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REGULAR TETRAHEDRA WHOSE VERTICES
HAVE INTEGER COORDINATES

E. J. IONASCU

Abstract. In this paper we introduce theoretical arguments for constructing a procedure that allows

one to find the number of all regular tetrahedra that have coordinates in the set {0, 1, ..., n}. The terms
of this sequence are twice the values of the sequence A103158 in the Online Encyclopedia of Integer
Sequences [16]. These results lead to the consideration of an infinite graph having fractal nature which
is tightly connected to the set of orthogonal 3-by-3 matrices with rational coefficients. The vertices of
this graph are the primitive integer solutions of the Diophantine equation a2 + b2 + c2 = 3d2. Our
aim here is to lay down the basis of finding good estimates, if not exact formulae, for the sequence
A103158.

1. Introduction

The story of regular tetrahedra having vertices with integer coordinates starts with the parametriza-
tion of some equilateral triangles in Z3 that began in [9]. There was an additional hypothesis that
did not cover all the generality in the result obtained in [9] but it was removed successfully in [2].
In this note we are interested in the following problem

How many regular tetrahedra, T (n), can be found if the coordinates of its vertices must be in
the set {0, 1, ..., n}? We observe that A103158 = 1

2T (n) (see [16]).
This sequence starts as in the following table.
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n 1 2 3 4 5 6 7 8 9 10 11
A103158 1 9 36 104 257 549 1058 1896 3199 5154 7926

n 12 13 14 15 16 17 18
A103158 11768 16967 23859 32846 44378 58977 77215

These values were computed by Hugo Pfoertner in 2005, using a brute force program. Our
method of counting is based on several theoretical facts. Roughly, it is an extension of the technique
described in [10] using the results from [12] about the existence of regular tetrahedrons in Z3. The
program can be used to cover values of T (n) for n quite bigger than 100, but we included here
only the first one hundred terms just for exemplification. The rest of the terms are at the end of
the paper. Our approach begins by looking first at the faces of a regular tetrahedron which must
be equilateral triangles. It turns out that every equilateral triangle in Z3 after a translation by a
vector with integer coordinates can be assumed to have the origin as one of its vertices. Then one
can show that the triangle’s other vertices are contained in a lattice of the form

Pa,b,c := {(α, β, γ) ∈ Z3 | aα+ bβ + cγ = 0, a2 + b2 + c2 = 3d2,

a, b, c, d ∈ Z}.
(1)

In general, the vertices of the equilateral triangles that dwell in Pa,b,c form a strict sub-lattice
of Pa,b,c which is generated by only two vectors,

−→
ζ and −→η (see Figure 1). These two vectors are

described by Theorem 1.1 proved in [2].

Theorem 1.1. Let a, b, c, d be odd integers such that a2 + b2 + c2 = 3d2 and gcd(a, b, c) = 1.
Then for every m,n ∈ Z (not both zero), the triangle OPQ determined by

−−→
OP = m

−→
ζ − n−→η ,

−−→
OQ = n

−→
ζ − (n−m)−→η ,(2)
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Figure 1. The lattice Pa,b,c.

with
−→
ζ = (ζ1, ζ1, ζ2),−→η = (η1, η2, η3),


ζ1 = −rac+ dbs

q
,

ζ2 =
das− bcr

q
,

ζ3 = r,

,


η1 = −db(s− 3r) + ac(r + s)

2q
,

η2 =
da(s− 3r)− bc(r + s)

2q
,

η3 =
r + s

2
,

(3)
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where q = a2 + b2 and (r, s) is a suitable solution of 2q = s2 + 3r2 that makes all of the numbers
in (3) integers, forms an equilateral triangle in Z3 that is contained in the lattice (1) and has
sides-lengths equal to d

√
2(m2 −mn+ n2).

Conversely, if there exists a choice of the integers r and s such that given an arbitrary equilateral
triangle in R3 whose vertices, one at the origin and the other two in the lattice (1), then there also
exist integers m and n such that the two vertices not at the origin are given by (2) and (3).

