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A TWO PARAMETER FAMILY OF PIECEWISE LINEAR
TRANSFORMATIONS WITH NEGATIVE SLOPE

F. HOFBAUER

ABSTRACT. We study a two parameter family of piecewise linear transformations on the interval [0, 1]
which have negative slope. We show that the nonwandering set consists of finitely many periodic orbits
and an invariant set L which is topologically transitive and the disjoint union of finitely many closed
intervals. We determine the number of these intervals.

1. INTRODUCTION

For a real number § > 1, the beta transformation is defined by = +— Sz mod 1 on the unit interval
[0,1]. Tt can be used to generate S-expansions of real numbers. It is always topologically transitive
and was first investigated in [9] and [8]. More recently, in [5] and [1], a beta transformation
with negative slope was used to generate expansions with negative bases. It is defined on [0, 1] by
x — —pz mod 1. It has more complicated dynamics as shown in [7]. Here we introduce a two
parameter generalization of this negative beta transformation.
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Set G = {(o,8) : > 1,08>1,af —a— [ < 0}. We choose this set as the parameter space.
We define 7" : [0,1] — [0, 1] by

1—ax ifl’EM():[O,l},
& T@)={ g | e
14+ = -0z 1fxEM1=(—,1]
@ @

If 5 € (0,1), then there is an attracting fixed point in M;, which attracts all orbits except the fixed
point in M. If 3 = 1, then T? is the identity on M;. Therefore, we assume 3 > 1. For a = 3, we
get the negative beta transformation.

We consider the nonwandering set Q(T) of the transformation T" defined by (1). In particular,
we are interested in the dependence of Q(T') on the parameters o and (. This dependence was
already investigated for other two parameter families of piecewise linear transformations, for tent
maps in [4] and for the transformations x — [z + « mod 1 in [2].

Before we state the results, we need some definitions. We set §,, = 0 if n is even and §,, = 1 if
n is odd. We define sequences (cy)n>0 and (d,)n>0 by

(2) co=do=1 and c¢p41=2¢, — 20y, dpt1 =2d, +0, —1 for n>0.
Using these sequences we define the sets
Go=G and G,={(a,8) €G:a"3% —a®> - <0} for n>1.
We have G, 11 C G, and we define
H,=G,\Gpi1 for n>0

which is a nonempty set. Then (H,),>¢ is a partition of the parameter space G. Furthermore, set
Sn = ¢p +dp — 1 for n > 0. It follows from (2) that

(3) so=1 and s,41 =25, —0d, for n>0.



We prove the following results.
The transformation 7" : [0,1] — [0,1] defined by (1) is topologically transitive, if («, 3) € Hp.
For n > 1 and (a, 8) € H,,, we have

UT)=Lu | P
k=1

where Py is a periodic orbit of period sy — sp_1 and L is a topologically transitive T-invariant
subset of [0, 1] which is the disjoint union of s,, closed intervals.

Figure 1 shows the parameter space G and the curves a® (3% —a? — 3 =0 for 1 < n < 4. The
parameter space G is partitioned into the sets Hy, Hi, ... by these curves. One sees that Hy, H;
and H, are unbounded, whereas G3 and hence also the sets H,, with n > 3 are bounded.

It is well known that a piecewise linear transformation whose slopes have absolute values > 1,
in particular, the transformation T' defined by (1), has an absolutely continuous invariant measure
whose support is a finite union of closed intervals (see e.g. [6]). Since this support is T-invariant
and a subset of Q(7T), it must coincide with L. In the topologically transitive case it coincides
with [0,1]. Hence the above result gives also the number of intervals of which the support of the
absolutely continuous invariant measure consists.

The negative beta transformation is the special case of (1) where a = 8. Set By = 2 and for
n > 1, let B, be the largest solution of §°» — 3 —1 = 0. Then (8,5) € H, is equivalent to
Brnt1 < B < Bn. Therefore, for the negative beta transformation the support L of the absolutely
continuous invariant measure consists of s, disjoint closed intervals if 8 € [Bn+1,Bn). This is
proved in [7]. It is also proved there that T'|j, is topologically exact which implies topological
transitivity.

The paper is organized as follows. In Section 2 we prove that 7' is topologically transitive if
(o, B) € Hy and investigate Q(T) for (o, 3) € Hy. For (o, ) € Gy, we find T3(0) < T?(0) < 1

[e%



and T%(0) < T*(0). The fixed point P = {35} lies between T%(0) and 72(0) and all points
in (73(0),7%(0)) \ Py are wandering. For (a,3) € H; we show then that the T-invariant set
L = [0,73(0)] U [T?(0), 1], which is the disjoint union of s; = 2 closed intervals, is topologically
transitive. Hence Q(T") = P, U L.

If (o, B) € Ga, we also have 1 < T°(0) < T%(0) < T%(0). In particular, there exists a fixed
point P, which lies between 7°(0) and 7(0), and the set L = [0, T%(0)]U[T?(0), T°(0)] U[T*(0), 1]
is T-invariant and the disjoint union of s = 3 closed intervals. If (a, ) moves from Hs to Gs,
then each of the three intervals of which L consists splits into two intervals such that L is then

Figure 1. Parameter space.



the disjoint union of s3 = 6 closed intervals, and there is a periodic orbit P3 of period s3 — so = 3
in the three gaps which emerge. If («, 3) moves from Hjs to G4, then five of the six intervals of
which L consists split into two intervals, such that L is then the disjoint union of s4 = 11 closed
intervals and there is a periodic orbit P, of period s4 — s3 = 5 in the five gaps which emerge. It
continues in this way.

