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DUNFORD-PETTIS SETS IN BANACH LATTICES

B. AQZZOUZ and K. BOURAS

Abstract. We study the class of Dunford-Pettis sets in Banach lattices. In par-

ticular, we establish some sufficient conditions for which a Dunford-Pettis set is
relatively weakly compact (resp. relatively compact).

1. Introduction and notation

Let us recall from [2] that a norm bounded subset A of a Banach space X is said
to be a Dunford-Pettis set whenever every weakly compact operator from X to
an arbitrary Banach space Y carries A to a norm relatively compact set of Y .
This is equivalent to saying that A is a Dunford-Pettis set if and only if every
weakly null sequence (fn) of X ′ converges uniformly to zero on the set A, that is,
supx∈A |fn(x)| → 0 (see [7, Theorem 1]).

It is well known that the class of Dunford-Pettis sets contains strictly that of
relatively compact sets, that is, every relatively compact set is a Dunford-Pettis
set. But a Dunford-Pettis set is not necessarily relatively compact. In fact, the
closed unit ball Bc0 is a Dunford-Pettis set in c0 (because (c0)′ = `1 has the Schur
property), but it is not relatively compact. However, if X is a reflexive Banach
space, the class of Dunford-Pettis sets and that of relatively compact sets in X
coincide. Also, we will prove that if E is a discrete KB-space, these two classes
coincide (Corollary 3.10).

On the other hand, we note that a Dunford-Pettis set is not necessarily relatively
weakly compact. In fact, the closed unit ball Bc0 is a Dunford-Pettis set in c0, but
it is not relatively weakly compact. And conversely a relatively weakly compact
set is not necessarily Dunford-Pettis. In fact, the closed unit ball B`2 is a relatively
weakly compact set in `2, but it is not a Dunford-Pettis set in `2.

However, we will establish that if E is a dual KB-space, then each Dunford-
Pettis set of E is relatively weakly compact (see Corollary 3.4). And conversely, if
X is a Banach space with the Dunford-Pettis property, then each relatively weakly
compact subset of X is a Dunford-Pettis set (see Proposition 2.3).

The aim of this paper is to study the class of Dunford-Pettis sets in Banach
lattices. Also, we give some consequences. As an example we will give some
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equivalent conditions for T (A) to be a Dunford-Pettis set where A is a norm
bounded solid subset of E and T is an operator from a Banach lattice E into a
Banach space X (see Theorem 2.12).

To do this, we need to introduce a new class of operators, that we call order
Dunford-Pettis operators. An operator T from a Banach lattice E into a Banach
space X is called order Dunford-Pettis if it carries each order bounded subset of E
onto a Dunford-Pettis set of X. For example, the identity operator of the Banach
lattice c0 is order Dunford-Pettis.

On the other hand, there exist operators which are not order Dunford-Pettis.
In fact, the natural embedding J : L∞ [0, 1] → L2 [0, 1] fails to be order Dunford-
-Pettis (if not, that is, if J : L∞ [0, 1]→ L2 [0, 1] is an order Dunford-Pettis opera-
tor, it follows from Theorem 2.7 that iL2[0,1] ◦ J = J is an AM-compact operator,
but J fails to be AM-compact (see [8, Example on p. 222])).

Let us recall from [8] that an operator T from a Banach lattice E into a Banach
space X is said to be AM-compact if it carries each order bounded subset of E
onto a relatively compact set of X.

To state our results, we need to fix some notation and recall some definitions.
A Banach lattice is a Banach space (E, ‖ · ‖) such that E is a vector lattice and
its norm satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|,
we have ‖x‖ ≤ ‖y‖. Note that if E is a Banach lattice, its topological dual E′,
endowed with the dual norm and the dual order, is also a Banach lattice. A norm
‖ · ‖ of a Banach lattice E is order continuous if for each generalized sequence (xα)
such that xα ↓ 0 in E, (xα) converges to 0 for the norm ‖ · ‖, where the notation
xα ↓ 0 means that (xα) is decreasing, its infimum exists and inf(xα) = 0.