The Diophantine equation

a2 + b2 + c2 = 3d2(4)

has non-trivial solutions for every odd number d. As a curiosity, for d = 2011 one obtains 336
solutions satisfying also 0 < a ≤ b ≤ c and gcd(a, b, c) = 1. We will refer to such a solution of (4)
as a positive ordered primitive solution. For d = 2011, all of these solutions, except one, satisfy
even a stronger condition a < b < c. The exception is a = b = 913 and c = 3235. Determining the
exact number of solutions for (4) is certainly important if one wishes to find the number (or just
an estimate) of equilateral triangles or the number of tetrahedra with vertices in {0, 1, 2, . . . , n}3.
In the paper of Hirschhorn and Seller [8] from 1999, the number of solutions for (4), taking into
account all permutations and changes of signs is equal to

8

 ∏
p≡1 or 7(mod 12)

pβ ||d

pβ


 ∏
q≡5 or 11(mod 12)

qα||d

(
qα + 2

qα − 1
q − 1

)
f(d)

(5)

where

f(d) =


1 if 3|d

3γ − 1
2

if 3γ ||d.
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Even more important for our purpose is the calculation of the number of primitive representations
of d as in (4) (gcd(a, b, c) = 1) in terms of d which appeared in a more recent paper of Cooper and
Hirschhorn [3]. One may easily check that the following is a corollary of Theorem 2 in [3].

Theorem 1.2 (Cooper-Hirschhorn). Given an odd number d, the number of primitive solutions
of (4) taking into account all changing of signs and permutations, is equal to

Λ(d) := 8d
∏

p|d,p prime

(
1−

(−3
p )

p

)
,(6)

where (−3
p ) is the Legendre symbol.

We remind the reader that if p is prime, then

(
−3
p

)
=


0 if p = 3

1 if p ≡ 1 or 7 (mod 12)

−1 if p ≡ 5 or 11 (mod 12)

(7)

We observe that the same type of prime partition is used in different calculations in both formulae
(5) and (6). We have mentioned that the number of positive ordered primitive representations
for d = 2011 was 336. This is one less than the number given by (6) modulo the number of
permutations and changes of signs. Indeed, since 2011 is prime and 2011 ≡ 7 (mod 12), we have
( −3

2011 ) = 1 and then Λ(2011)
48 = 8(2011)(1− 1

2011 )

48 = 335. This happens because there is basically only
one solution where we have repeating values for a, b and c as we said. We will see later how this
number of positive ordered primitive representations can be obtained in general by compensating
for the repeating ones.
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For k ∈ N, we let Ω(k) := {(m,n) ∈ Z× Z : m2 −mn+ n2 = k2}. In [9] we showed that every
regular tetrahedron with integer coordinates must have side lengths of the form λ

√
2, λ ∈ N, and in

[12] we found the following characterization of the regular tetrahedrons with integer coordinates.

Theorem 1.3. Every tetrahedron whose side lengths are λ
√

2, λ ∈ N, which has a vertex at the
origin, can be obtained by taking as one of its faces an equilateral triangle having the origin as a
vertex and the other two vertices given by (2) and (3) with a, b, c and d odd integers satisfying
(4) with d, a divisor of λ, and then completing it with the fourth vertex R with coordinates(

(2ζ1 − η1)m− (ζ1 + η1)n± 2ak
3

,

(2ζ2 − η2)m− (ζ2 + η2)n± 2bk
3

,

(2ζ3 − η3)m− (ζ3 + η3)n± 2ck
3

)
,

(8)

for some (m,n) ∈ Ω(k), k := λ
d .

Conversely, if we let a, b, c and d be a primitive solution of (4), let k ∈ N and (m,n) ∈ Ω(k),
then the coordinates of the point R in (8), which completes the equilateral triangle OPQ given as
in (2) and (3), are

(a) all integers if k ≡ 0 (mod 3) regardless of the choice of signs or
(b) integers, precisely for only one choice of the signs if k 6≡ 0 (mod 3).