These further steps for (o, 3) € G, with n > 2 are treated in Sections 3 and 4 using induction.
In Section 3 the orbit of the point 0 is investigated, in particular, its dependence on the parameters
«a and (. In Section 4 we find T-invariant subsets which are finite unions of intervals. This leads
then to the proof of the results for Q(7T') stated above.

This proof is inspired by the Markov graph which was developed in [3], although we do not
introduce it here. The intervals defined in Section 4 are those which occur as vertices in this graph
and the course of the proof follows its recursive structure.

2. FIRST STEPS

Let R: [0,1] — [0,1] be a transformation with two monotone pieces, which means that there
is v € (0,1) such that R|j ) and R, are continuous and monotone. We assume that R is
expanding, which means that there exists £ > 1 such that |R(I)| > k|I| holds for all intervals I
with v ¢ I. Here |I| denotes the length of the interval I. Then we have

(4) I C [0,1] a nonempty open interval = ~ € R"(I) for some n >0

since otherwise R™(I) would be an interval satisfying |R™(I)| > x™|I| for all n > 1, which is
impossible as k > 1. If R : [0,1] — [0,1] is not topologically transitive, it follows from general
results for piecewise monotone transformations (see [3]), that there is a set A C [0, 1] which is R-
invariant and a finite union of nondegenerate closed intervals. Using this we can show the following
theorem.
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Theorem 1. For (a,3) € Hy the transformation T defined by (1) is topologically transitive.

Proof. The transformation T has two monotone pieces and is expanding with £ = min(a, 3).
We assume that T is not topologically transitive and hence there is a set A C [0,1] which is
T-invariant and a finite union of nondegenerate closed intervals. Let ¥} be the fixed point of T
in [0,2]. We have 9 ¢ A since otherwise the T-invariance of A would imply A = [0,1]. Using
(4) we get also = € int A. Let J be the maximal subinterval of A, which contains 1. We have
J=[1-—¢l+pwithp>0andg>0. Set U= (2,2 +pland V=[1—-g 1)

By (4) there is a minimal n > 1 satisfying £ € T"(U). Then T"(U) C J since A is T-invariant
and J is the maximal subinterval of A which contains 1. Since U C (1, 1], we have |T(U)| = g|U|
and hence also |J| > |T™(U)| > f|U|. This means 8p < p + q.

Since ¥ ¢ A, we have V C (¢,1) and T(V) C (0,9). Hence [T%*(V)| = o?|V| and the left
endpoint of 72(V') is larger than 1 — ¢ since a > 1. If 2 € T2(V), then T%(V) C J and we get
o?|V| < |J| which means a?q < p+¢q. If L ¢ T?(V), then there is a minimal n > 3 satisfying
L e T™(V)) which implies T"(V)) C J. We get o?|V| = [T?(V)| < [T"(V)| < |J| and again we
have a?q < p +q.

We have shown (3 — 1)p < ¢ and (a® — 1)g < p. This implies (3 — 1)(a® — 1) < 1, which is
equivalent to (o, ) € Gy. It contradicts (o, 3) € Hy and hence topological transitivity of T' for
(o, B) € Hy is shown. O

We need a similar result for tent maps. We use the same parameter space G as for the map 7'

in (1). For (o, 8) € G we define the tent map S : [0,1] — [0, 1] by

1—ﬁ+§

o — oz if z€(y,1]

thz it €07 where 'yzl—l.
et

(5) S(x) =
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The point + is called the critical point. This tent map has a unique fixed point in (v, 1] which we
denote by o.

Proposition 1. Let S : [0,1] — [0,1] be a tent map as defined in (5) with (o, 3) € G. If
S(0) < o, then S is topologically transitive.

Proof. The tent map S is expanding with x = min(«, ). We proceed as in the last proof.
We assume that S is not topologically transitive and hence there is a set A C [0,1] which is
S-invariant and a finite union of nondegenerate closed intervals. We have g ¢ A since otherwise
the S-invariance of A would imply A = [0,1]. Using (4) we get also v € int A. Let J be the
maximal subinterval of A which contains y. We have J = [y — ¢,y + p] with p > 0 and ¢ > 0. Set
U=[y—g7) and V = (v,7+p

We have U C [0,7) and S(U) C (o,1] since o ¢ A. We get |S?(U)| = aB|U|. By (4) there is a
minimal n > 2 with v € S*(U). Then S™(U) C J. It follows that a3|U| = |S?(U)| < |S™(U)| <
|J|. This means af3q < p+ gq.

Since o ¢ A, we have V C (7, 0) and S(V) C (o,1). This gives |S*(V)| = o?|V| and the right
endpoint of S?(V) is less than v + p since @ > 1. If v € S?(V), then S*(V) C J and we get
a?|V| < |J| which means a?p < p+q. If v ¢ S?(V), then there is a minimal n > 3 with v € S*(V)
which implies S”(V) C J. We get o2|V| = |S?(V)| < |S™(V)| < |J| and again we have a?p < p+q.

