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ON CONTRAVARIANT PRODUCT CONJUGATE CONNECTIONS

A. M. BLAGA

Abstract. Invariance properties for the covariant and contravariant connections on a Riemannian

manifold with respect to an almost product structure are stated. Restricting to a distribution of the
contravariant connections is also discussed. The particular case of the conjugate connection is investi-
gated and properties of the extended structural and virtual tensors for the contravariant connections
are given.

1. Preliminaries

It is known that any covariant connection induces a contravariant one, but not any contravariant
connection is induced by a covariant one [5]. In the present paper, starting with a covariant
connection ∇ on a Riemannian manifold (M, g), we shall consider its extension ∇̃ to 1-forms and
respectively, the contravariant connection ∇ induced by ∇ and discuss invariance properties. If
besides the Riemannian structure g the manifold is endowed with an almost product structure
compatible with g, we will study the product conjugate connections of ∇̃ and ∇, and determine
the expressions and the properties of the structural and virtual tensors for them.

Let us point out that if M is a Riemann-Poisson manifold with the Riemannian structure g
(which induces g∗ on 1-forms) and the Poisson bivector field Π, it is known that the anchor map
]Π : Γ(T ∗M) → Γ(TM), β(]Πα) = Π(α, β), α, β ∈ Γ(T ∗M), and the Koszul bracket [α, β]Π :=
L]Παβ − L]Πβα − d(Π(α, β)), α, β ∈ Γ(T ∗M) define a Lie algebroid structure associated to Π
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(for the definition of a Lie algebroid, see [9]). The contravariant connections on such manifolds
proved to be important appearing in the context of noncommutative deformations [3], [4], [10].
Defined by I. Vaisman [11], the contravariant connections on Poisson manifolds were intensively
studied by R. Fernandes [2]. If one requires for the contravariant connection to be torsion free and
compatible with g∗, then we find the (unique) Levi-Civita contravariant connection associated to
(Π, g∗), which is defined by the Koszul formula

2g∗(∇αβ, γ) = ]Πα(g∗(β, γ)) + ]Πβ(g∗(α, γ))− ]Πγ(g∗(α, β))

+g∗([γ, α]Π, β) + g∗([γ, β]Π, α)+g∗([α, β]Π, γ), α, β, γ∈Γ(T ∗M).

Let us recall the definition of the contravariant connection on the cotangent bundle of a Rie-
mannian manifold (M, g). We say that ∇ : Γ(T ∗M) × Γ(T ∗M) → Γ(T ∗M) is a contravariant
connection on T ∗M if ∇ satisfies the following properties:

1. ∇ is R-bilinear;

2. ∇fαβ = f∇αβ, for any f ∈ C∞(M) and α, β ∈ Γ(T ∗M);

3. ∇α(fβ) = f∇αβ + ]gα(f)β, for any f ∈ C∞(M) and α, β ∈ Γ(T ∗M),
where ]g is the inverse of the isomorphism [g : Γ(TM)→ Γ(T ∗M), [g(X) := iXg.

Let E be an almost product structure on the Riemannian manifold (M, g), compatible with g,
that is, g(EX,EY ) = g(X,Y ), for any X, Y ∈ Γ(TM). Consider ∇ : Γ(TM)× Γ(TM)→ Γ(TM)
a covariant connection on M and define the extension of ∇ to 1-forms:

∇̃ : Γ(TM)× Γ(T ∗M)→ Γ(T ∗M),

(∇̃Xα)(Y ) := X(α(Y ))− α(∇XY )
(1.1)

and respectively, the contravariant connection induced by ∇:

∇ : Γ(T ∗M)× Γ(T ∗M)→ Γ(T ∗M), ∇αβ := ∇̃]gαβ.(1.2)
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Remark that if ∇ is the Levi-Civita connection associated to g, then ∇̃ and ∇ are “natural
operators”, meaning that for any isometry f : (M, gM ) → (N, gN ), it follows that f∗ ◦ ∇̃M =
∇̃N ◦(f∗×f∗) and respectively, (f∗1 )−1◦∇M = ∇N ◦[(f∗1 )−1×(f∗1 )−1], where f∗ : Γ(TM)→ Γ(TN),
f∗(X) := (f∗)−1 ◦ X ◦ f∗, f∗1 : Γ(T ∗N) → Γ(T ∗M), f∗1 (α) := f∗ ◦ α ◦ f∗ and ∇M , ∇N are the
Levi-Civita connections associated to gM , respectively, to gN .