The following graph (Figure 1) is constructed on the positive ordered primitive solutions of (4),
with edges defined by:
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two vertices, say [(a1, b1, c1), d1] and [(a2, b2, c2), d2], that are connected if and only
if

a1a
′
2 ± a2b

′
2 ± c1c′2 ± d1d2 = 0(9)

for some choice of the signs and permutation (a′2, b
′
2, c
′
2) of (a2, b2, c2).

Equation (9) insures basically insures that the planes Pa1,b1,c1 and Pa′2,b′2,c′2 associated with two
faces make a dihedral angle of arccos(1/3) ≈ 70.52878◦. In fact, this equality characterizes the
existence of a regular tetrahedron having integer coordinates with one of its faces in the plane
Pa1,b1,c1 and another contained in the plane Pa′2,b′2,c′2 . For instance, [(1, 1, 5), 3] is connected to
[(1, 5, 11), 7] since 1(11) + (1)5 + 5(1)− 3(7) = 0. An example of a regular tetrahedron which has a
face in P−5,−1,1 and one face in P−1,−5,11 is given by the vertices [19, 23, 0], [0, 12, 20], [27, 0, 17],
and [24, 27, 29].

A few questions related to this graph appear naturally at this point. Is it connected? Is there a
different characterization of the existence of an edge between two vertices in terms of only d1 and
d2? We do not have an answer to the second question, but we have an heuristic argument that
shows that the graph is disconnected. The vertices, [(1, 1, 1), 1] and [(1, 5, 7), 5], are in two different
components and the component starting at [(1, 5, 7), 5] contains a copy of the whole graph.

Each edge in this graph, determined by [(a1, b1, c1), d1] and [(a2, b2, c2), d2], gives rise to a min-
imal tetrahedron whose side lengths are at most max{d1, d2}

√
2. This tetrahedron is determined

up to the set of isometric transformations that are generated by the symmetries of the cube in
C(m) where m is the size of the smallest “cube” {0, 1, · · · ,m}3 containing the tetrahedron or a
translation of it. In [13] we explained how this graph is connected with the 3-by-3 orthogonal
matrices having rational entries.
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Figure 2. The graph RT , d ≤ 19..



JJ J I II

Go back

Full Screen

Close

Quit

2. Some preliminaries

We would like to have a good estimate of the number of primitive solutions of (4) which satisfy
in addition 0 < a ≤ b ≤ c. Let us observe that we cannot have a = b = c unless d = 1. So, the
counting in (6) via (7) would give what we want if we can count the number of positive primitive
solutions of the following equation in terms of d

2a2 + c2 = 3d2.(10)

A description similar to the Pythagorean triples which gives the nature of the solutions of (10) is
stated next.

Theorem 2.1. For every two positive integers l and k such that gcd(k, l) = 1 and k is odd, a,
c and d given by

d = 2l2 + k2 and a = |2l2 + 2kl − k2|, c = |k2 + 4kl − 2l2|, if k 6≡ l (mod 3)

a = |2l2 − 2kl − k2|, c = |k2 − 4kl − 2l2|, if k 6≡ −l (mod 3)

(11)

constitute a positive primitive solution for (10).
Conversely, with the exception of the trivial solution a = c = d = 1, every positive primitive

solution for (10) appears in the way described above for some l and k.

Proof. First, one can check that (11) satisfies (10) for every l and k. As a result it follows
that a, c and d are positive integers. Let p be a prime dividing a, c and d. Then p must divide
±a− d = 2k(±l− k) and so p is equal to 2, p divides k or it divides ±l− k. If p = 2, then p must
divide k, but this contradicts the assumption that k is odd.
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Figure 3. The ellipse
x2

3/2
+

y2

3
= 1.

In case p is not equal to 2 and it divides k, we see p must divide l2 = (d − k2)/2. Since we
assumed gcd(l, k) = 1 it follows that p must divide ±l − k. By our assumptions on k and l, p
cannot be equal to 3. Then p divides ±a+ (±l − k)2 = 3l2. Because p 6= 3 then p must divide l2

and so p should divide l and then k. This contradiction shows that a, c and d cannot have prime
common factors. So, we have a primitive solution in (11).

