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LEVY’S THEOREM AND STRONG CONVERGENCE
OF MARTINGALES IN A DUAL SPACE

M. SAADOUNE

Abstract. We prove Levy’s Theorem for a new class of functions taking values
from a dual space and we obtain almost sure strong convergence of martingales and

mils satisfying various tightness conditions.

1. Introduction

This work is devoted to the study of strong convergence of martingales and mils
in the space L1

X∗ [X](Ω,F , P ) of X-scalarly measurable functions f such that
ω → ‖f(ω)‖ is P -integrable, where (Ω,F , P ) is a complete probability space,
X is a separable Banach space and X∗ is its topological dual without the Radon-
Nikodym Property. By contrast with the well known Chatterji result dealing
with strong convergence of relatively weakly compact L1

Y (Ω,F , P )-bounded mar-
tingales, where Y is a Banach space, the case of the space L1

X∗ [X](Ω,F , P ) con-
sidered here is unusual because the functions are no longer strongly measurable,
the dual space is not strongly separable. Our starting point of this study is to
characterize functions in L1

X∗ [X](Ω,F , P ) whose associated regular martingales
almost surely strong converge, by introducing the notion of σ-measurability. We
then proceed by stating our main results, which stipule that under various tightness
conditions, L1

X∗ [X](Ω,F , P )-bounded martingales and mils almost surely converge
with respect to the strong topology on X∗. Further, we study the special case of
martingales in the subspace of L1

X∗ [X](F) of all Pettis-integrable functions that
satisfy a condition formulated in the manner of Marraffa [25]. For the weak star
convergence of martingales and mils taking values from a dual space, the reader is
referred to Fitzpatrick-Lewis [20] and the recent paper of Castaing-Ezzaki-Lavie-
Saadoune [7].

The paper is organized as follows. In Section 2 we set our notations and defini-
tions, and summarize needed results. In section 3 we present a weak compactness
result for uniformly integrable weak tight sequences in the space L1

X∗ [X](Ω,F , P )
as well as we give application to biting lemma. These results will be used in the
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next sections. In Section 4 σ-measurable functions are presented and Levy’s theo-
rem for such functions is stated. In Section 5 we give our main martingale almost
surely strong convergence result (Theorem 5.1) accompanied by some important
Corollaries 5.1–5.3. A version of Theorem 5.1 for mils is provided at the end of this
section (Theorem 5.2). Finally, in Section 6 we discuss the special case of bounded
martingales in L1

X∗ [X](Ω,F , P ) whose members are also Pettis integrable. It will
be shown that for such martingales it is possible to pass from convergence in a
very weak sense (see [25], [17], [4]) to strong convergence (Proposition 6.1).

2. Notations and Preliminaries

In the sequel, X is a separable Banach space and (x`)`≥1 is a fixed dense sequence
in the closed unit ball BX . We denote by X∗ the topological dual of X and the dual
norm by ‖.‖. The closed unit ball ofX∗ is denoted byBX∗ . If t is a topology onX∗,
the space X∗ endowed with t is denoted by X∗t . Three topologies will be considered
on X∗, namely the norm topology s∗, the weak topology w = σ(X∗, X∗∗) and the
weak-star topology w∗ = σ(X∗, X).

Let (Cn)n≥1 be a sequence of subsets of X∗. The sequential weak upper limit
w − ls Cn of (Cn) is defined by

w − ls Cn = {x ∈ X∗ : x = w − lim
j→+∞

xnj , xnj ∈ Cnj}

and the topological weak upper limit w − LS Cn of (Cn) is denoted by w − LS Cn
and is defined by

w − LS Cn =
⋂
n≥1

w − cl
⋃
k≥n

Cn,

where w−cl denotes the closed hull operation in the weak topology. The following
inclusion

w − ls Cn ⊆ w − LS Cn
is easy to check. Conversely, if the Cn are contained in a fixed weakly compact
subset, then both sides coincide.

Let (Ω,F , P ) be a complete probability space. A function f : Ω→ X∗ is said to
be X-scalarly F-measurable (or simply scalarly F-measurable) if the real-valued
function ω →< x, f(ω) > is measurable with respect to (w.r.t.) the σ-field F for
all x ∈ X. We say also that f is weak∗-F-measurable. Recall that if f : Ω → X∗

is a scalarly F-measurable function such that 〈x, f〉 ∈ L1
R(F) for all x ∈ X, then

for each A ∈ F , there is x∗ ∈ X∗ such that

∀x ∈ X, 〈x, x∗〉 =
∫
A

〈x, f〉dP.

The vector x∗ is called the weak∗ integral (or Gelfand integral) of f over A and is
denoted simply

∫
A
f dP . We denote by L0

X∗ [X](F) (resp. L1
X∗ [X](F)) the space

of all (classes of) scalarly F-measurable functions (resp. scalarly F-measurable
functions f such that ω → ‖f(ω)‖ is P -integrable). By [14, Theorem VIII.5]
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(actually, a consequence of it) (see also [3, Proposition 2.7]), L1
X∗ [X](F) endowed

with the norm N1 defined by

N1(f) :=
∫

Ω

‖f‖ dP, f ∈ L1
X∗ [X](F),

is a Banach space. For more properties of this space, we refer to [3] and [14].

Next, let (Fn)n≥1 be an increasing sequence of sub-σ-algebras of F . We assume
without loss of generality that F is generated by ∪nFn. A function τ : Ω →
N ∪ {+∞} is called a stopping time w.r.t. (Fn) if for each n ≥ 1, {τ = n} ∈ Fn.
The set of all bounded stopping times w.r.t. (Fn) is denoted T . Let (fn)n≥1 be a
sequence in L1

X∗ [X](F). If each fn is Fn-scalarly measurable, we say that (fn) is
adapted w.r.t. (Fn). For τ ∈ T and (fn) an adapted sequence w.r.t. (Fn) recall
that

fτ :=
max(τ)∑
k=min(τ)

fk1{τ=k} and Fτ = {A ∈ F : A ∩ {τ = k} ∈ Fk,∀k ≥ 1}.

It is readily seen that fτ is Fτ -scalarly measurable. Moreover, given a stopping
time σ (not necessarily bounded), the following useful inclusion holds

{σ = +∞} ∩ F ⊂ σ(∪nFσ∧n),(‡)

which is equivalent to

(‡)′ {σ = +∞} ∩ Fm ⊂ σ(∪nFσ∧n), for all m ≥ 1,

where σ∧n is the bounded stopping time defined by σ∧n(ω) := min(σ(ω), n) and
σ(∪nFσ∧n) is the sub-σ-algebra of F generated by ∪nFσ∧n. To verify (‡)′, fix A
in Fm and consider the sequence (fn) defined by fn := 1A if n = m, 0 otherwise.
Then (fn) is adapted w.r.t (Fn) and it is easy to check the following equality

1{σ=+∞}fσ∧m = 1{σ=+∞}∩A

with 1∅ = 0. As {σ = +∞} ∈ σ(∪nFσ∧n) (because {σ < +∞} = ∪n{σ = n} and
{σ = n} ∈ Fσ∧n, for all n ≥ 1), it follows that 1{σ=+∞}fσ∧m is measurable w.r.t.
σ(∪nFσ∧n) and so is the function 1{σ=+∞}∩A. Equivalently {σ = +∞} ∩ A ∈
σ(∪nFσ∧n). Thus {σ = +∞} ∩ Fm ⊂ σ(∪nFσ∧n). Since this holds for all m ≥ 1,
the inclusion (‡)′ follows.