We have shown (a8 — 1)¢ < p and (a® — 1)p < ¢. Hence (a8 — 1)(a® — 1) < 1. We assume
S(0) < p which is equivalent to 1 — 8 + g < +%_. This contradicts (a3 — 1)(a® — 1) < 1 and

— l4ao°
therefore, topological transitivity of S is shown. ]

The behavior of the transformation 7' defined by (1) is determined by the orbit of the point 0. In
order to find Q(T) for (e, ) € Hy we need to know how an initial segment of this orbit is ordered.
Notice that G; = {(a, 8) € G : a8 — a? — 3 < 0} and G2 = {(, 8) € G : o232 — % — 3 < 0}.



Lemma 1. If (o, 8) € Gy, then T3(0) < T2(0) < L < T(0) and T%(0) < T*(0). If (v, B) € G,
then we have T3(0) < T%(0) < 2 < T5(0) < T*(0) < T9(0) < T(0). If (o, B) € Hy and T*(0) > L,
then we have T°(0) > T*(0).

Proof. For all (o, 3) € G we have

1

T(0)=1>a, T2(0)=1+5

o
Suppose that (a, 3) € Gy. Then o?3 — a? — 8 < 0. This implies 73(0) < T2(0) and T2(0) <
follows. Hence we get

ﬂ<é and T3(0)=1—a— B+ ap.

Q=

T40)=1—-aT?0)=1-a+a’®+af—a?g
and we have T2(0) < T#(0) which is equivalent to (o — 1)(a?8 — o2 — 3) < 0.

Additionally to (a, 8) € G1 we assume now either (a, 3) € Gz or T4(0) > 1. We have T4(0) > 1
also in the case, where (o, 3) € G, since this inequality is equivalent to (a—1)(a?3?—a2?3—03) < 0.
Because 74(0) > 1 we get
g—ﬁ+a,8—oz2ﬂ—aﬁ2+a2,82
and T°(0) > 1 holds since it is equivalent to (a?8 — 1)(a — 1)(8 — 1) > 0.

We observe that the inequality 7°(0) < T%(0) is equivalent to

(a—1)(a?B* —a® - 3) <0.

T5(00) =1+ g — BT*0) =1

Therefore, we get T°(0) < T%(0) if (a, 3) € Ga, and T°(0) > T*(0) if (a,3) € Hy. Because
T°(0) > L, we get T6(0) =1+ g — BT%(0) < 1 and hence
2
T°(0) = 1+§—ﬂ— %+ﬂ2—aﬂ2+a252+aﬂ3—a253.



Therefore, for (a,3) € Ga, we get T*(0) < T°(0) since this inequality is equivalent to (v — 1)
(8-1)(a?B? —a? - p) <0. 0

We use Lemma 1 to find Q(T) for (o, ) € Hi. To this end set
L 2/ L 3 3 2
Ki= (2], K =[120),2], Ks=[0,T°0)] and U=(T*0),7%(0))

We assume (o, 3) € G7. Then by Lemma 1 these four intervals are disjoint and nonempty.
Furthermore, set Ly = K7 U Ky U K3 which is the disjoint union of two closed intervals. Again by
Lemma 1, we get T'(L1) C Ly and T(U) D U. Since T has slope o < —1 on U, there is a fixed
point P; in U and all other points in U are wandering.

Now assume («, 8) € H; = G1 \ G3. It remains to show that L; is topologically transitive. The
first return map S to the interval K1 UK is T on K; and T2 on Ks. Hence S is a tent map on the
interval [72(0), 1] with critical point L and S(72(0)) = T*(0). Since (a,3) € Hy, we have either
T%0) < L or T7*(0) > L and T%(0) < 7°(0) by Lemma 1. In the second case we get T%(0) < p,
where o is the fixed point of S = T in K; = (é, 1]. Hence in both cases we have T%(0) < p.
Now Proposition 1 implies that there is a dense orbit in K7 U Ko under S. And this implies then
that there is a dense orbit in L; under T proving that L; is topologically transitive. We have also
shown that Q(T) = P, U L;.

3. THE ORBIT OF THE POINT ZERO

In order to determine Q(T) for (o, 3) € G2 we need further properties of the orbit of the point
0. We introduce the kneading sequence e = egeies - -+ € {0, 1} of the transformation 7. Tt is
defined such that T7(0) € M., holds for all j > 0, where My and M are as in (1). We analyze the
symbolic sequences which can occur as initial segments of the kneading sequence.



Let B be a block consisting of the symbols 0 and 1. We call the number of symbols in B the
length of the block B. We define B* as follows. If B ends with 1, then let B* be the block B with
this 1 replaced by 00. If B ends with 00, then let B* be the block B with this 00 replaced by 1.
In particular, we have B** = B.

Set By = 1 and for n > 2 set B, = B,,_1B} We have then B, = 100, B3 = 10011,

n—1-
B4 = 10011100100 and so on. Lemma 1 implies that e begins with 010011 = 0ByB5 = 0Bj if
(Oé,,B) € G2-
For n > 1, let a, be the number of zeros and b,, be the number of ones in the block B,,. Set
Tn = Gy + b, which is the length of the block B,,. In particular, we have a; = 0 and b, = r; = 1.

We connect these numbers with those defined in (2) and in (3).