Let E∗ : Γ(T ∗M) → Γ(T ∗M), (E∗α)(X) := α(EX) be the dual of E and g∗ : Γ(T ∗M) ×
Γ(T ∗M) → C∞(M), g∗(α, β) := g(]gα, ]gβ) the Riemannian structure induced by g. Then, for
any α, β ∈ Γ(T ∗M),

g∗(α, β) = (i]gαg)(]gβ) := [g(]gα)(]gβ) = α(]gβ).

From the compatibility condition of g with E, it follows that for any α ∈ Γ(T ∗M), E(]g(E∗α)) =
]gα. Indeed, let E(]g(E∗α)) =: X, then ]g(E∗α) = EX and E∗α = [g(EX) := iEXg. For any
Y ∈ Γ(TM), (E∗α)(Y ) = g(EX, Y ) is equivalent to α(EY ) = g(EX,Y ) = g(EX,E2Y ) =
g(X,EY ) := (iXg)(EY ) := [g(X)(EY ). It follows α = [g(X) and ]gα = X.

Note that if g is compatible with E, then g∗ is compatible with E∗. Indeed,

g∗(E∗α,E∗β) := g(]g(E∗α), ]g(E∗β)) = (E∗α)(]g(E∗β))

:=α(E(]g(E∗β))) = g(]gα, ]gβ)

:=g∗(α, β)

for any α, β ∈ Γ(T ∗M).

Example 1.1. Consider the particular cases when there exists a certain relation between the
connection ∇ and the almost product structure E, namely, there exists a 1-form η such that
∇XE = η(X)E, respectively, ∇XE = η(X)IΓ(TM) for any X ∈ Γ(TM), where IΓ(TM) the identity
is map on Γ(TM). In the first case, ∇̃XE∗ = η(X)E∗ for any X ∈ Γ(TM), ∇αE∗ = η(]gα)E∗ for
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any α ∈ Γ(T ∗M) and in the second case, ∇̃XE∗ = η(X)IΓ(T∗M) for any X ∈ Γ(TM), ∇αE∗ =
η(]gα)IΓ(T∗M), for any α ∈ Γ(T ∗M), where IΓ(T∗M) is the identity map on Γ(T ∗M).

2. Basic properties of contravariant connections

Invariance properties for ∇̃ and ∇. If we assume that E is parallel with respect to ∇ (i.e.,
∇E = 0) and respectively, if ∇ is a metric connection (i.e., ∇g = 0), we shall establish some
invariance properties for ∇̃ and ∇.

The following proposition describes the behavior of the extended connection ∇̃ and of the
contravariant connection ∇ in the case when ∇E = 0 and respectively, “energy-preserving” [that
is, ∇ leaves invariant the “kinetic energy” K(X) := 1

2g(X,X) of the metric g]. It was proved [7]
that a necessary and sufficient condition for a covariant connection to be energy-preserving is that
its symmetric part has to vanish. In particular, it happens if ∇g = 0. More exactly, we shall prove
that in this case, the connections ∇ and ∇̃ commute with the isomorphism ]g and ∇’s extension
to 1-forms, ∇̃ is energy-preserving, too (with respect to the Riemannian metric g∗). Like in the
almost Hermitian case [1], we can state the following proposition.

Proposition 2.1. Let E be an almost product structure on the Riemannian manifold (M, g),
compatible with g and ∇ a covariant connection on M .