Definition 2.1. An adapted sequence (fn)n≥1 in L1
X∗ [X](F) is a martingale

if ∫
A

fn dP =
∫
A

fn+1 dP

for each A ∈ Fn and each n ≥ 1. Equivalently EFn(fn+1) = fn for each n ≥ 1.

EFn denotes the (Gelfand) conditional expectation w.r.t. Fn. It must be noted
that the conditional expectation of a Gelfand function in L1

X∗ [X](F) always exists,
(see [32, Proposition 7, p. 366] and [35, Theorem 3]).
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Definition 2.2. An adapted sequence (fn)n≥1 in L1
X∗ [X](F) is a mil if for

every ε > 0, there exists p such that for each n ≥ p, we have

P ( sup
n≥q≥p

‖fq − EFqfn‖ > ε) < ε.

It is obvious that if (fn)n≥1 is a mil in L1
X∗ [X](F), then for every x in BX , the

sequence (〈x, fn〉)n≥1 is a mil in L1
R(F).

We end this section by recalling two concepts of tightness which permit us to
pass from weak star to strong convergence. For this purpose, let C = cwk(X∗w)
or R(X∗w), where cwk(X∗w) (resp. R(X∗w)) denotes the space of all nonempty
σ(X∗, X∗∗)-compact convex subsets of X∗w (resp. closed convex subsets of X∗w
such that their intersections with any closed ball are weakly compact). A C-valued
multifunction Γ : Ω⇒ X∗ is F-measurable if its graph Gr(Γ) defined by

Gr(Γ) := {(ω, x∗) ∈ Ω×X∗ : x∗ ∈ Γ(ω)}
belongs to F ⊗ B(X∗w∗).

Definition 2.3. A sequence (fn) in L0
X∗ [X](F) is C-tight if for every ε > 0,

there is a C-valued F-measurable multifunction Γε : Ω⇒ X∗ such that

inf
n
P ({ω ∈ Ω : fn(ω) ∈ Γε(ω)}) ≥ 1− ε.

In view of the completeness hypothesis on the probability space (Ω,F , P ), the
measurability of the set {ω ∈ Ω : fn(ω) ∈ Γε(ω)} is a consequence of the classical
Projection Theorem [14, Theorem III.23] since X∗w∗ is a Suslin space and Γε has
its graph in F ⊗ B(X∗w∗) (see [8, p. 171–172] and also [6, 11]).

Now let us introduce a weaker notion of tightness, namely S(C)-tightness. It is
a dual version of a similar notion in [6] dealing with primal space X.

Definition 2.4. A sequence (fn) in L0
X∗ [X](F) is S(C)-tight if there exists a

C-valued F-measurable multifunction Γ: Ω⇒ X∗ such that for almost all ω ∈ Ω,
one has

fn(ω) ∈ Γ(ω) for infinitely many indices n.(*)

The following two results reformulate [6, Proposition 3.3] for sequences of mea-
surable functions with values in a dual space.

Proposition 2.1. Let (fn) be an R(X∗w)-tight sequence. If it is bounded in
L1
X∗ [X](F), then it is also cwk(X∗w)-tight.

Proof. Let ε > 0. By the R(X∗w)-tightness assumption, there exists a F-meas-
urable R(X∗w)-valued multifunction Γε : Ω⇒ X∗ such that

inf
n
P ({ω ∈ Ω : fn(ω) ∈ Γε(ω)}) ≥ 1− ε.(2.1)

On the other hand, since (‖fn‖) is bounded in L1
R+(F), one can find rε > 0 such

that

sup
n
P ({‖fn‖ > rε}) ≤ ε.(2.2)
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For each n ≥ 1, put

An,ε := {ω ∈ Ω : fn(ω) ∈ Γε(ω) ∩B(0, rε)}

and let us consider the multifunction ∆ε defined on Ω by

∆ε := s∗-cl co
[⋃
n≥1

{1An,εfn}
]
.

The values of multifunction ∆ε are cwk(X∗w)-valued, because ∆ε(ω) ⊂ s∗-cl co({0}
∪[Γε(ω)∩B(0, rε)]) and Γε(ω) ∈ R(X∗w), for all ω. Therefore, ∆ε is F-measurable
(see [6], [10]). Finally, using (2.1), (2.2) and the following inclusions

An,ε ⊆ {ω ∈ Ω : fn(ω) ∈ ∆ε(ω)}, n ≥ 1,

we get
P ({ω ∈ Ω : fn(ω) ∈ ∆ε(ω)}) > 1− 2ε for all n.

�

Proposition 2.2. Every C-tight sequence is S(C)-tight.

Proof. Let (fn) be a C-tight sequence in L0
X∗ [X](F) and consider εq := 1

q ,
q ≥ 1. By the C-tightness assumption, there is a F-measurable C-valued multi-
function Γεq : Ω⇒ X∗ denoted simply Γq such that

inf
n
P (An,q) ≥ 1− εq,(2.3)

where
An,q := {ω ∈ Ω : fn(ω) ∈ Γq(ω)}.

Now, we define the sequence (Ωq)q≥1 by

Ωq = lim sup
n→+∞

An,q

and the multifunction Γ on Ω by

Γ = 1Ω′1
Γ1 +

∑
q≥2

1Ω′q
Γq,

where Ω′1 = Ω1 and Ω′q = Ωq \ ∪i<q Ωi for all q > 1. Then inequality (2.3) implies

P (Ωq) = lim
n→∞

P
( ⋃
m≥n

Am,q
)
≥ 1− εq → 1.

Further, for each ω ∈ Ωq, one has

ω ∈ An,q = {ω ∈ Ω : fn(ω) ∈ Γ(ω)} for infinitely many indices n.

This proves the S(C)-tightness. �

Remark 2.5. By the Eberlein-Smulian theorem, the following implication

(fn) S(cwk(X∗w))-tight⇒ w − ls fn 6= ∅ a.s.

holds true. Conversely, if w− ls fn 6= ∅ a.s. then the condition (*) in Definition 2.4
is satisfied, but the multifunction C may fail to be F-measurable.
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Actually, in all results involving the S(C)-tightness condition, the measurability
of the multifunction Γ is not essential.

3. weak compactness in the space L1
X∗ [X](F)

We recall first the following weak compactness result in the space L1
X∗ [X](F) due

to Benabdellah and Castaing [3].

Proposition 3.1. ([3, Proposition 4.1]) Suppose that (fn)n≥1 is a uniformly
integrable sequence in L1

X∗ [X](F) and Γ is a cw(X∗w)-valued multifunction such
that

fn(ω) ∈ Γ(ω) a.s. for all n ≥ 1,

then (fn) is relatively weakly compact in L1
X∗ [X](F).

Proceeding as in the primal case (see [5], [1], [30]), it is possible to extend this
result to uniformly integrable R(X∗w)-tight sequences in L1

X∗ [X](F)

Proposition 3.2. Suppose that (fn)n≥1 is a uniformly integrable R(X∗w)-tight
sequence in L1

X∗ [X](F). Then (fn) is relatively weakly compact in L1
X∗ [X](F).

Proof. By Proposition 2.1, (fn) is cwk(X∗w)-tight since it is bounded and
R(X∗w)-tight. Consequently, for every q ≥ 1, there is a F-measurable cwk(X∗w)-va-
lued multifunction Γ 1

q
: Ω⇒ X∗, denoted simply Γq, such that

inf
n
P (An,q) ≥ 1− 1

q
,

where
An,q := {ω ∈ Ω : fn(ω) ∈ Γq(ω)}.

Now, for each q ≥ 1, we consider the sequence (fn,q) defined by

fn,q = 1An,qfn n ≥ 1.