An operator T : E → F between two Banach lattices is a bounded linear map-
ping. It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. If T : E → F is a positive
operator between two Banach lattices, then its adjoint T ′ : F ′ → E′, defined by
T ′ (f) (x) = f (T (x)) for each f ∈ F ′ and for each x ∈ E, is also positive. We
refer the reader to [2] for unexplained terminologies on Banach lattice theory and
positive operators.

2. Main results

The following result gives some characterizations of Dunford-Pettis sets in a Ba-
nach space.

Proposition 2.1 ([7]). Let X be a Banach space and let A be a norm bounded
set in X. The following statements are equivalent:

1. A is Dunford-Pettis set.
2. For each sequence (xn) in A, fn(xn) → 0 for every weakly null sequence

(fn) of X ′.

Proposition 2.2. Let X be a Banach space and let (xn) be a norm bounded
sequence in X. The following statements are equivalent:

1. The subset {xn, n ∈ N} is a Dunford-Pettis set.
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2. fk(yk)→ 0 for each sequence (yk) of {xn, n ∈ N} and for every weakly null
sequence (fk) of X ′.

3. fn(xn)→ 0 for every weakly null sequence (fn) of X ′.

A Banach space X has the Dunford-Pettis property if every continuous weakly
compact operator T from X into another Banach space Y transforms weakly
compact sets in X into norm-compact sets in Y . This is equivalent to the saying
that for any weakly convergent sequences (xn) of X and (fn) of X ′, the sequence
(fn(xn)) converges.

Proposition 2.3 ([6]). Let X be a Banach space. Then the following state-
ments are equivalent:

1. X has the Dunford-Pettis property.
2. For every weakly null sequence (xn) in X, the subset {xn, n ∈ N} is a

Dunford-Pettis set.
3. Every relatively weakly compact subset of X is a Dunford-Pettis set.

Remark 1. If the Banach space X does not have the Dunford-Pettis property,
then there exists a weakly null sequence (xn) in X such that {xn, n ∈ N} is not a
Dunford-Pettis set.

Let us recall that a Banach lattice E has the weak Dunford-Pettis property if
every weakly compact operator T defined on E (and taking their values in a Banach
space X) is almost Dunford-Pettis, that is, the sequence (‖T (xn)‖) converges to 0
in X for every weakly null sequence (xn) consisting of pairwise disjoint elements
in E. This is equivalent to the saying that for any weakly null sequence (xn)
consisting of pairwise disjoint elements in E and for any weakly null sequence (fn)
of X ′, fn(xn)→ 0.

Proposition 2.4. Let E be a Banach lattice. Then the following statements
are equivalent:

1. X has the weak Dunford-Pettis property.
2. For every disjoint weakly null sequence (xn) E+, the subset {xn, n ∈ N} is

a Dunford-Pettis set.

Remark 2. If the Banach lattice E does not have the weak Dunford-Pettis
property, then there exists a disjoint weakly null sequence (xn) in E+ such that
{xn, n ∈ N} is not a Dunford-Pettis set.

Let us recall that an operator T from a Banach lattice E into a Banach space X
is said to be order weakly compact if for each x ∈ E+, the set T ([0, x]) is relatively
weakly compact in X.

The following result gives some examples of Dunford-Pettis sets in a Banach
lattice.

Theorem 2.5. Let E be a Banach lattice. Then for every order bounded dis-
joint sequence (xn) in E, the subset {xn, n ∈ N} is a Dunford-Pettis set.
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Proof. Let (xn) be an order bounded disjoint sequence in E. To prove that
{xn, n ∈ N} is a Dunford-Pettis set it suffices to show that fn(xn)→ 0 for every
weakly null sequence (fn) of X ′ (see Proposition 2.2).