1. If E is parallel with respect to ∇, then E∗ is parallel with respect to ∇̃ and ∇.

2. If ∇g = 0, then

(a) ∇X]gα = ]g(∇̃Xα) for any X ∈ Γ(TM) and α ∈ Γ(T ∗M) and respectively, ∇]gα]gβ =
]g(∇

α
β) for any α, β ∈ Γ(T ∗M);

(b) ∇̃g∗ = 0 and respectively, ∇g∗ = 0.
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3. If ∇g is symmetric, then T∇(α, β) = [g(T∇(]gα, ]gβ)) for any α, β ∈ Γ(T ∗M), where the
(1, 2)-tensor field T∇ is defined T∇(α, β) := ∇αβ−∇βα− [α, β] for [α, β] := [g([]gα, ]gβ]).
In particular, T∇ = 0 if and only if ∇ is torsion free.

From this proposition we deduce that if∇ is the Levi-Civita covariant connection associated to g,
then ∇ is the Levi-Civita contravariant connection associated to g∗, being the unique contravariant
connection satisfying {

∇αβ −∇βα = [α, β],
]gα(g∗(β, γ)) = g∗(∇αβ, γ) + g∗(β,∇αγ)

for any α, β, γ ∈ Γ(T ∗M).
Fg-connections. For any X,Y ∈ Im ]g [assume X = ]gα, Y = ]gβ, α, β ∈ Γ(T ∗M)], it follows
that [X,Y ] = ]g([α, β]), so Im ]g is an integrable distribution whose associated foliation will be
denoted by Fg and called the canonical foliation associated to g. If the almost product structure
E is compatible with g, then the distribution Im ]g is E-invariant. Indeed, for X ∈ Im ]g [assume
X = ]gα, α ∈ Γ(T ∗M)], it follows that EX = E(]gα) = ]g(E∗α). We say that an arbitrary
contravariant connection ∇ is Fg-connection if α ∈ Γ(ker ]g) implies ∇αβ ∈ Γ(ker ]g) for any
β ∈ Γ(T ∗M). Following this definition, the contravariant connection ∇ induced by the covariant
connection ∇ is Fg-connection.

Proposition 2.2. Let E be an almost product structure on the Riemannian manifold (M, g),
compatible with g and ∇ a covariant connection on M .

1. If ∇g is symmetric, then α ∈ Γ(ker ]g) implies ∇βα ∈ Γ(ker ]g) for any β ∈ Γ(T ∗M).
2. If ∇g = 0, then α ∈ Γ((ker ]g)⊥) implies ∇βα ∈ Γ((ker ]g)⊥) for any β ∈ Γ(T ∗M).
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Proof. 1. Let α ∈ Γ(ker ]g). Then according to Proposition 2.1,

]g(∇
β
α) = −]g(T∇(α, β))− ]g([α, β]) = T∇(]gα, ]gβ)− []gα, ]gβ] = 0

for any β ∈ Γ(T ∗M).
2. Let γ ∈ Γ(ker ]g). From Proposition 2.1,

g∗(∇βα, γ) = −(∇g∗)(β, α, γ) + ]gβ(g∗(α, γ))− g∗(α,∇βγ)

= −(∇g∗)(β, α, γ) + ]gβ(g(]gα, ]gγ))− g(]gα, ]g(∇
β
γ)) = 0

for any α, β ∈ Γ(T ∗M). �

Restricting to a distribution. Let D ⊂ TM be an arbitrary distribution. Using the isomor-
phism [g between the tangent and cotangent bundles, we consider D∗ ⊂ T ∗M such that

Γ(D∗) := {α ∈ Γ(T ∗M) : there exists X ∈ Γ(D) such that α = iXg}.