By Proposition 3.1, the sequence (fn,q) is relatively weakly compact in L1
X∗ [X](F)

since it is L1
X∗ [X](F)-bounded and fn,q(ω) belongs to the w-compact set Γ(ω) for

all ω ∈ Ω and all n, q ≥ 1. Furthermore, we have the following estimation

sup
n

∫
Ω

‖fn − fn,q‖ dP ≤ sup
n

∫
Ω\An,q

‖fn‖ dP

for all q ≥ 1. As (fn) is uniformly integrable and infn P (An,q) ≥ 1− 1
q , we get

lim
q→∞

sup
n

∫
Ω\An,q

‖fn‖dP = 0.

Hence

lim
q→∞

sup
n

∫
Ω

‖fn − fn,q‖ dP = 0.

Consequently, by Grothendieck’s weak relative compactness lemma ([22, Chap. 5,
4, n◦1]), the sequence (fn) is relatively weakly compact in L1

X∗ [X](F). �
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Now, we provide the following version of the biting lemma in the space
L1
X∗ [X](F). See [13] for other related results involving a weaker mode of con-

vergence; see also [9] dealing with the primal case.

Proposition 3.3. Let (fn) be a bounded R(X∗w)-tight sequence in L1
X∗ [X](F).

Then there exist a subsequence (f ′n) of (fn), a function f∞ ∈ L1
X∗ [X](F) and an

increasing sequence (Bp) of measurable sets with limp→∞ P (Bp) = 1 such that
(1Bpf

′
n) converges to 1Bpf∞ in the weak topology of L1

X∗ [X](F) for all p ≥ 1.

Proof. In view of the biting lemma (see [21], [33] [31]), there exist an increasing
sequence (Bp) of measurable sets with limp→∞ P (Bp) = 1 and a subsequence (f ′n)
of (fn) such that for all p ≥ 1, the sequence (1Bpf

′
n) is uniformly integrable. It is

also R(X∗w)-tight. Consequently, by Proposition 3.2, for each p ≥ 1, (1Bpf
′
n) is rel-

atively weakly compact in L1
X∗ [X](F). By applying the Eberlein-Smulian theorem

via a standard diagonal procedure, we provide a subsequence of (f ′n), not relabeled,
such that for each p ≥ 1, (1Bpf

′
n) converges to a function f∞,p ∈ L1

X∗ [X](F) in the
weak topology of L1

X∗ [X](F), also denoted σ(L1
X∗ [X](F), (L1

X∗ [X](F))′). Finally,
define

f∞ :=
p=∞∑
p=1

1Cpf∞,p,

where
C1 := B1 and Cp := Bp \ ∪i<pBi for p > 1.

It is not difficult to verify that (1Bpf
′
n) converges to 1Bpf∞ in the weak topology of

L1
X∗ [X](F). Since the norm N1(.) of L1

X∗ [X](F) is σ(L1
X∗ [X](F), (L1

X∗ [X](F))′)-
lower semi-continuous, we have∫

Bp

‖f∞‖ dP ≤ lim inf
n→∞

∫
Bp

‖f ′n‖dP ≤ sup
n

∫
Ω

‖fn‖dP <∞ for all p ≥ 1.

As limp→∞ P (Bp) = 1, we deduce that ‖f∞‖ ∈ L1
R(F). This completes the proof

of Proposition 3.3. �

As a consequence of Proposition 3.3 and Mazur theorem we get the following
corollary.

Corollary 3.1. Let (fn) be a bounded R(X∗w)-tight sequence in L1
X∗ [X](F).

Then there exist a sequence (gn) with gn ∈ co{fi : i ≥ n} and a function f∞ ∈
L1
X∗ [X](F) such that

(gn) s∗-converges to f∞ a.s.

Proof. By the assumptions and Proposition 3.3, there exist a subsequence (f ′n)
of (fn), a function f∞ ∈ L1

X∗ [X](F) and increasing sequence (Bp) of measurable
sets with limp→∞ P (Bp) = 1 such that for all p ≥ 1, (1Bpf

′
n) converges to 1Bpf∞

in the weak topology of L1
X∗ [X](F). So, appealing to a diagonal procedure based

on successively applying Mazur’s theorem (see [10, Lemma 3.1]), one can show the
existence of a sequence (gn) of convex combinations of (f ′n), such that for all p ≥ 1,
(1Bpgn) s∗-converges almost surely to 1Bpf∞ and also strongly in L1

X∗ [X](F).
Since limp→∞ P (Bp) = 1, (gn) s∗-converges almost surely to f∞. �



38 M. SAADOUNE

4. Levy’s theorem in L1
X∗ [X](F)

In this section, we present a new class of functions in L1
X∗ [X](F) whose associated

regular martingales almost surely converge with respect to the strong topology of
X∗.

Definition 4.1. A function f in L0
X∗ [X](F) is said to be σ-measurable, if

there exists an adapted sequence (Γn)n≥1 (that is, for each integer n ≥ 1, Γn is
Fn-measurable) of R(X∗w)-valued multifunctions such that f(ω) ∈ s∗-cl co(∪nΓn)
a.s.

Remark 4.2. The sequence (Γn) given in this definition can be assumed to be
adapted w.r.t. a subsequence of (Fn).

Remark 4.3. As a special case note that every strongly measurable function
f : Ω → X∗ is σ-measurable. Indeed, if (ξn)n≥1 is a sequence of measurable
functions assuming a finite number of values and which norm converges a.s. to f ,
then f(ω) ∈ s∗-cl(∪n≥1ξn(Ω)) a.s., (Γn := ξn(Ω)).

Proposition 4.1. Let f ∈ L0
X∗ [X](F) and suppose there exists a sequence

(Γn)n≥1 of R(X∗w)-valued multifunctions which is adapted w.r.t. a subsequence of
(Fn) such that f(ω) ∈ s∗-cl cow-LS Γn a.s., then f is σ-measurable.

Proof. Indeed, since

w-LS Γn :=
⋂
k≥1

w-cl
(⋃
n≥k

Γn
)
⊂
⋂
k≥1

s∗-cl co
(⋃
n≥k

Γn
)
⊂ s∗-cl co

(⋃
n≥1

Γn
)
,

we have
s∗-cl cow-LS Γn ⊂ s∗-cl co

(⋃
n≥1

Γn
)
.

�

In particular, we have the following result.

Corollary 4.1. Let f ∈L0
X∗ [X](F). If there exists a sequence (fn) in L0

X∗ [X](F),
adapted w.r.t. a subsequence of (Fn) which weak converges a.s. to f , then f is
σ-measurable.

The following proposition will be useful in this work.

Proposition 4.2. Let (fn)n≥1 be an adapted S(cwk(X∗w))-tight sequence in
L0
X∗ [X](F) and f∞ a function in L0

X∗ [X](F) such that

lim
n→∞

〈x`, fn〉 = 〈x`, f∞〉 a.s. for all `.

Then f∞ is σ-measurable.

Proof. S(cwk(X∗w))-tightness and Remark 2.5 imply

w-ls fn 6= ∅ a.s.

Since limn→∞〈x`, fn〉 = 〈x`, f∞〉, it is easy to prove that

w-ls fn = {f∞} a.s.
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Thus f∞ is σ-measurable, in view of Proposition 4.1 �

There are two significant variants of Proposition 4.2. involving the
R(X∗w)-tightness condition. The first one is essentially based on Proposition 3.2.

Proposition 4.3. Let (fn)n≥1 be a uniformly integrable R(X∗w)-tight adapted
sequence in L1

X∗ [X](F) and f∞ a function in L1
X∗ [X](F). Suppose there exists a

sequence (gn) in L1
X∗ [X](F) with gn ∈ co{fi : i ≥ n} such that

lim
n→∞

〈x`, gn〉 = 〈x`, f∞〉 a.s. for all `.