For that, let (fn) be a weakly null sequence in E′. Consider the operator
S : E → c0 defined by S(x) = (fn(x))∞n=0 for each x ∈ E. Then S is weakly
compact ([2, Theorem 5.26]), and so S is order weakly compact. Hence by [2,
Theorem 5.57] ‖S(zi)‖∞ = ‖(fn(zi))∞n=0‖∞ → 0 for every order bounded disjoint
sequence (zi) in E. Finally, |fn(xn)| ≤ ‖(fi(xn))∞i=0‖∞ → 0, so the proof is
finished. �

Remark 3. In `∞, the closed unit ball B`∞ = [− e, e] is not a Dunford-Pettis
set. Hence there exists a sequence (xn) in [− e, e] such that (xn) is not Dunford-
Pettis (Proposition 2.1).

Let E be a Banach lattice and E′ its topological dual. The absolute weak
topology |σ| (E,E′) is the locally convex solid topology on E generated by the
family of lattice seminorms {Pf : f ∈ E′} where Pf (x) = |f |(|x|) for each x ∈ E.
For more information about locally convex solid topologies, we refer the reader to
the book of Aliprantis and Burkinshaw [1].

Other examples of Dunford-Pettis sets in a Banach lattice, are given by the
following Theorem.

Theorem 2.6. Let E be a Banach lattice and let A be an order bounded set of
E. If A is |σ|(E,E′)-totally bounded, then A is a Dunford-Pettis set.

Proof. Let (fn) be a weakly null sequence in E′, let x ∈ E+ such that |y| ≤ x
for every y ∈ A. Fix ε > 0. By [2, Theorem 4.37] there exists f ∈ (E′)+ such that
(|fn| − f)+(x) < ε

4 for each n.
Since A is |σ| (E,E′)-totally bounded, there exists a finite set {x1, . . . , xk} ⊂ A

such that for each z ∈ A, we have f(|z − xi|) < ε
4 for at least one 1 ≤ i ≤ k.

Since fn → 0 weakly, there exists N with |fn(xi)| < ε
4 for each i = 1, . . . , k and

all n ≥ N .
Now, let z ∈ A. Choose 1 ≤ i ≤ k with f(|z−xi|) < ε

4 and note that |z−xi| ≤ 2x
holds. In particular, for n ≥ N , we have

|fn(z)| ≤ |fn(z − xi)|+ |fn(xi)|

≤ |fn|(|z − xi|) +
ε

4
≤ (|fn| − f)+(|z − xi|) + f(|z − xi|) +

ε

4
≤ 2(|fn| − f)+(x) +

ε

4
+
ε

4
≤ ε.

This implies supz∈A |fn(z)| → 0, and then A is a Dunford-Pettis set. �

The next result characterizes the class of order Dunford-Pettis operators.

Theorem 2.7. For an operator T from a Banach lattice E into a Banach space
X, the following statements are equivalent:
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1. T : E → X is an order Dunford-Pettis operator.
2. If S is a weakly compact operator from X into an arbitrary Banach space
Z, then S ◦ T is an AM-compact operator.

3. For every weakly null sequence (fn) of X ′, |T ′(fn)| → 0 for the topology
σ(E′, E).

Proof. (1)⇒ (2) Let S be a weakly compact operator from X into an arbitrary
Banach space Z. It follows from (1) that for each x ∈ E+, T ([−x, x]) is a Dunford-
Pettis set, and hence S(T ([−x, x])) is a norm relatively compact subset of Z. This
proves that S ◦ T is AM-compact.

(2) ⇒ (3) Let (fn) be a weakly null sequence of X ′. Consider the operator
S : X → c0 defined by

S(x) = (fn(x))∞n=0 for each x ∈ X.
Then S is weakly compact ([2, Theorem 5.26]). But according to our hypothesis,
S(T ([−x, x])) is a norm relatively compact subset of c0 for each x ∈ E+. From this
it follows that |T ′(fn)|(x) = supy∈[−x,x] |T ′(fn)(y)| = supz∈T ([−x,x]) |fn(z)| → 0 for
each x ∈ E+ (see [2, Exercise 14 in Section 3.2]).