Generalizing the definition for ∇ [8], we say that the extended connection ∇̃ restricts to D∗ if
for any α ∈ Γ(D∗) it implies ∇̃Xα ∈ Γ(D∗) for any X ∈ Γ(TM) and respectively, that the
contravariant connection ∇ restricts to D∗ if for any β ∈ Γ(D∗) it implies ∇αβ ∈ Γ(D∗) for any
α ∈ Γ(T ∗M). Then:

Proposition 2.3. If ∇ is a metric connection with respect to g and it restricts to D, then ∇̃
and ∇ also restrict to D∗.

Proof. Let β ∈ Γ(D∗). Then there exists Y ∈ Γ(D) such that β = iY g and for any X ∈ Γ(TM)
it follows that

(∇̃Xβ)(Z) = [∇̃X(iY g)](Z) := X(g(Y,Z))− g(Y,∇XZ)

= g(∇XY,Z) = (i∇XY g)(Z)
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for any Z ∈ Γ(TM). Also,
∇αβ = ∇̃]gαβ = i∇]gαY g

for any α ∈ Γ(T ∗M). �

Remark that also for any α ∈ Γ(D∗) [assume α = iXg, X ∈ Γ(D)], ∇αα = ∇̃]gαα = ∇̃X(iXg) =
i∇XXg ∈ Γ(D∗).

We can also characterize the integrability of the distribution D using the contravariant connec-
tion ∇ in the following way.

Proposition 2.4. Assume that ∇g is symmetric. Then the distribution D is integrable if and
only if T∇(α, β) ∈ Γ(D∗) for any α, β ∈ Γ(D∗).

Proof. Let α, β ∈ Γ(D∗). Then there exist X, Y ∈ Γ(D) such that α = iXg, β = iY g. According
to [8], T∇(X,Y ) ∈ Γ(D) is equivalent to ]g(T∇(α, β)) ∈ Γ(D) or to T∇(α, β) ∈ Γ(D∗). �

Concerning the invariance of the subspace D∗x of T ∗xM , for x ∈M , we can remark the following
proposition.

Proposition 2.5. Let x ∈ M and u, v ∈ TxM . Then the endomorphism R
e∇
x (u, v) of T ∗xM

leaves invariant to the subspace D∗x.

Proof. Let x ∈ M , u, v ∈ TxM and αx ∈ D∗x. Then there exists w ∈ Dx such that αx = iwgx.
Then according to [8], R∇x(u, v, w) ∈ Dx. For any z ∈ TxM[

R
e∇
x (u, v, αx)

]
(z) := −αx(R∇x(u, v, z))

= −iwgx(R∇x(u, v, z)) = iR∇x(u,v,w)gx(z)

and so Re∇
x (u, v, αx) = iR∇x(u,v,]gxαx)gx ∈ D∗x. �
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3. Contravariant product conjugate connections

We shall consider

∇̃(E∗) := ∇̃+ E∗∇̃E∗, and respectively, ∇(E∗)
:= ∇+ E∗∇E∗(3.1)

which have the following expressions ∇̃(E∗)
X α = E∗(∇̃XE∗α) and ∇(E∗)α

β = E∗(∇αE∗β) for any
X ∈ Γ(TM) and α, β ∈ Γ(T ∗M) and whose properties are stated in the next proposition.

Proposition 3.1. Let E be an almost product structure on the Riemannian manifold (M, g)
and ∇ a covariant connection on M . Then ∇̃(E∗) and ∇(E∗)

have the following properties:

1. ∇̃(E∗)E∗ = −∇̃E∗ and ∇(E∗)
E∗ = −∇E∗;

2.
R

e∇(E∗)
(X,Y, α) = E∗(Re∇(X,Y,E∗α))

and
R∇

(E∗)
(α, β, γ) = E∗(R∇(α, β,E∗γ))

for any X, Y ∈ Γ(TM) and α, β, γ ∈ Γ(T ∗M), where the (1, 3)-tensor field R∇ is defined

R∇(α, β, γ) := ∇α∇βγ −∇β∇αγ −∇[α,β]
γ,

for [α, β] := [g([]gα, ]gβ]);

3. if E is compatible with the Riemannian metric g, then

(∇̃(E∗)
X g∗)(α, β) = (∇Xg)(E(]gα), E(]gβ))

and
(∇(E∗)α

g∗)(β, γ) = (∇]gαg)(E(]gβ), E(]gγ))
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for any X ∈ Γ(TM) and α, β, γ ∈ Γ(T ∗M).