Then f∞ is σ-measurable.

Proof. Let (gn) be given as in the proposition. By Proposition 3.2 and Krein-
Smulian theorem, the convex hull of the set {fn : n ≥ 1} is relatively weakly
compact in L1

X∗ [X](F); hence (gn) is relatively weakly compact in L1
X∗ [X](F).

Consequently, by the Eberlein Smulian theorem, there exists a subsequence of
(gn), not relabeled, such that for each p ≥ 1, (gn) converges to a function f ′∞ ∈
L1
X∗ [X](F) in the weak topology of L1

X∗ [X](F). So, invoking Mazur’s theorem
it can be shown the existence of a sequence of convex combinations of (gn), still
denoted in the same manner such that (gn) s∗-converges almost surely to f ′∞. As
limn→∞〈x`, gn〉 = 〈x`, f∞〉 a.s. for all `, we get f∞ = f ′∞ a.s. Therefore, since
(gn) is adapted w.r.t. a subsequence of (Fn), it follows that f∞ is σ-measurable.

�

The second variant is a consequence of the proof of Corollary 3.1.

Proposition 4.4. Let (fn)n≥1 be a bounded R(X∗w)-tight adapted sequence in
L1
X∗ [X](F) and f∞ a function in L1

X∗ [X](F) such that the following condition
holds.

For any subsequence (f ′n) of (fn), there is a sequence (gn) in L1
X∗ [X](F) with

gn ∈ co{f ′i : i ≥ n} such that

lim
n→∞

〈x`, gn〉 = 〈x`, f∞〉 a.s. for all `.

Then f∞ is σ-measurable.

Now our main result comes and shows that a regular martingale associated to
a σ-measurable function in L1

X∗ [X](F) norm converges a.s.

Proposition 4.5. Let f be a function in L1
X∗ [X](F). Then the following two

statements are equivalent:
(a) (EFn(f)) s∗-converges a.s.to f ;
(b) f is σ-measurable.

Proof. Step 1. The implication (a) ⇒ (b) is trivial. Conversely, suppose that
f is σ-measurable. Then there exists an adapted sequence (Γn) of R(X∗w)-valued
multifunctions such that

f(ω) ∈ s∗-cl co
(⋃
n

Γn(ω)
)

a.s.(4.1)
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Without loss of generality, we may suppose that 0 ∈ Γn(ω), for all ω ∈ Ω and all
n ≥ 1. For each n, p ≥ 1, define the multifunction Γpn by

Γpn := Γn ∩BX∗(0, p).

Since this multifunction is Fn-measurable, namelyGr(Γpn) ∈ Fn⊗B(X∗w∗) andX∗w∗
is a Suslin space, invoking [14, Theorem III.22], one can find a sequence (σpn,i)i≥1

of scalarly Fn-measurable selectors of Γpn that are also L1
X∗ [X](F)-integrable (be-

cause the multifunctions Γpn are integrably bounded) such that for every ω ∈ Ω,

w∗ − cl(Γpn(ω)) = w∗ − cl({σpn,i(ω)}i≥1).

Equivalently
Γpn(ω) = w − cl({σpn,i(ω)}i≥1),

since Γpn is w-compact valued. So

Γpn(ω) ⊂ w − cl co({σpn,i(ω)}i≥1) = s∗-cl co({σpn,i(ω)}i≥1).(4.2)

Let (sm)m≥1 be the sequence of all linear combinations with rational coefficients
of σpn,i, (n, p, i ≥ 1). It is easy to check that

s∗-cl co({σpn,i(ω)}n,i,p≥1) ⊂ s∗ − cl({sm(ω)}m≥1).

Combining this with (4.2) we get

s∗-cl co
(⋃
n

Γn(ω)
)

= s∗-cl co
(⋃
n

⋃
p

Γpn(ω)
)
⊂ s∗ − cl({sm(ω)}m≥1),

whence, by (4.1)

f(ω) ∈ s∗ − cl({sm(ω)}m≥1) a.s.(4.3)

Now, for each q ≥ 1, let us define the sets

Bqm :=
{
ω ∈ Ω : ‖f(ω)− sm(ω)‖ < 1

q

}
(m ≥ 1),

Ωq1 := Bq1 , Ωqm := Bqm \
⋃
i<m

Bqi for m > 1

and the function

fq :=
+∞∑
m=1

1Ωqmsm.

Since the functions ω → ‖f(ω) − sm(ω)‖ are F-measurable, Bqm ∈ F , for all
m ≥ 1, and then each fq is scalarly F-measurable. Further, from (4.3) it follows
that ∪mBqm = Ω a.s., so that (Ωqm)m constitutes a sequence of pairwise disjoint
members of F which satisfies ∪mΩqm = Ω a.s., and so we have

‖f(ω)− fq(ω)‖ ≤ 1
q

for almost all ω ∈ Ω.(4.4)

Next, we claim that
lim
n→∞

‖EFn(f)− f‖ = 0 a.s.
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First, observe that by construction of the sm’s, we can find a strictly increasing
sequence (pm) of positive integers such that (sm) is adapted w.r.t. (Fpm). Now,
let k ≥ 1 be a fixed integer. For each n ≥ pk, one has

EFn(1∪m=k
m=1B

q
m
fq) = EFn(1∪m=k

m=1Ωqm
fq) = EFn

m=k∑
m=1

1Ωqmsm =
m=k∑
m=1

(EFn1Ωqm)sm,

whence by the classical Levy theorem

lim
n→∞

EFn(1∪m=k
m=1B

q
m
fq) =

m=k∑
m=1

1Ωqmsm = 1∪m=k
m=1B

q
m
fq a.s.(4.5)

w.r.t. the norm topology of X∗. On the other hand, from (4.4) we deduce the
following estimation

‖EFn(1∪m=k
m=1B

q
m
f)− 1∪m=k

m=1B
q
m
f‖ ≤ ‖EFn(1∪m=k

m=1B
q
m
f)− EFn(1∪m=k

m=1B
q
m
fq)‖

+ ‖EFn(1∪m=k
m=1B

q
m
fq)− 1∪m=k

m=1B
q
m
fq‖

+ ‖1∪m=k
m=1B

q
m
f(ω)− 1∪m=k

m=1B
q
m
fq(ω)‖

≤ ‖EFn(1∪m=k
m=1B

q
m
fq)− 1∪m=k

m=1B
q
m
fq‖+

2
q
,

which leads to
‖EFn(f)− f‖ ≤ ‖EFn(1∪m=k

m=1B
q
m
f)− 1∪m=k

m=1B
q
m
f‖

+ ‖EFn(1Ω\∪i=km=1B
q
m
f)− 1Ω\∪m=k

m=1B
q
m
f‖

≤ ‖EFn(1∪m=k
m=1B

q
m
fq)− 1∪m=k

m=1B
q
m
fq‖+

2
q

+ EFn(1Ω\∪m=k
m=1B

q
m
‖f‖) + 1Ω\∪m=k

m=1B
q
m
‖f‖.

Consequently, from (4.5) and the classical Levy Theorem (‖f‖ being in L1
R(F)),

it follows that

lim sup
n→∞

‖EFn(f)− f‖ ≤ 2
(

1Ω\∪m=k
m=1B

q
m
‖f‖+

1
q

)
,

a.s. for all k ≥ 1 and all q ≥ 1. Since P (∪mBqm) = 1, by passing to the limit when
k → ∞ and q → ∞, respectively, we get the desired conclusion, and the proof is
finished. �

5. strong convergence of martingales in L1
X∗ [X](F)

The main result of this section asserts that under the S(R(X∗w))-tightness condi-
tion every bounded martingale in L1

X∗ [X](F) norm converges a.s. We begin with
the following decomposition result for martingales which is borrowed from [7]. For
the convenience of the reader we give a detailed proof.