(3) ⇒ (1) For each x ∈ E+, supy∈T ([−x,x]) |fn(y)| = |T ′(fn)|(x) → 0 for every
weakly null sequence (fn) of X ′. This shows that T ([−x, x]) is a Dunford-Pettis
set for each x ∈ E+. �

As a consequence of Theorem 2.6 and Theorem 2.7, we obtain the following
corollaries

Corollary 2.8. Let T : E → F be a regular operator between two Banach lat-
tices such that T ([−x, x]) is |σ|(F, F ′)-totally bounded for each x ∈ E+. If fn → 0
for σ(F ′, F ′′), then |T ′(fn)| → 0 for σ(E′, E).

Proof. By Theorem 2.6, the subset T ([−x, x]) is a Dunford-Pettis set for each
x ∈ E+ and the conclusion follows from Theorem 2.7. �

We note that each AM-compact operator from a Banach lattice E into a Banach
space F is order Dunford-Pettis. However an order Dunford-Pettis operator is
not necessarily AM-compact. In fact, the identity operator of the Banach lattice
L1 [0, 1] is order Dunford-Pettis but it is not AM-compact.

Corollary 2.9. Let E and F be two Banach lattices such that F is reflexive.
Then the class of order Dunford-Pettis operators from E into F coincide with that
of AM-compact operators from E into F .

Proof. It suffices to show that if T : E → F is an order Dunford-Pettis oper-
ator, then T is AM-compact. In fact, since F is reflexive, its identity operator
IdF : F → F is weakly compact. Hence Theorem 2.7 implies IdF ◦T = T is an
AM-compact operator. �

Corollary 2.10. Let E be a Banach lattice. Then the following statements are
equivalent:

1. The identity operator IdE : E → E is order Dunford-Pettis.
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2. For each x ∈ E+, [−x, x] is a Dunford-Pettis set.
3. For every weakly null sequence (fn) of E′, we have |fn| → 0 for σ(E′, E).
4. Every weakly compact operator from E into an arbitrary Banach space is

AM-compact.

Lemma 2.11. Let E be a Banach lattice, let A be a norm bounded subset of
E+, (xn) ⊂ A, (fn) ⊂ (E′)+ and ε > 0. If fn(x)→ 0 for every x ∈ A, then there
exists a subsequence (xnk

, fnk
) of (xn, fn) such that

fnk

( k−1∑
j=1

xnj

)
<

ε

22k+2
for k ≥ 2.

Proof. Put xn1 = x1 and fn1 = f1. Since fn(xn1) = fn(x1) → 0, there
exists n2 > n1 = 1 such that fn2(xn1) < ε

24+2 . Now, assume constructed
(xnk

)pk=1, (fnk
)pk=1 such that fnk

(
∑k−1
j=1 xnj

) < ε
22k+2 for all k ∈ {2, . . . , p}. As

fn(
∑p
k=1 xnk

) =
∑p
k=1 fn(xnk

)→ 0, there exists np+1 > np such that

fnp+1

( p∑
k=1

xnk

)
<

ε

22(p+1)+2
.

This completes the proof. �

The next main result gives some equivalent conditions for T (A) to be a Dunford-
-Pettis set where A is a norm bounded solid subset of E and T is an operator from
a Banach lattice E into a Banach space X.

Theorem 2.12. Let T be an operator from a Banach lattice E into a Banach
space X and let A be a norm bounded solid subset of E. Then the following
statements are equivalent:

1. T (A) is a Dunford-Pettis set.
2. The subsets T ([−x, x]) and {T (xn), n ∈ N} are Dunford-Pettis for each
x ∈ A+ = A ∩ E+ and for each disjoint sequence (xn) in A+.

3. For every weakly null sequence (fn)of E′, we have |T ′(fn)|(x) → 0 for all
x ∈ A+ and fn(T (xn))→ 0 for each disjoint sequence (xn) in A+.