Lemma 2. For n > 1, we have any1 = 2an, — 2(—=1)", bpt1 = 2b, + (=1)" and rpy1 =
2r, — (—=1)™. Furthermore, ¢, = ap + 20y, d = b, +1— 6, and s, =y, + Oy,

Proof. The recursion formulas for a,, b, and r, follow from the definition B, 1; = B, B;; since
B,, ends with 00 if n is even and with 1 if n is odd. The equation connecting a,, and ¢, and that
connecting b,, and d,, are then easily checked by induction using (2). Since s,, = ¢, +d,, — 1 and
Tn = ap + b, hold for all n by definition, also the equation connecting s, and 7, follows. O

Lemma 3. For n > 1, we have Sp41 = Tn + Sn, Tntl = 28p — 1, Tnt1l = Tn + 2rp—1 and
Tn+1 — Sn+1 = Tn—1 — Sp—1-

Proof. These equations can be easily checked using r,,+1 = 2r, — (=1)" and s,, = r,, + d,, which
are contained in Lemma 2, and $,,+1 = 2s,, — d,, which is contained in (3). O

The next lemma investigates the orbit of the point 0. Set

To(x) =1—az and Tl(x)zl—i—g—ﬁx.



Then 77(0) = T.,_, o--- 0T, 0T, (0) for all j > 1. Let C be a block containing p zeros and ¢
ones, so that [ = p + ¢ is the length of C. If e begins with 0C'1C, then we have

(6) T2(0) = (~a)? ()™ T(0) + 2 (~ap(-p)7 + T0).

This can be shown by induction. Since ;41 = 1 and hence T'+1(0) € M;, we have

@ TH(0) = R(TH(0) = 1+ 2 — pT™(0) = T(0) + £ — T (0)

If1<m<][and

TH 0) = T(0) + (~a)n (=) (2 - 57 (0))
is already shown, where p,, is the number of zeros and ¢, is the number of ones in ejes...e,_1,
we get

Tl+m+2(0) 1—aTm(0)+(—a)pm+1(_5)qm (g _ 3Tl+1(0)> ife, =0
- /B m Dm qm ﬂ o o
142 = BT (0)+(=a)Pm (=B)in 1 (= = BT+1(0)) i e =1.

In both cases we have T'+™+2(0) = T™+1(0) + (—a)Pm+1(—B)dm+1 (£ —
shown by induction since p;+1 = p and ¢;4+1 = q.
Now suppose that e begins with 0C00C. In this case we have

BT1(0)). Hence (6) is

(8) T2H3(0) = (—a)PT2(=B)ITHL(0) + (—a)PH(=B)7 + T(0).



This can be proved in the same way as (6), except that we have now

T2(0) = To(T1(0)) = 1 — aT'*1(0) and

TH3(0) = To(T2(0)) = 1 — aT'2(0) = T(0) — a + 2T (0)

instead of (7). Then we can proceed as above and get (8).

In the following proof we use equations like (6) and (8).
similar way.

All these equations can be proved in a

Lemma 4. Suppose n > 2. If (a, 8) € G, then e begins with 0B, B} and
T"‘nfl"l‘l(o) < Trn+rn71+1(0) < Trn-i-l(o) < Trn+1+1(0) < T(0).

Furthermore, T9(0) # £ for 0 < j <rpy1. If (o, 8) € Hyp—1 and if T*»=271(0) and TT+5n-1=1(0)
are on the same side of =, then TT»+"n=171(0) > T™+1(0).

Proof. We have r;1 =1, ro = 3, r3 = 5 and s; = 2. Hence for n = 2 the lemma is contained in
Lemma 1. We proceed by induction. Suppose that n > 3 and that the lemma is already proved
for n — 1 instead of n. We assume (o, ) € G,,—1 and consider two cases.

First we assume that n — 1 is even. Then the block B,,_1 ends with 00. Let C' be the block
B,,—1 with 00 removed. By induction hypothesis e begins with 0B,_;B;_; = 0C00C1. We set
U = ap_1 and v = b,,_1. Then the block C' contains u — 2 zeros and v ones. Set k& = u + v. This is
the length r,,_; of the block B,,_; and C has length £k —2. We have ¢,,_1 = v and d,,_; = v+1 by
Lemma 2 and the recursions in Lemma 2 give a,, + 2 = ¢, = 2u and b, = d,, = 2v + 1. It follows
that s,,—1 =rp,—1 =k and s, = r, + 1 = 2k. By induction hypothesis we have also

. 1
(9) TI(0)# ~ for 0<j <21



and T*+1(0) < T?*(0) < T(0) = 1. Since we have ey 1€412...€a5_2 = C and ejez...ex_o = C,
for 0 < j < k — 3, we get that T2*%7(0) lies in the open interval with endpoints T%+1+7(0) and
T**7(0) which is contained either in My or My. This implies 77(0) # L for 2k < j < 3k — 3 and
€k€2k+1 - - - e3p—3 = C. Therefore, e begins with 0C00C1C. We compute

T3k—2(0) — (_a)2u—2(_l8)2v+1Tk—1(0) + (_a)Zu—3(_IB)2v+1

B

+ ()" (=B HTHH0) + = (=) A (=B)" + T*7H(0).