Proposition 5.1. Let (fn)n≥1 be a bounded martingale in L1
X∗ [X](F). Then

there exists f∞ ∈ L1
X∗ [X](F) such that

lim
n→∞

‖fn − EFnf∞‖ = 0 a.s and,
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(fn) w∗-converges to f∞ a.s.

Proof. As (fn) is a bounded martingale in L1
X∗ [X](F) for each x ∈ X, (〈x, fn〉)

is a bounded real martingale in L1
R(F), hence it converges a.s. to a function rx ∈

L1
R(F) for every x ∈ X. By using [11, Theorem 6.1(4)], we provide an increasing

sequence (Ap)p≥1 in F with limp→∞ P (Ap) = 1, a function f∞ ∈ L1
X∗ [X](F) and

a subsequence (f ′n)n≥1 of (fn) such that

lim
n→∞

∫
Ap

〈h, f ′n〉dP =
∫
Ap

〈h, f∞〉dP

for all p ≥ 1 and all h ∈ L∞X (F). So by identifying the limit, we get rx = 〈x, f∞〉
a.s. Hence

lim
n→∞

〈x, fn〉 = 〈x, f∞〉, a.s. for all x ∈ X(5.1)

and then in view of the classical Levy’s theorem

lim
n→∞

[〈x, fn〉 − 〈x,EFn(f∞)〉] = 0 a.s. for all x ∈ X.

Furthermore, {(〈x`, fn〉− 〈x`, EFn(f∞)〉)n≥1 : ` ≥ 1} is a countable family of real-
valued L1

R(F)-bounded martingales, thus invoking [28, Lemma V.2.9], we see that

lim
n→∞

‖fn − EFnf∞‖ = lim
n→∞

sup
`≥1

[〈x`, fn〉 − 〈x`, EFn(f∞)〉)]

= sup
`≥1

lim
n→∞

[〈x`, fn〉 − 〈x`, EFn(f∞)〉] = 0.
(5.2)

Since
sup
n
‖EFn(f∞)‖ ≤ sup

n
EFn‖f∞‖ <∞,

equation (5.2) entails
sup
n
‖fn‖ <∞ a.s.

Invoking the separability of X and (5.1), we get

(fn) w∗-converges to f∞ a.s.,

by a routine argument. This completes the proof. �

Propositions 4.5 and 5.1 together allow us to pass from weak star convergence
to strong convergence of martingales.

Theorem 5.1. Let (fn)n≥1 be a bounded martingale in L1
X∗ [X](F) satisfying

the following condition.

There exists a S(R(X∗w))-tight sequence (gn) in L1
X∗ [X](F)(T )

with gn ∈ co{fi : i ≥ n}.

Then there exists f∞ ∈ L1
X∗ [X](F) such that

(fn) s∗-converges to f∞ a.s.
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Proof. Let (gn) be as in condition (T ). By Proposition 5.1, there exists f∞ ∈
L1
X∗ [X](F) such that

‖fn − EFn(f∞)‖ → 0 a.s.(a)

(fn) w∗-converges to f∞ a.s.(b)

By (b), (fn) is pointwise bounded a.s., and so is the sequence (gn). Consequently,
(gn) is S(cwk(X∗w))-tight, since it is S(R(X∗w))-tight (by (T )). Furthermore, we
have

(gn) w∗-converges to f∞ a.s.
Therefore, noting that (gn) is adapted w.r.t. a subsequence of Fn, we conclude
that f∞ is σ-measurable in view of Proposition 4.2. In turn, by Proposition 4.5,
this ensures the a.s. s∗-convergence of EFn(f∞) to f∞. Coming back to (a), we
get the desired conclusion. �

An alternative proof of Theorem 5.1 via a standard stopping time argument
is also available. We want to emphasize that some of the arguments used in this
proof will be helpful in the next section.

Second proof. Reasoning as at the beginning of the proof of Proposition 5.1 we
find a function f∞ ∈ L1

X∗ [X](F) such that

lim
n→∞

〈x, fn(ω)〉 = 〈x, f∞(ω)〉 a.s. for all x ∈ X.(5.3)

1) Suppose that supn ‖fn‖ ∈ L1
R(F). Then equation (5.3) implies

lim
n→∞

∫
A

〈x, fn〉dP =
∫
A

〈x, f∞〉dP

for all x ∈ X and for all A ∈ F . Since (fn) is a martingale, it follows that∫
A

〈x, fm〉dP = lim
n→∞,n≥m

∫
A

〈x, fn〉dP

=
∫
A

〈x, f∞〉dP =
∫
A

〈x,EFm(f∞)〉dP

for all x ∈ X, m ≥ 1 and A ∈ Fm. Hence

fm = EFm(f∞) a.s. for all m ≥ 1,

by the separability of X. On the other hand, the sequence (gn) appearing in the
condition (T ) above is S(cwk(X∗w))-tight, since it is S(R(X∗w))-tight and point-
wise-bounded almost surely in view of the inequality

sup
n≥1
‖gn(ω)‖ ≤ sup

n≥1
‖fn(ω)‖ <∞ a.s.

Further, from (5.3) it follows

lim
n→∞

〈x, gn〉 = 〈x, f∞〉 a.s.,

for every x ∈ X. Taking into account Proposition 4.2, it follows that f∞ is
σ-measurable.Therefore, by Proposition 4.5, (fn) s∗-converges a.s. to f∞.



44 M. SAADOUNE

2) The case supn
∫

Ω
‖fn‖ dP <∞. For each t > 0, define the following well known

stopping time

σt(ω) =

{
n if ‖fi(ω)‖ ≤ t, for i = 1, . . . , n− 1 and ‖fn(ω)‖ ≥ t,

+∞ if ‖fi(ω)‖ ≤ t, for all i.

Then, following the same lines as those of the L1
E(F) case ([15], [19]) we show

that:
(i) (fσt∧n,Fσt∧n) is a L1

X∗ [X](F)-bounded martingale.
(ii) The function ω → supn ‖fσt∧n(ω)‖ is integrable.
(iii) P (At := {ω : σt(ω) =∞})→ 1 as t→∞.

Moreover, using (5.3) it is not difficult to check that

lim
n→∞

〈x, fσt∧n(ω)〉 = 〈x, f t∞(ω)〉, a.s.(5.4)

for every x ∈ X, where

f t∞(ω) :=
{
f∞(ω) if ω ∈ At,
fσt(ω)(ω) otherwise.

By (5.4), it is clear that f t∞ is scalarly F-measurable. Furthermore, one has

‖f t∞‖ ≤ lim inf
n→+∞

‖fσt∧n‖ a.s.

which in view of (i) and Fatou’s lemma (or (ii)) shows that ‖f t∞‖ is integrable.
Thus f t∞ ∈ L1

X∗ [X](F).

Now, writing each gn in the form

gn =
kn∑
i=n

µinfi with 0 ≤ µin ≤ 1 and
kn∑
i=n

µin = 1,

we define

gtn(ω) :=
kn∑
i=n

µinfσt∧n(ω), (t > 0).