Proof. 1. ⇒ 2. Obvious.
2. ⇒ 3. Obvious.
3. ⇒ 1. To prove that T (A) is a Dunford-Pettis set, it is sufficient to show that

supx∈A |T ′(fn)(x)| → 0 for every weakly null sequence (fn) of X ′. Assuming this
to be false, let (fn) be such a sequence satisfying supx∈A |T ′(fn)(x)| > ε > 0 for
some ε > 0 and all n. For every n there exists yn in A+ such that |T ′(fn)|(yn) > ε.
Since T ([−y, y]) is a Dunford-Pettis set for each y ∈ A+, then |T ′(fn)|(y) → 0
for every y ∈ A+, and hence by Lemma 2.11, we may assume (by passing to a
subsequence, if necessary) that

|T ′(fn)|
( n−1∑
i=1

yi

)
<

ε

22n+2
for n ≥ 2.
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For n ≥ 2, let

xn =
(
yn − 4n

n−1∑
i=1

yi − 2−n
∞∑
i=1

2−iyi

)+

.

Note that
∑∞
i=1 2−iyi exists since E is a Banach space. Now, the disjointness of

(xn) follows from

xn ≤ (yn − 4nym)+ and

xm ≤ (ym − 4−nyn)+ = 4−n(4nym − yn)+ = 4−n(yn − 4nym)− for m < n.

Also, since 0 ≤ xn ≤ yn for every n and (yn) in A+, then (xn) ⊂ A+.
On the other hand, the inequality

|T ′(fn)|(xn) ≥ |T ′(fn)|
(
yn − 4n

n−1∑
i=1

yi − 2−n
∞∑
i=1

2−iyi

)

≥ ε− ε

4
− 2−n|fn ◦ T |

( ∞∑
i=1

2−iyi

)
shows that |T ′(fn)|(xn) > ε

2 for n sufficiently large (because 2−n|T ′(fn)|·
(
∑∞
i=1 2−iyi)→ 0).
In view of |T ′(fn)|(xn) = sup{|fn(T (z))| : |z| ≤ xn}, for each n sufficiently

large there exists some |zn| ≤ xn with |fn(T (zn))| > ε
2 . Since (z+

n ) and (z−n ) are
both norm bounded disjoint sequences in A+, it follows from our hypothesis that

ε

2
< |fn(T (zn))|

≤ |fn(T (z+
n ))|+ |fn(T (z−n ))| → 0

which is impossible. This proves that T (A) is a Dunford-Pettis set. �

A relationship between a solid Dunford-Pettis set and its disjoint sequences is
included in the next result.

Corollary 2.13. Let E be a Banach lattice and let A be a norm bounded solid
subset of E. The following statements are equivalent

1. A is a Dunford-Pettis set.
2. The subsets [−x, x] and {xn, n ∈ N} are Dunford-Pettis, for each x ∈ A+

and for each disjoint sequence (xn) in A+.
3. For every weakly null sequence (fn) of E′, we have |fn|(x) → 0 for all
x ∈ A+ and fn(xn)→ 0 for each disjoint sequence (xn) in A+.

Remark 4. Let T be an operator from a Banach space X into a Banach
space Y . By the equality supy∈T (BX) |fn(y)| = ‖T ′(fn)‖X′ for every weakly null
sequence (fn) in Y ′, it follows easily that T (BX) is a Dunford-Pettis set in Y if
and only if T ′ is a Dunford-Pettis operator, where BX is the closed unit ball of X.

The next result characterizes the adjoint of Dunford-Pettis operators from a
Banach lattice into a Banach space.
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Corollary 2.14. For an operator T from a Banach lattice E into a Banach
space X, the following statements are equivalent:

1. The adjoint T ′ : X ′ → E′ is Dunford-Pettis.
2. T (BE) is a Dunford-Pettis set.
3. T : E → X is order Dunford-Pettis and {T (xn) : n ∈ N} is a Dunford-Pettis

set for each disjoint sequence (xn) in B+
E .

4. |T ′(fn)| → 0 for σ(E′, E) and fn(T (xn))→ 0 for every weakly null sequence
(fn) of E′ and for each disjoint sequence (xn) in B+

E .

Proof. 1. ⇔ 2. See Remark 4.
2. ⇔ 3. ⇔ 4. See Theorem 2.12. �

A Banach lattice E has the Schur property if each weakly null sequence in E
converges to zero in norm.