Since v is even and v is odd by Lemma 2, this implies
1 1
2 _3k—2(0) — (_ _Tk=1( ) 1 u—2gv+1 _ 2u—2 32041y
L got-ag) = (1 phig)) 1+ avmprt - oo
Either we assume that 7°7-1=1(0) = T7%=1(0) and T"»**»-1=1(0) = T3*~2(0) are on the same side
of 1, or (a,3) € Gy, which means a?“3%**1 — a? — 8 < 0. In both cases we get
1 < au—2ﬂv+1 _ a2u—262v+1 > 0.
We always have 1 + a2+t — o?v=232v+1 < 1. Furthermore, 7%71(0) < 1 holds because
ex—1 = 0 and (9). This gives then T%71(0) < T%72(0) < 1. Therefore, ezx—z = 0 is shown.
Applying T we have also 0 < T3*~1(0) < T*(0) < 1, where T%(0) < 1 holds because e; = 0 and
(9). This gives ez,_1 = 0. Applying T again, we get T*+1(0) < T3%(0) < 1 which means
Tr=11H0) < T 4=1H1(0) < T(0).
Now we know that e begins with 0C00C1C00. We compute

T(0) = (~a)*H(~0)"TH(0) + 2

T3(0) = (—a)*(=B)"T**(0) — (—a)*(-B)" — aT*(0) + 1.

T%(0)+1 and



Since u is even and v is odd by Lemma 2, we get

T2%(0) = T’“(O)(g - au—lﬂ”“) +1 and

T3k(0) _ Tk(o)(a2u—1ﬂ2v+1 _ au—lﬂv+1 _ a) 41,

If now (o, 3) € Gy, then 23?1 — a2 — 3 < 0 holds. We get T3%(0) < T2%(0) which means
Trntra-1t1(0) < T"»+1(0). On the other hand, if (o, 8) € H,,_1, we have a?*3?**1 —a? — 3 >0
and we get T +n-111(0) > Tr=+1(().

From now on we assume (a, 3) € G,,. We have shown T*t1(0) < T°%(0) < T(0) above. Since
ehr1€ht2---€2p—2 = C and ejey...e,_o = C, for 0 < j < k — 3, we get that T3%+7(0) lies in the
open interval with endpoints T**1+7(0) and 7%/ (0) which is contained either in My or M;. Hence
T7(0) # é for 3k < j < 4k — 3. This implies also esgesgt1 - .. eax—3 = C. Therefore, e begins with
0C00C1C00C. We set D = C00C. Then D contains 2u — 2 zeros and 2v ones. The length of D
is 2k — 2 and B,, = C00C1 = D1. Furthermore, e begins with 0D1D. We compute

é(_a)Qu—Q(_ﬁ)Qv 4 TQk_l(O).

T4k_2(0) _ (_a)Qu—Q(_IB)Zv—i-lTQk—l(O) 4 -

This implies

1 4k—2 _ 2k— _l 2u—2 92v _
— —T*7%(0) = (T?71(0) — — ) (a™~24™+ — 1).

Since ezp—1 = 1, we get T2*71(0) > L using (9). This gives 2 — T*~2(0) > 0. Since (o, 8) € Gn,
we have a?“~22'+1 —1 < 2 and we get

I6} 1

E ala+1)"

The last inequality is equivalent to a8 — a? — 3 < 0 which holds because («, 8) € G,, C Ga. We

have shown 5= < T*72(0) < £ which gives eqx o = 0. Applying T we get T**~1(0) < 7 < 1

0< é —TH=2(0) < (1 _ é)




which gives eq;—1 = 0. By Lemma 2, we have ry,1 = 2r,, + 1 = 4k — 1. Therefore, T7(0) # L is
shown for all j < 7p,44.
Now we know that e begins with 0D1D00 = 0B5,,B;;. We compute

TH4(0) = (~a) (6 T(0) ~ (~a) (- ~ a(5T(0) - 5) +1.
This implies

a2

1— T4k(0) _ (1 _ T2k(0)) (a2uﬂ2v _ _)

We have 0 < a2 — "‘T; < 1 since (a, B) € G,,. Furthermore, 72%(0) < 1 holds by the induction
hypothesis. Hence we get T2%(0) < T**(0) < 1 which means 7" *1(0) < T™+171(0) < T(0). The
lemma is completely proved in the case where n — 1 is even.

Now we assume that n — 1 is odd. We proceed as above, but the details are different. In
particular, the block B, _; ends with 1. Let C be the block B,_; with this 1 removed. By
induction hypothesis e begins with 0B,,_1B;_; = 0C'1C00. We set v = a,,—; and v = b,_;. Then
the block C' contains u zeros and v — 1 ones. Set kK = u + v. This is the length r,_; of the block
B,,—1 and C has length kK —1. We have ¢, = u+2 and d,,_; = v by Lemma 2 and the recursions
in Lemma 2 give a,, = ¢, = 2u+ 2 and b, + 1 = d,, = 2v. It follows that s,,_1 — 1 =7r,_1 = k and
rn = Sp = 2k + 1. By induction hypothesis, we have also

5 1
(10) T7(0) #— for 0<j<2k+1
o
and T**+1(0) < T?+2(0) < T(0) = 1. Since we have ey y1epia...e2,_1 = C and ejey...e,_1 = C,

for 1 < j < k—1, we get that T?*1+3(0) lies in the open interval with endpoints T%%7(0) and
T3(0) which is contained either in My or M;. This implies T9(0) # L for 2k + 2 < j < 3k and



€2k+262k+3 - - - €3, = C. Therefore, e begins with 0C1C00C. We compute

T3k+1(0) _ (—a)2u+2(—,8)2v_1Tk(0) 4+ g(_a)2u+2(_ﬁ)2v_2

+ (=) (=0)"1TH(0) + (=)* T (=)~ + T*(0).
Since u is even and v is odd by Lemma 2, this implies

T3k+1(0) — é _ (Tk(o) _ é)(l Faut2guml _ gRut2gio-ly

Either we assume that 7*#-1~1(0) = T*(0) and T"»*+*»-1=1(0) = T3*+1(0) are on the same side
of 1, or (a,3) € Gy, which means a?*"232" — o — 3 < 0. In both cases we get

14+ au+2ﬂv—1 _ a2u+262v—1 > 0.