Proof. 1.
(∇̃XE∗)α := ∇̃XE∗α− E∗(∇̃Xα)

= E∗(∇̃(E∗)
X α)− ∇̃(E∗)

X E∗α := −(∇̃(E∗)
X E∗)α

for any X ∈ Γ(TM) and α ∈ Γ(T ∗M);
2.

R
e∇(E∗)

(X,Y, α) := ∇̃(E∗)
X ∇̃(E∗)

Y α− ∇̃(E∗)
Y ∇̃(E∗)

X α− ∇̃(E∗)
[X,Y ]α

= ∇̃(E∗)
X E∗(∇̃Y E∗α)− ∇̃(E∗)

Y E∗(∇̃XE∗α)− E∗(∇̃[X,Y ]E
∗α)

= E∗(∇̃X∇̃Y E∗α)− E∗(∇̃Y ∇̃XE∗α)− E∗(∇̃[X,Y ]E
∗α)

:= E∗(Re∇(X,Y,E∗α))

for any X, Y ∈ Γ(TM) and α ∈ Γ(T ∗M);
3.

(∇̃(E∗)
X g∗)(α, β) := X(g∗(α, β))− g∗(∇̃(E∗)

X α, β)− g∗(α, ∇̃(E∗)
X β)

= X(g∗(α, β))− g∗(E∗(∇̃XE∗α), β)− g∗(α,E∗(∇̃XE∗β))

= X(g(E(]gα), E(]gβ)))− g(E(]g(E∗(∇̃XE∗α))), E(]gβ))

− g(E(]gα), E(]g(E∗(∇̃XE∗β))))

= X(g(E(]gα), E(]gβ)))− g(∇X]g(E∗α), E(]gβ))

− g(E(]gα),∇X]g(E∗β))

:= (∇Xg)(E(]gα), E(]gβ))

for any X ∈ Γ(TM) and α, β ∈ Γ(T ∗M).
For ∇ it follows immediately from the properties of ∇̃. �



JJ J I II

Go back

Full Screen

Close

Quit

Example 3.1. Let η∈Γ(T ∗M) such that ∇XE=η(X)E for any X∈Γ(TM). Then ∇̃(E∗)
X E∗ =

−η(X)E∗ for any X ∈ Γ(TM), ∇(E∗)α
E∗ = −η(]gα)E∗ for any α ∈ Γ(T ∗M). If ∇XE =

η(X)IΓ(TM) for any X ∈ Γ(TM), then ∇̃(E∗)
X E∗=−η(X)IΓ(T∗M) for any X∈Γ(TM), ∇(E∗)α

E∗=
−η(]gα)IΓ(T∗M), for any α ∈ Γ(T ∗M).

Remark that if ∇ is Fg-connection, the ∇(E∗)
is also Fg-connection, because for ]gα = 0, we

have ]g(∇
(E∗)α

β) = ]g(E∗(∇
α
E∗β)) = E(]g(∇

α
E∗β)) = 0 for any β ∈ Γ(T ∗M).

Assume now that ∇ is a metric connection and the arbitrary distribution D is E-invariant [that
is for any X ∈ Γ(D), it follows EX ∈ Γ(D)]. If ∇ restricts to D, then ∇̃(E∗) and ∇(E∗)

also
restrict to D∗. Indeed, let α ∈ Γ(D∗). Then there exists X ∈ Γ(D) such that α = iXg. But
for any Y ∈ Γ(TM), (E∗α)(Y ) := α(EY ) = g(X,EY ) = g(EX,Y ) = (iEXg)(Y ), so E∗α ∈
Γ(D∗). Therefore, from Proposition 2.3 for any X ∈ Γ(TM), ∇̃XE∗α ∈ Γ(D∗) and consequently,
∇̃(E∗)
X α = E∗(∇̃XE∗α) ∈ Γ(D∗). A similar argument holds for ∇(E∗)

.