Observing that

gtn(ω) =
{
gn(ω) if ω ∈ At,
fσt(ω)(ω) otherwise for all n ≥ σt(ω),

we conclude that (gtn(ω)) is S(R(X∗w))-tight and equation (5.4) entails the follow-
ing convergence

lim
n→∞

〈x, gtn(ω)〉 = 〈x, f t∞(ω)〉, a.s.

for every x ∈ X. Consequently, by (i), (ii), (5.4) and the first part of the proof, it
follows that (fσt∧n) s∗-converges a.s. to f t∞. Since (fσt∧n) and f t∞ respectively,
coincide with (fn) and f∞ on At and P (At) → 1 when t → ∞ (in view of (iii)),
we deduce that (fn) s∗-converges a.s. to f∞. �

Now here are some important corollaries.
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Corollary 5.1. Let (fn)n≥1 be a bounded martingale in L1
X∗ [X](F) satisfying

the following condition

There exists a R(X∗w)-tight sequence (gn) with gn ∈ co{fi : i ≥ n}.(T +)

Then there exists f∞ ∈ L1
X∗ [X](F) such that

(fn) s∗-converges a.s. to f∞.

Proof. In view of Proposition 2.2, (T +) implies (T ). This implication is also a
consequence of Corollary 3.1. �

As a special case of this corollary we obtain the following extension of Chatterji
result [16] (see also [19, Corollary II.3.1.7]) to the space L1

X∗ [X](F).

Corollary 5.2. Let (fn)n≥1 be a bounded martingale in L1
X∗ [X](F). Suppose

there exists a cwk(X∗w)-valued multifunction K such that

fn(ω) ∈ K(ω) for all n ≥ 1.

Then there exists f∞ ∈ L1
X∗ [X](F) such that (fn) s∗-converges a.s. to f∞.

Corollary 5.3. Let (fn)n≥1 be a bounded martingale in L1
X∗ [X](F) and let

f∞ ∈ L1
X∗ [X](F) be such that

lim
n→∞

〈x`, fn(ω)〉 = 〈x`, f∞(ω)〉 a.s. for all ` ≥ 1.(?)

Then the following statements are equivalent
(1) (fn) s∗-converges to f∞ a.s.
(2) There exists a sequence (gn) with gn ∈ co{fi : i ≥ n} which a.s. w-converges

to f∞.
(3) f∞ is σ-measurable.

Proof. The implication (1) ⇒ (2) is obvious, whereas (2) ⇒ (3) follows from
Corollary 4.1.
(3)⇒ (1): A close look at the first proof of Theorem 5.1 reveals that the condition
(T ) may be replaced with (?) and (3). �

It is worth to give the following variant of Proposition 5.1–Theorem 5.1.

Proposition 5.2. Let (fn)n≥1 be a martingale in L1
X∗ [X](F) satisfying the

following two conditions:
(C1) For each ` ≥ 1, there exists a sequence (hn) with hn ∈ co{fi : i ≥ n} such

that (〈x`, hn〉) is uniformly integrable.
(C2) lim infn→∞ ‖fn‖ ∈ L1

R(F)
Then there exists f∞ ∈ L1

X∗ [X](F) such that

fn = EFn(f∞) for all n ≥ 1 a.s. and

(fn) w∗-converges to f∞ a.s.
Furthermore, if the condition (T ) is satisfied, then

(fn) s∗-converges to f∞ a.s.
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Proof. Let ` ≥ 1 be fixed and let (hn) be the sequence associated to ` according
with (C1). As the sequence (〈x`, hn〉) is uniformly integrable, there exist a subse-
quence (hnk) of (hn) (possibly depending upon `) and a function ϕ` ∈ L1

R(F) such
that

lim
k→∞

∫
A

〈x`, hnk〉dP =
∫
A

ϕ` dP

for every A ∈ F . Since hn ∈ co{fi : i ≥ n} and (〈x`, fn〉)n is a martingale, it is
easy to check that ∫

A

〈x`, hnk〉dP =
∫
A

〈x`, fm〉dP

for all k ≥ m and A ∈ Fm. Therefore∫
A

〈x`, fm〉dP =
∫
A

ϕ` dP for all A ∈ Fm

which is equivalent to

〈x`, fm〉 = EFm(ϕ`) a.s.(5.5)

This holds for all ` ≥ 1 and m ≥ 1. Using the classical Levy’s theorem, we get

lim
n→+∞

〈x`, fn〉 = ϕ` a.s. for all ` ≥ 1.(5.6)

On the other hand, by (C2) and the cluster point approximation theorem [2,
Theorem 1]), (see also [18]), there exists an increasing sequence (τn) in T with
τn ≥ n for all n, such that

lim
n→∞

‖fτn‖ = lim inf
n→∞

‖fn‖ a.s.

Then, for each ω outside a negligible set N , the sequence (fτn(ω)) is bounded
in X∗; hence it is relatively w∗-sequentially compact (the weak star topology
being metrizable on bounded sets). Therefore, there exists a subsequence of (fτn)
(possibly depending upon ω) not relabeled and an element x∗ω ∈ X∗ such that

(fτn(ω)) w∗-converges to x∗ω.

Define f∞(ω) := x∗ω for ω ∈ Ω \N and f∞(ω) := 0 for ω ∈ N . Then, taking into
account (5.6), we get

lim
n→+∞

〈x`, fn〉 = 〈x`, f∞〉 = ϕ` a.s. for all ` ≥ 1.(5.7)

This implies the scalar F-measurability of f∞. Furthermore, one has

‖f∞‖ ≤ lim inf
n→+∞

‖fn‖ a.s.

which in view of (C2) shows that ‖f∞‖ is integrable. Thus f∞ ∈ L1
X∗ [X](F).

Next, replacing ϕ` in (5.5) with 〈x`, f∞〉 (because of the second equality of (5.7)),
we get

fn = EFn(f∞) a.s. for all n ≥ 1.
In particular, this yields

sup
n
‖fn‖ ≤ sup

n
EFn‖f∞‖ <∞ a.s.(5.8)
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Using the separability of X, (5.7) and (5.8), we get

(fn) w∗-converges to f∞ a.s.

Finally, if the condition (T ) is satisfied, then, reasoning as in the first proof (or the
first part of the second proof) of Theorem 5.1, we deduce that (fn) s∗-converges
a.s. to f∞. �

We finish this section by extending Theorem 5.1 to mils. For this purpose the
following decomposition result is needed [7, Corollary 3.1].

Proposition 5.3. Let (fn)n≥1 be a bounded mil in L1
X∗ [X](F). Then there

exists f∞ ∈ L1
X∗ [X](F) such that

‖fn − EFn(f∞)‖ → 0 a.s. and

(fn) w∗-converges to f∞ a.s.

Proof. As (fn) is a bounded mil in L1
X∗ [X](F) for each x ∈ X, (〈x, fn〉) is a

bounded real mil in L1
R(F), hence it converges a.s. to a function rx ∈ L1

R(F). On
the other hand, using [11, Theorem 6.1(4)], we provide an increasing sequence
(Ap)p≥1 in F with limp→∞ P (Ap) = 1, a function f∞ ∈ L1

X∗ [X](F) and a subse-
quence (f ′n)n≥1 such that

lim
n→∞

∫
Ap

〈h, f ′n〉dP =
∫
Ap

〈h, f∞〉dP

for all p ≥ 1 and h ∈ L∞X (F). By identifying the limit, we get rx = 〈x, f∞〉 a.s.
Thus

lim
n→∞

〈x, fn(ω)〉 = 〈x, f∞(ω)〉 a.s.,(5.9)

for every x ∈ X. So the real mil (〈x, fn − EFn(f∞)〉) converges to 0 a.s. Conse-
quently, it is possible to invoke an important result of Talagrand, ([34, Theorem 6])
which gives

‖fn − EFn(f∞)‖ → 0 a.s.
As

sup
n≥1
‖EFn(f∞)‖ ≤ sup

n≥1
EFn(‖f∞‖) <∞ a.s.,

we deduce that
sup
n≥1
‖fn‖ <∞ a.s.