We always have 1+ a*T23v"! — o?*T232~1 < 1. Furthermore, we get + < T%(0) using e; = 1
and (10). This together implies 1+ < T3%1(0) < T*(0). Therefore, we have €341 = 1. Applying
T we have also T"+1(0) < T3*+2(0) < 1 which means

Tr=11H0) < T H=1+1(0) < T(0).
Now we have shown that e begins with 0C1C00C1. We compute

T2k+2(0) _ (_a)u+2(_13)ka(0) + g(_a)u—ﬂ(_ﬂ)v—l + (_a)QTk(O) — a4+ 17

T2M2(0) = (=a)"(=B)"T**2(0) = (=a)*(=F)" = BT*(0) + 1+ g



Since u is even and v is odd by Lemma 2, we get

1—T2+2(0) = (Tk(()) - é)(a““ﬂ” —a?) and

l)(au+2/6u _ Oz2u-i-2/6>2v + B)

1 — T3k+2(0) = <Tk(0) - =

If now (a, ) € Gy, then a?“t23%" — a2 — 8 < 0 holds. We get T3¥*2(0) < T*+2(0) which means
Tratrn-1t1l(Q) < T7»F1(0). On the other hand, if («, 3) € H,_1, then a?**23% —a? — 8 > 0 and
we get TmnHrm-1+1(0) > Tr=+1(0).

From now on assume (o, 3) € G,. We have shown TFt1(0) < T3*2(0) < T(0) above. Since
ehr1€ht2 - eop_1 = Cand ejes...ep 1 = C, for 1 < j < k—1, we get that T3*+147(0) lies in the
open interval with endpoints 7%%7(0) and 77(0) which is contained either in My or M;. This gives
T (0) # L for 3k +2 < j < 4k and egpy2e3043 - . . €4 = C. Hence e begins with 001C00C1C. We
set D = C1C. Then D contains 2u zeros and 2v — 1 ones. The length of D is 2k — 1 and we have
B, = C1C00 = D00. Furthermore, e begins with 0D00D. We compute

T4k+1 (0) _ (—a)2u+2(—,3)2v_1T2k (0) + (_a)2u+1(_ﬁ)2v—1 + Tzk(O).
This gives

1 1
T4k+1(0) _ - — (_ _ T2k(0)> (a2u+2ﬂ2v—1 _ 1).
a e!
Since ez, = 0, we get T%%(0) < L using (10). This implies 7#*1(0) > 1 and eq11 = 1. By
Lemma 2 we have 7,11 = 2r, — 1 = 4k + 1. Therefore, T7(0) # é is shown for all j < r,,41.

Now we know that e begins with 0D00D1 = 0B, B;;. We compute

gL

T4k:+2(0) _ (_a)2u(_ﬁ)2vT2k:+2(0) _ (_a)2u(_ﬂ)2v _ "

(T?**+2(0) — 1) + 1.



This implies

B
1— T4k+2(0) = (1- T2k+2(0))(a2u/62v _ F)'
Since (a, 3) € Gy, we have 0 < a?%3% — % < 1, and T?*2(0) < 1 holds by induction hypothesis.
Hence we get T2%72(0) < T*+2(0) < 1 which means 7™ *1(0) < T+ 71(0) < T(0). The lemma
is completely proved also in the case where n — 1 is odd. O

4. THE NONWANDERING SET

We define the intervals which are used to construct T-invariant sets. For n > 1, we define

[TSn—l(o),l], it Ton=1(0) < L,
Ksn—l = @

(é,TS"—l(O)], i T1(0) >

Q=

For all (o, ) € G, we have Ko = Kyy—1 = [0, 1], K1 = K;,—1 = (£,7(0)] and Ky = K,,—1 =
[7%(0), 3.

Suppose that n > 2 and (@, ) € Gn—1. Then e begins with 0B,_1B};_; = 0B, and T7(0) # 1
for j < r, by Lemmas 1 and 4. If n is even, then B, ends with 00 and has length r,, = s,.
Hence e,, 1 = e,, = 0 and we get 7°»~1(0) < 1 and T°"(0) < 2. We have then K, ,_, =

[T»=1(0), 1] € My. We define

K,, =T(K,, _1)=1[0,T"(0)] C My and
Kpp1 = Ky 11 = T(Ks,) = [T*7(0), T(0)].



<> |

If n is odd, then B, ends with 1 and has length r, = s, — 1. Hence e5,—1 = 1 and we get
T5~1(0) > 1. We have then K, 1 = (1,7°"71(0)] C M; and we define

Krn-i-l = Ksn = T(Ksn—l) = [Tsn (0)7 1] = [Tsn (0),T(0)]

Notice that in both cases, for even and odd n, we have K, 1 = [T"»+1(0),T(0)].