For the converse, let us assume that a, c and d represent a positive primitive solution of (10)
which is different from the trivial one. We denote by u = a

d and v = c
d . Then the point with
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rational coordinates (u, v) (different of (1, 1)) is on the ellipse x2

3/2 + y2

3 = 1 (Figure 3) in the first
quadrant. This ellipse contains the following four points with integer coordinates: (1, 1), (−1, 1),
(−1,−1) and (1, 1). This gives the lines y + 1 = t1(x + 1), y + 1 = t2(x − 1), y − 1 = t3(x + 1)
and y − 1 = t4(x− 1), passing through (u, v) and one of the points mentioned above. Hence, the
slopes t1, t2, t3 and t4 are rational numbers. This gives expressions for the point (u, v) in terms
of ti (i = 1, . . . , 4). Let us assume that ti = ki

li
with ki, li ∈ Z, written in reduced form. Then we

must have

u =
|2± 2ti − t2i |

2 + t2i
=
|2l2i ± 2kili − k2

i |
2l2i + k2

i

,

v =
|t2i ± 4ti − 2|

2 + t2i
=
|k2
i ± 4kili − 2l2i |

2l2i + k2
i

,

and so, these equalities give

a

d
=
|2l2i ± 2kili − k2

i |
2l2i + k2

i

, and

c

d
=
|k2
i ± 4kili − 2l2i |

2l2i + k2
i

, i = 1, . . . , 4.
(12)

We claim that the function ti → 2l2i +k2
i (i = 1, . . . , 4) is injective. If for some 2l2i +k2

i = 2l2j +k2
j

(i 6= j), that would imply that the corresponding numerators in (12) are equal. This gives enough
information to conclude a contradiction. There are

(
4
2

)
= 6 possibilities here, but we are going to

include the details only in the case i = 1 and j = 2. The rest of the cases can be done in a similar
fashion. For this situation we have 2l21 + 2k1l1 − k2

1 = k2
2 + 2k2l2 − 2l22 and k2

1 + 4k1l1 − 2l21 =
k2

2 − 4k2l2 − 2l22. The first equality implies

2k1l1 = k2
1 + k2

2 + 2k2l2 − 2l21 − 2l22 = 2k2
1 + 2k2l2 − 4l22
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which substituted into the second equality gives

6k2
1 = 2k2

2 − 8k2l2 + 8l22 ⇔ 3k2
1 = (k2 − 2l2)2.

Because
√

3 is irrational, the last equality is impossible for k1, k2, l2 integers and k1 nonzero.

For the other cases will get a contradiction based on the facts that
√

3
2 and

√
2 are irrational

numbers.
A similar argument to the one in the first part of the proof shows that the fractions in the right-

hand side of the equalities of (12) can be simplified only by a factor of 2, 3 or 6. Having four distinct
possibilities in (12) for the denominators, exactly one of the fractions (simultaneously in the first
and second equalities) must be in reduced form. This one will give the wanted representation. �

Similar to Fermat’s theorem about the representation of primes as a sum of two squares and
the number of such representations one can show the next result.

Theorem 2.2 (Fermat [4]). An odd prime p can be written as 2x2 + y2 with x, y ∈ Z if and
only if p ≡ 1 or 3 (mod 8). If d = 2k

∏
pαii
∏
q
βj
j is the prime factorization of d with qj primes

as before and pi the rest of them, then the number of representations d = 2x2 + y2 with x, y ∈ Z is
either zero if not all αi are even and otherwise given by

⌊
1
2

∏
(βi + 1)

⌋
.(13)
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The number of positive primitive representations d = 2x2 + y2 for d odd, i.e. x, y ∈ N and
gcd(x, y) = 1, is equal to

Γ2(d) =


0 if d is divisible by a prime factor

of the form 8s+5 or 8s+7, s ≥ 0,

2k−1 where k is the number of distinct prime factors
of d of the form 8s+ 1, or 8s+ 3 (s ≥ 0)

(14)

Putting the two results together (Theorem 2.2 and Theorem 1.2), we obtain the following
proposition.