Then, using (5.9), the separability of X and the point-wise boundedness of (fn),
we obtain the a.s. w∗-convergence of (fn) to f∞. �

Theorem 5.2. Let (fn)n≥1 be a bounded mil in L1
X∗ [X](F) satisfying the con-

dition (T ). Then there exists f∞ ∈ L1
X∗ [X](F) such that

(fn) s∗-converges a.s. to f∞.

Proof. The proof is similar to the one given in Theorem 5.1 by using Proposi-
tion 5.3 instead of Proposition 5.1. �
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6. The special case of martingales in the subspace
of L1

X∗ [X](F) of all Pettis-integrable functions

In this section we provide a version of Theorem 5.1 in the special case of mar-
tingales in L1

X∗ [X](F) whose members are also Pettis-integrable and satisfy a
condition formulated in the manner of Marraffa [25]. For this purpose we need to
recall a few extra definitions.
A function f : Ω → X∗ is said to be X∗∗-scalarly F-measurable if for each x∗∗ ∈
X∗∗, the real-valued function 〈x∗∗, f〉 is F-measurable. We say also that f is
weakly F-measurable. If f : Ω→ X∗ is a weakly F-measurable function such that
〈x∗∗, f〉 ∈ L1

R(F) for all x∗∗ ∈ X∗∗, then for each A ∈ F , there is x∗∗∗A ∈ X∗∗∗
such that

〈x∗∗, x∗∗∗A 〉 =
∫
A

〈x∗∗, f〉dP.

The vector x∗∗∗A is called the Dunford integral of f over A. In the case that
x∗∗∗A ∈ X∗ for all A ∈ F , then f is called Pettis-integrable and we write P−

∫
A
f dP

instead of x∗∗∗A to denote the Pettis integral of f over A. We denote by P 1
X∗(F)

the space of (equivalence class of) Pettis-integrable X∗-valued functions defined
on (Ω,F , P ). Clearly, we have

P −
∫
A

f dP =
∫
A

f dP

for all A ∈ F , whenever f is Pettis-integrable.

Before going further, we reformulate Corollary 3.1 under condition (T +) for
functions in the subspace L1

X∗ [X](F) ∩ P 1
X∗(F).

Proposition 6.1. Let (fn)n≥1 be a bounded sequence in L1
X∗ [X](F) whose

members are also Pettis-integrable. If (fn) satisfies the condition (T +), then there
exist a function f∞ ∈ L1

X∗ [X](F) ∩ P 1
X∗(F) and a sequence (gn) in L1

X∗ [X](F)
with gn ∈ co{fi : i ≥ n} such that

(gn) s∗-converges to f∞ a.s.

Proof. Let (gn) be as mentioned in (T +). Since (fn) is bounded in L1
X∗ [X](F),

so is the sequence (gn) which is also R(X∗w)-tight (by (T +)). Consequently, using
Corollary 3.1 and its proof, we provide a sequence of convex combinations of the
(gn) not relabeled, a function f∞ ∈ L1

X∗ [X](F) and an increasing sequence (Bp)
of measurable sets with limp→∞ P (Bp) = 1 such that

(i) (gn) s∗-converges almost surely to f∞.
(ii) For each p ≥ 1, (1Bpgn) converges strongly in L1

X∗ [X](F) to 1Bpf∞.
Next, we will prove that f∞ is Pettis integrable. Noting that the functions gn
are Pettis integrable, conclusion (i) shows that f∞ is X∗∗-scalarly F-measurable,
and hence X∗∗-scalarly integrable (that is, for every x∗∗ ∈ X∗∗, the scalar function
ω → 〈x∗∗, f∞(ω)〉 is integrable) because ‖f∞‖ ∈ L1

R(F). Consequently, (ii) implies

lim
n→∞

∫
A

〈x∗∗, 1Bpgn〉dP =
∫

Ω

〈x∗∗, 1Bpf∞〉dP
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for all p ≥ 1, x∗∗ ∈ X∗∗ and A ∈ F . This equation together with (ii) entails

|〈x∗∗,
∫
A

1Bpf∞ dP 〉 −
∫
A

〈x∗∗, 1Bpf∞〉dP |

= lim
n→∞

|〈x∗∗,
∫
A

1Bpf∞ dP 〉 −
∫
A

〈x∗∗, 1Bpgn〉dP |

= lim
n→∞

|〈x∗∗,
∫
A

1Bpf∞ dP 〉 − 〈x∗∗,
∫
A

1Bpgn dP 〉|

≤ lim
n→∞

‖
∫
A

1Bpf∞ dP −
∫
A

1Bpgn dP‖

≤ lim
n→∞

∫
A

‖1Bpf∞ dP − 1Bpgn‖ dP = 0

for all x∗∗ ∈ X∗∗ and A ∈ F . Hence 1Bpf∞ is Pettis integrable for all p ≥ 1. This
yields to ∣∣∣∣〈x∗∗,∫

A

f∞ dP 〉 −
∫
A

〈x∗∗, f∞〉dP
∣∣∣∣

≤
∣∣∣∣〈x∗∗,∫

A

1Bpf∞ dP 〉 −
∫

Ω

〈x∗∗, 1Bpf∞〉dP
∣∣∣∣

+
∣∣∣∣〈x∗∗,∫

A

1Ω\Bpf∞ dP 〉 −
∫

Ω

〈x∗∗, 1Ω\Bpf∞〉dP
∣∣∣∣

≤ 2
∫
A

1Ω\Bp‖f∞‖ dP

for all p ≥ 1. Letting p→ +∞, we get

〈x∗∗,
∫
A

f∞ dP 〉 =
∫
A

〈x∗∗, f∞〉dP,

for all x∗∗ ∈ X∗∗ and A ∈ F , thus f∞ is Pettis integrable. �

Remark 6.1. If X does not contain any isomorphic copy of `1 (or equivalently
X∗ has the weak Radon-Nikodym property (WRNP)), then, according to Theorem
3 of Musial [26], every X-scalarly integrable function f : Ω→ X∗ (that is, for every
x ∈ X, 〈x, f〉 ∈ L1

R(F)) is Pettis integrable, and hence each member of L1
X∗ [X](F)

is Pettis-integrable, i.e. L1
X∗ [X](F) ⊂ P 1

X∗(F).

Now we are ready to state the main result of this section which can be seen as
a dual variant of [17, Theorem 3]. For this purpose, recall that a subset H ⊂ X∗∗
is total if it separates the points of X∗, that is, H is total if 〈x∗∗, x∗〉 = 0 for all
x∗∗ ∈ H implies x∗ = 0.

Proposition 6.2. Let (fn)n≥1 be a bounded martingale in L1
X∗ [X](F) whose

members are also Pettis-integrable satisfying the following condition.
(T −) There exist a total subsetH of X∗∗, a σ-measurable function f in L0

X∗ [X](F)
and an increasing sequence (Bp) of measurable sets with limp→∞ P (Bp) = 1
such that for every p ≥ 1, 1Bpf ∈ P 1

X∗(F) and to each corresponds a
sequence (gn) in L1

X∗ [X](F) with gn ∈ co{fi : i ≥ n} satisfying
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lim
n→∞

〈x∗∗, gn〉 = 〈x∗∗, f〉 a.s. for each x∗∗ ∈ H.

Then f ∈ L1
X∗ [X](F) ∩ P 1

X∗(F) and we have

(fn) s∗-converges to f a.s.

Note that the function f in condition (T −) is necessarily weakly measurable,
since the functions 1Bpf (p ≥ 1) are weakly measurable and limp→∞ P (Bp) = 1.