Suppose now (a, 3) € Gp, C Gn—1. Then e begins with 0B, B;; and we have T9(0) # L for
j < 1 by Lemma 4. We continue to define the intervals K;. The block B, has length 7, and
the initial segment which the blocks B,, and B} have in common, has length r,, — 2 4 §,, which is
equal to s, — 2 by Lemma 2. Using this and Lemma 3 we get

ej=é€r,+j for 1<j<s,—2 and e;,_17€r,ts,—1=C€opyi—1-

For1<j<s,—2, weset K, ; =T77'(K, ;1) which is a closed interval contained either in My
or in M, and has endpoints 7717 (0) and 77 (0). Now Kj is defined for j < s,,41 —2. Furthermore,
T(Ks,,,—2) has endpoints T*»+1~1(0) and 7"*»~'(0) which are on different sides of 2. Hence both
T(Ks, ,—2) N My and T(Ks, ,—2) N M; are nonempty. One of these intervals is K, ,—1 and the
other one is K _;. Hence the interval T'(K, ,, —2) is the disjoint union of the intervals K, , 1
and K, 1. Now we can continue to define intervals K; for j > s,41 as in the previous paragraph.

If (o, 8) € G, then the intervals K; for 0 < j < r,4q1 + 1 are defined. The interval K; is
mapped monotonically onto K1 if j ¢ {s; —2:1 < i < n+1}, and the interval K, _o is mapped
monotonically onto K, UK,, 1 for 1 <i<n+1.

Set Lo = [0,1] and L,, = J;2%! | K;. We can prove now the following results.

Proposition 2. Suppose that n > 2 and (o, 3) € G,.

(a) The intervals K; for s, —1 < j < 1y are disjoint and K, and K, 1 have the
common endpoint %

(b) Ly, is T-invariant and Ly, C L,_.

n+1—
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(¢) Lp—1 \ Ly is the union of disjoint open intervals U; with 1 < j < r,_1 and we have
T(UJ) = Uj+1 fOT 1<7<rp1—-1 and T(Urn_l) D U;.

Proof. We have 1o = so = 3 and r3 = s3 — 1 = 5. For (o, ) € Ga, we have Ky = Ky, =
[T2(0),1], K5 = [0,T73(0)], K4 = [T*(0),7(0)] and K5 = Ky,_1 = K,, = (,7°(0)]. Hence for
n =2 we get (a) from Lemma 1.

We proceed by induction. Suppose n > 3 and (a, ) € G, C G,—1. We assume that (a) is
already shown for n — 1 instead of n, this means that the intervals K; for s,—; —1 < j < r, are
disjoint. In the following we write & for the union of disjoint sets.

We start with K, _, 1 = [T™-1%1(0),T(0)] C M;. By Lemma 4 we have

TT-1t1(0) < Tntm-1t1(0) < T 11 (0) < T(0).
It follows that the intervals
Krpbrayi1 = [T71410), T2 41(0)] and K41 = [T7F1(0), T(0)]

are disjoint and the nonempty open interval Uy = (T"»+m-1+1(0), T2 +1(0)) lies between them.
Therefore, we have

Krptrp i s1 WU WKy, 41 =Ky, 41

We set U; = T7~1(Uy) for j > 2. Furthermore, for r,,_1+2 < j < s,—2 we have that K; = T(K;_1)
is contained either in My or M;. Since Uy C K, _, 11, the sets U; for 1 < j <s,, —r,—1 — 1 are
intervals and we get
(11) Krn-i-j ) Uj—Tn—l (] KTn—T'n—1+j = K] for Tn—1 + 1 < ] < Sp — 2
and T(K,, 4s,-2)WUs, —p, 1 WK, _. +s 1 =T(K,, _2). By the first equation of Lemma 3
this means

T(Ksn+1—2) WUs, -1 WKy 45, 11 = T(Ksn—2)-



We have T'(K,, ., —2) = K, ,,—1 WK, 1 and T(K,, _3) = K,, 1 WK, _,_1. Therefore, we get
K8n+1—1 & Usn—l—l @ KT’n+Sn—1—1 = Ksn—1—1'

Since T'(K;) = K;41 holds for s,_1 —1 < j < r,_1 (notice that 7,—1 = $p,—1 — 1 or rpy_1 = Sp_1),
the sets U; for sp,—1 = 85, — rn—1 < j < rp—1 + 1 are intervals and

(12) K5n+1_sn—1+j (G UJ (G K'rn—i-j = KJ for Spn—1 — 1 < j < Tn—1-

By induction hypothesis, the intervals K; for s,,_; —1 < j < r, are disjoint. By (11) and (12),
each of the intervals K; for s,—1 —1 < j < s, — 2 contains three disjoint intervals. Hence the
intervals on the left hand sides of (11) and (12) are disjoint and they are also disjoint from K for
sp — 1 < j <ry, (notice that r, = s, — 1 or 7, = s,,). The intervals on the left hand sides of (11)
and (12) are U; for 1 < j <r,_; and

Krn-i-j for sn_l—lgjgsn—228n+1—2—rn

K, 41 for 1<1i<s8,—2—71p-1=58p-1—2

Ksn+1—2+l for 1<I<r,_1—8,-1+2="pi1—Spt1+2
where we have used the equations of Lemma 3. This list contains the intervals K; for r, +1 <
j < Tnt1. Therefore, these intervals are disjoint and they are also disjoint from the intervals K

for s, =1 < j < r,. By definition the intervals K, 1 and K, _; have the common endpoint