4. The extended structural and virtual tensors for ∇̃ and ∇

Recall that the deformation tensor by passing from a metric g to f∗g, where f is a geodesic
transformation preserving the almost product structure E [6], can be written

T (∇)(X,Y ) = ψ(X)Y + ψ(Y )X, X, Y ∈ Γ(TM)

for ψ ∈ Γ(T ∗M) and ∇ the Levi-Civita connection is associated to g. In this case [6], the structural
tensor is defined

C(X,Y ) :=
1
2

[(∇EXE)Y + (∇XE)EY ], X, Y ∈ Γ(TM)(4.1)
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and respectively, the virtual tensor by

B(X,Y ) :=
1
2

[(∇EXE)Y − (∇XE)EY ], X, Y ∈ Γ(TM).(4.2)

Denote by ∇′ the Levi-Civita connection is associated to f∗g and ∇̃, ∇̃′, ∇, ∇′ the extensions
and respectively, the contravariant connections are induced by∇ and∇′. Similarly we can compute
the deformation tensors for ∇̃ and ∇, so we get[

T (∇̃)(X,β)
]

(Y ) = −β [T (∇)(X,Y )] = −β [ψ(X)Y + ψ(Y )X] ,[
T (∇)(α, β)

]
(Y ) = −β[T (∇)(]gα, Y )] = −β[ψ(]gα)Y + ψ(Y )]gα]

for any X,Y ∈ Γ(TM) and α, β ∈ Γ(T ∗M). Then[
(∇̃′XE∗)β

]
(Y ) = [(∇̃XE∗)β](Y )− β[ψ(Y )EX − ψ(EY )X],[

(∇′αE∗)β
]

(Y ) = [(∇αE∗)β](Y )− β[ψ(Y )E(]gα)− ψ(EY )]gα]

for any X,Y ∈ Γ(TM) and α, β ∈ Γ(T ∗M).

Proposition 4.1. The extended structural and virtual tensors (defined for ∇̃, ∇̃′, ∇, ∇′)
satisfy:

1. [B̃′(X,β)](Y ) = [B̃(X,β)](Y ), [B̄′(α, β)](Y ) = [B̄(α, β)](Y );

2. [C̃ ′(X,β)](Y ) = [C̃(X,β)](Y )− β[ψ(Y )X − ψ(EY )EX],

[C̄ ′(α, β)](Y ) = [C̄(α, β)](Y )− β[ψ(Y )]gα− ψ(EY )E(]gα)]

for any X, Y ∈ Γ(TM) and α, β ∈ Γ(T ∗M). Moreover, the extended structural tensor satisfies
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E∗(C̃(X,β)) = −C̃(EX, β) = −C̃(X,E∗β),

E∗(C̄(α, β)) = −C̄(E∗α, β) = −C̄(α,E∗β)

for any X ∈ Γ(TM), α, β ∈ Γ(T ∗M).

Notice that [
C̃(EX, β)

]
(Y ) = β(B(EX,Y )),[

C̃(X,E∗β)
]

(Y ) = E∗β(B(X,Y ))

for any X,Y ∈ Γ(TM), β ∈ Γ(T ∗M).
Concerning ∇̃(E∗) and ∇(E∗)

, remark also that

C̃(E∗)(X,β) = −C̃(X,β), B̃(E∗)(X,β) = −B̃(X,β),

C̄(E∗)(α, β) = −C̄(α, β), B̄(E∗)(α, β) = −B̄(α, β)

for any X ∈ Γ(TM) and α, β ∈ Γ(T ∗M).
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