 1) ∼= IKd,d. Finally, for d ≥ 2 we
have Kd,d

∼= O((Zd × Zd), {s, t}), as noted in [6]. The rest follows from Proposition 1. �
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