1 Hence (a) is shown by induction.
The intervals U; are disjoint. We have T'(U;) = Uj4; for 1 < j <r,_; — 1 and

Tn+1 Sn—2 Tn41 Tn—1

(13) Lj K\ U K= U K\ U Kj=UUj

Jj=8n-1—1 Jj=sn—1 J=sn-1—1 J=rn+1



by (11) and (12). Since 7,1 is odd by Lemma 2 and 7, + 27,1 = 7,41 holds by Lemma 3, we
get

T(Ur,_,) =T (Uh) = (T2 7H(0), T+ 7(0)).
We have T7»1(0) < T™»+171(0) by Lemma 4 and therefore,
T(Uy,_,) D Ur = (T F7=171(0), T™F1(0)).

We show (b). We get L, C L1 from Lemma 1 if n = 2, and from (11) and (12) if n > 3.
We show T'(L,) C L,. For s, —1 < j < spq11 — 3, we have T(K;) = K;;;. Furthermore,
T(K, ) =K, -1 UK, 1. If n411is even, then

nt+1—2

Sn+1 = Tn+1, T(Ksn+1_1) =K = KT‘n+1 and T(KT‘n+1) = KT‘n+1+1'

Sn+1
If n 4+ 1 is odd, then

Spe1 =Tnt1+1 and T(K,, ., 1) C K, =K, 41
Since T™*1(0) < T"»+1+1(0) holds by Lemma 4, we have also

Ky, a1 = [TT+71(0), T(0)] € [T771(0), T(0)] = Ky, 41

and T'(L,) C L,, is shown.

We show (c). If n = 2, we have r,,_y = 71 = 1 and U; = (T°(0), T*(0)). In this case T'(U;) D Uy
and L; \ Ly = U; follow from Lemma 1. For n > 3, let U; for 1 < j < r,_q be as above. We
have shown T(U;) = Ujqq for 1 < j < rp_y — 1 and T(U,, ,) D U;. Furthermore, we have

Finally we are able to determine the nonwandering set Q(T).
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Theorem 2. Forn > 1 and (o, 8) € H,,, we have Q(T) = L, U{J;_, P, where Py, is a periodic
orbit of period sy — sk—1. The set Ly, is topologically transitive and the disjoint union of s, closed
intervals.

Proof. For n = 1, this is already shown at the end of Section 2. Therefore, we suppose n > 2.
We first consider L,,. We have L,, = [J;™! | K; and the intervals in this union are disjoint by
Proposition 2. Since two of these intervals have a common endpoint, L, is the disjoint union of
Tn+1 — Sn + 1 = s, closed intervals.

For r, +2 < j < 5,41 —2, the interval K;_; is mapped monotonically onto the interval K;. The
interval K, , o is mapped monotonically onto K, , 1 U K, 1 which contains é in its interior.
Let § be the inverse image of L in the interval K, 11 = [I7»71(0),7(0)] under the composition
of these maps. The interval K, _; is mapped monotonically onto K., 11 and K, 1 is mapped
monotonically onto K, ,, 11 = [T"»+1(0),T(0)], one under T" and the other one under 7. Since
(a,B) € Hy, C Gy, we have K,. ., 1 C K, 41 by Lemma 4. The first return map S of T to the

interval K. 11 is therefore S = T" on [d,T(0)] which is linear with
S(0) =T(0) and S(T(0)) =T T1(0),
and S = T"+1="™ on [T"=*1(0), ] which is linear with
S(6) =T(0) and S(T™T1(0)) = T ™+ 1(0).

Hence S is a tent map and has the fixed point ¢ in (§,7(0)). Since (o, 3) € H,, by Lemma 4
we have T"n+1+1(0) < Trn+itratl(Q) if Trn+1+52=1(0) and T*~~1(0) are on the same side of
L which means that 7"++1+1(0) and T'(0) are on the same side of §. Therefore, we have either
Tro+1+1(0) < § or § < TT+111(0) < S(TT+171(0)). In both cases we get T™+171(0) < o. The
tent map S fulfills the assumption of Proposition 1 and has therefore a dense orbit. This implies
that there is also a dense orbit under 7" in L,, and hence L,, is topologically transitive.



For 1 < k < n we have (a,8) € H, C Gy, and hence Ly, is T-invariant and a finite union of
intervals by Proposition 2 and Lemma 1. Again by Proposition 2 we have [0,1] =Ly D> Ly D...D
L,,. This gives

0,1] = Ln U |J (Ze—1 \ Ls).
k=1
We have shown at the end of Section 2 that Ly \ L; contains a fixed point P; and wandering points
otherwise. For k > 2, it follows from Proposition 2 that Ly_; \ Ly is the union of disjoint open
intervals U; with 1 < j < 7y satisfying T'(U;) = Uj41 for 1 < j <74y —1 and T(U,,_,) D Us.
Furthermore, & ¢ Uj for 1 < j < r_q because we have é € Ks, 1UK,,, 1 C Lg. Since ry_1 is
odd by Lemma 2, there is a periodic orbit Py of period rx—1 = s —Sk—1 in Ly \ Ly, and all other
points in Li_1\ Ly are wandering since 7 is expanding. Therefore, we get Q(T) = L,,UlJ;_, P. O
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