Remark 6.2. In view of Proposition 6.1, condition (T −) is weaker than (T +)
when dealing with bounded sequences in L1

X∗ [X](F) whose members are also
Pettis-integrable.

Taking account of Proposition 5.2, we deduce the following variant of Proposi-
tion 6.2.

Corollary 6.1. Let (fn)n≥1 be a martingale in L1
X∗ [X](F)∩P 1

X∗(F) satisfying
the conditions (C1), (C2) and (T −). Then the limit function f in (T −) belongs
to L1

X∗ [X](F) ∩ P 1
X∗(F) and we have

(fn) s∗-converges to f a.s.

Remark 6.3. In Proposition 6.2 as well as in Corollary 6.1, condition (T )−

may be replaced with T −−.
(T −−) There exist a total subspace H of X∗∗, a σ-measurable function f in

L0
X∗ [X](F) and an increasing sequence (Bp) of measurable sets with

limp→∞ P (Bp) = 1 such that, for every p ≥ 1, 1Bpf ∈ P 1
X∗(F), and 〈x∗∗, f〉

is a cluster point of (〈x∗∗, fn〉) a.s. for each x∗∗ ∈ H.

Indeed, let H and f be as mentioned in (T −−). Let x∗∗ ∈ H be arbitrary fixed.
Then 〈x∗∗, f〉 is a cluster point of (〈x∗∗, fn〉) a.s. Further, f is weakly measurable.
Consequently, by the cluster point approximation theorem (Theorem 1, [2]), there
exists an increasing sequence (τn) in T (which may depend on x∗∗) with τn ≥ n
such that

lim
n→∞

〈x∗∗, fτn〉 = 〈x∗∗, f〉 a.s.

On the other hand, as (fn) is a bounded martingale in L1
X∗ [X](F) and each fn

is Pettis integrable, it is easy to see that the sequence (〈x∗∗, fn〉) is a bounded
real-valued martingale in L1

R(F). So it converges a.s. to an integrable function in
L1

R(F) which is necessarily a.s. equal to 〈x∗∗, f〉. Thus condition (T −) is satisfied.

Proof of Proposition 6.2. As (fn) is a bounded martingale in L1
X∗ [X](F), by

Proposition 5.1, there exists f∞ ∈ L1
X∗ [X](F) such that

lim
n→∞

‖fn − EFnf∞‖ a.s.(a)

(fn) w∗-converges to f∞ a.s.(b)

Next, let H, f and (Bp) be as mentioned in (T −). We will show that f∞ = f a.s.;
once this is done we can invoke (a), the σ-measurability of f and Proposition 4.5
to conclude that (fn) s∗-converges to f a.s.
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We will use again a standard stopping time argument. Let σt, At and f t∞ be
defined exactly as in the second proof of Theorem 5.1. First, by the expression
fσt∧n =

∑maxσt∧n
k=minσt∧n fk1{σt∧n=k} and since the functions fn are Pettis-integrable,

it is clear that the functions fσt∧n are also Pettis-integrable. Further, from (b) it
follows

lim
n→∞

〈x, fσt∧n〉 = 〈x, f t∞〉.(6.1)

Since (fσt∧n) is a uniformly integrable martingale, from (6.1) it follows∫
A

〈x, fσt∧m〉dP = lim
n→∞,n≥m

∫
A

〈x, fσt∧n〉dP

=
∫
A

〈x, f t∞〉dP =
∫
A

〈x,EFσt∧m(f t∞)〉dP

for all x ∈ X, m ≥ 1 and A ∈ Fσt∧m. Hence

fσt∧m = EFσt∧m(f t∞) a.s. for all m ≥ 1,

by the separability of X. Next, let x∗∗ be an arbitrary fixed element in H. Then,
by (T −), there exists a sequence (gn) of the form

gn =
kn∑
i=n

µinfi with 0 ≤ µin ≤ 1 and
kn∑
i=n

µin = 1

such that
lim
n→∞

〈x∗∗, gn〉 = 〈x∗∗, f〉

which implies

lim
n→∞

〈x∗∗, gtn〉 = 〈x∗∗, f t〉,(6.2)

where

gtn :=
kn∑
i=n

µinfσt∧i

and

f t(ω) :=
{
f(ω) if ω ∈ At,
fσt(ω)(ω) otherwise

(see the second proof of Theorem 5.1). As the function supn ‖gtn‖ is also integrable,
(by (ii) and the inequality supn ‖gtn‖ ≤ supn ‖fσt∧n‖) equation (6.2) entails

lim
n→∞

∫
A

〈x∗∗, gtn〉dP =
∫
A

〈x∗∗, f t〉dP for all A ∈ F .(6.3)

On the other hand, recalling that for each m ≥ 1, fσt∧m = EFσt∧m(f t∞) a.s. and
fσt∧m ∈ P 1

X∗(F), we obtain∫
A

〈x∗∗, gtn〉dP =
kn∑
i=n

µin

∫
A

〈x∗∗, fσt∧i〉dP =
∫
A

〈x∗∗, fσt∧m〉dP

=〈x∗∗,
∫
A

fσt∧m dP 〉=〈x∗∗,
∫
A

EFσt∧m(f t∞) dP 〉=〈x∗∗,
∫
A

f t∞ dP 〉
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for all m ≥ 1, n ≥ m and A ∈ Fσt∧m. Together with (6.3), we get∫
A

〈x∗∗, f t〉dP = 〈x∗∗,
∫
A

f t∞ dP 〉

for all m ≥ 1 and A ∈ Fσt∧m. Since the functions 〈x∗∗, f t〉 and ‖f t∞‖ are inte-
grable, this equality extends easily to all A ∈ σ(∪nFσt∧n). In particular, for all
p ≥ 1 and for all A ∈ F , we have∫

A∩At∩Bp
〈x∗∗, f t〉dP = 〈x∗∗,

∫
A∩At∩Bp

f t∞ dP 〉

because At ∩ F ⊂ σ(∪nFσt∧n) in view of the inclusion (‡) presented in Section 2.
As 1Atf t∞ = 1Atf∞, 1Atf t = 1Atf and 1Bpf ∈ P 1

X∗(F) for all p ≥ 1, it follows
that

〈x∗∗,
∫
A∩At∩Bp

f dP 〉 = 〈x∗∗,
∫
A∩At∩Bp

f∞ dP 〉

for all p ≥ 1 and A ∈ F . Since this holds for all x∗∗ ∈ H and H is total, we get∫
A

1At∩Bpf dP =
∫
A

1At∩Bpf∞ dP

for every p ≥ 1 and A ∈ F . Equivalently

1At∩Bp〈x, f〉 = 1At∩Bp〈x, f∞〉 a.s.

for every p ≥ 1 and x ∈ X. Since X is separable, P (Bp) → 1 and P (At) → 1
when p, t→∞, it follows that

f = f∞ a.s.

Finally, to prove that f ∈ P 1
X∗(F), it suffices to repeat the arguments used at the

end of the proof of Proposition 6.1. �

We finish this work by providing the following result which extends Proposi-
tion 6.2 to mils. It can be seen as a mil version of the Ito-Nisio theorem (the main
implication of it) (see [23]) in the framework of a dual space. For various martin-
gale generalizations dealing with primal space, one can look at the contributions
of Marraffa [25], Bouzar [4] and Luu [24].

Proposition 6.3. Let (fn)n≥1 be a bounded mil in L1
X∗ [X](F) whose members

are also Pettis-integrable satisfying the condition (T −−). Then f is a member of
L1
X∗ [X](F) ∩ P 1

X∗(F) and we have

(fn) s∗-converges to f a.s.,

where f is the limit function in (T −−).

For the sake of shortness, we refrain from giving the details of proofs and refer
to our forthcoming work [29].
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