Proposition 2.3. For every odd d, the number of representations of (4) which satisfy 0 < a ≤
b ≤ c and gcd(a, b, c) = 1 is equal to

πε(d) =
Λ(d) + 24Γ2(3d2)

48
.(15)

Going back to the example d = 2011 we see that the contribution of 24Γ2(3d2)
48 is exactly 1, since

2011 ≡ 3 (mod 8).
A regular tetrahedron whose vertices are integers is said to be irreducible if it cannot be obtained

by an integer dilation and a translation from a smaller one also with integer coordinates. An
important question at this point about irreducible tetrahedra is included next.

Does every irreducible tetrahedron with integer coordinates have a face with a normal
vector (a, b, c) satisfying a2 + b2 + c2 = 3d2 such that d gives the side lengths ` of the
tetrahedron by the formula ` = d

√
2? In other words, is there a face for which k = 1

in Theorem 1.3?
Unfortunately the last question is solved by the next counterexample. The following points

together with the origin, [−6677, −2672, 1445], [−5940, 4143, −1167], [−3837, 2595, 5688] form a
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regular tetrahedron of side-lengths equal to 5187
√

2 and the highest d for the faces is 1729. We
observe that 3, 7, 13 and 19 are the first three distinct primes numbers of the form u2 + 3v2,
u, v ∈ Z.

3. The Code

The program is written in Maple code and it is based on Theorem 1.3. The main idea is to create a
list of irreducible regular tetrahedra that can be used to generate all the others in {0, 1, 2, . . . , n}3
by certain transformations generating a partition for the set of all tetrahedra. Each such irreducible
tetrahedron is constructed from the equation of one face using Theorem 1.3. For the interested
reader we included the details in [11]. The result of the calculation(100) gives in less than a few
hours of computation:
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[1, 1] [2, 9] [3, 36] [4, 104] [5, 257]

[6, 549] [7, 1058] [8, 1896] [9, 3199] [10, 5145]

[11, 7926] [12, 11768] [13, 16967] [14, 23859] [15, 32846]

[16, 44378] [17, 58977] [18, 77215] [19, 99684] [20, 126994]

[21, 159963] [22, 199443] [23, 246304] [24, 301702] [25, 366729]

[26, 442587] [27, 530508] [28, 631820] [29, 748121] [30, 880941]

[31, 1031930] [32, 1202984] [33, 1395927] [34, 1612655] [35, 1855676]

[36, 2127122] [37, 2429577] [38, 2765531] [39, 3137480] [40, 3548434]

[41, 4001071] [42, 4498685] [43, 5044606] [44, 5641892] [45, 6294195]

[46, 7005191] [47, 7778912] [48, 8620242] [49, 9533105] [50, 10521999]

[51, 11591474] [52, 12746562] [53, 13992107] [54, 15332971] [55, 16775590]

[56, 18324372] [57, 19985523] [58, 21765013] [59, 23668266] [60, 25702480]

[61, 27873699] [62, 30188259] [63, 32655348] [64, 35281418] [65, 38074085]

[66, 41040495] [67, 44188592] [68, 47525856] [69, 51061295] [70, 54804647]

[71, 58763604] [72, 62949850] [73, 67371219] [74, 72037311] [75, 76958126]

[76, 82143618] [77, 87606245] [78, 93355379] [79, 99403446] [80, 105762770]

[81, 112443331] [82, 119456581] [83, 126814970] [84, 134532746] [85, 142621185]

[86, 151093691] [87, 159964136] [88, 169245226] [89, 178954039] [90, 189102295]

[91, 199706864] [92, 210781424] [93, 222341631] [94, 234402515] [95, 246978962]

[96, 260093046] [97, 273757925] [98, 287989943] [99, 302809940] [100, 318235290]

We observe a similar behavior with the sequence
ln(ET (n))
ln(n+ 1)

in [10].
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Figure 4. The graph
ln(T (n)/2)

ln(n + 1)
, 1 ≤ n ≤ 100.
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