Corollary 2.15. Let E be a Banach lattice. Then the following statements are
equivalent:

1. E′ has the Schur property.
2. BE is a Dunford-Pettis set.
3. |fn| → 0 for σ(E′, E) and fn(xn) → 0 for every weakly null sequence (fn)

of E′ and for each disjoint sequence (xn) in B+
E .

3. Dunford-Pettis sets which are relatively weakly compact
(resp. relatively compact)

Let us recall from [5] that a norm bounded subset K of the topological dual X ′ and
of a Banach space X is called an (L) set in X ′ whenever every weakly null sequence
(xn) of X converges uniformly to zero on the set K, that is, supf∈K |f(xn)| → 0.

As examples, the closed unit ball B`∞ is an (L) set in `∞, but the closed unit
ball B`1 is not an (L) set in `1. On the other hand, every Dunford-Pettis set in
X ′ is an (L) set, but an (L) set is not necessarily Dunford-Pettis. In fact in `∞,
the closed unit ball B`∞ is an (L) set, but it is not Dunford-Pettis.

Let us recall from [8] that a non-empty bounded subset A of a Banach lattice
E is said to be L-weakly compact if ‖xn‖ → 0 for every disjoint sequence (xn)
contained in the solid hull of A. Every L-weakly compact set is relatively weakly
compact ([8, Proposition 3.6.5]). In `∞ the closed unit ball B`∞ = [−e, e] is an (L)
set, but it is not relatively weakly compact, and then it is not L-weakly compact.

In the following we use this notion to give a characterization of the order con-
tinuity of the dual norm.

Theorem 3.1. Let E be a Banach lattice. The following statements are equiv-
alent:

1. The norm of E′ is order continuous.
2. Any (L) set in E′ is L-weakly compact.
3. Any (L) set in E′ is relatively weakly compact.
4. Each Dunford-Pettis operator from E to any Banach space X is weakly

compact.
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Proof. 1.⇒ 2. Let K be an (L) set in E′ and for each x ∈ E, let

ρK(x) = sup{|x′|(|x|) : x′ ∈ K} = sup{x′(z) : x′ ∈ K and |z| ≤ |x|}.
Since K is norm bounded, ρK(x) ∈ R holds for each x ∈ E, and clearly ρK is a
lattice seminorm on E.

On the other hand, if (xn) is a disjoint sequence of BE where BE is the closed
unit ball of E, then ρK(xn) → 0 holds. To see this, let ε > 0. For each n choose
x′n ∈ K and |zn| ≤ |xn| with ρK(xn) < ε+ x′n(zn). Since the norm of E′ is order
continuous and as (zn) is a disjoint sequence of BE (because |zn| ≤ |xn| and (xn)
is disjoint), it follows from [8, Theorem 2.4.14] that zn → 0 weakly. Hence the
definition of an (L) set in E′ proves that x′n(zn) → 0, and so lim sup ρK(xn) < ε
holds for all ε > 0. Therefore, lim ρK(xn)→ 0. Finally, by [8, Proposition 3.6.3],
we have K is L-weakly compact.

2.⇒ 3. Follows from of [8, Proposition 3.6.5].
3. ⇒ 4. Let T : E → X be a Dunford-Pettis operator. Then T ′(BX′) is an (L)

set in E′ where BX′ is the closed unit ball of X ′. Hence, 3. proves that T ′(BX′)
is relatively weakly compact, and then T ′ (and T ) is weakly compact.

4.⇒ 1. See [2, Theorem 5.102]. �

A Dunford-Pettis set in E′ is not necessarily relatively weakly compact. In fact,
let i : c0 → `∞ be the canonical injection of c0 into `∞. Then i(Bc0) is a Dunford-
-Pettis set in `∞ (Bc0 is a Dunford-Pettis set in c0), but it is not relatively weakly
compact (i : c0 → `∞ is not weakly compact).

Corollary 3.2. Let E be a Banach lattice such that the norm of E′ is order
continuous. Then any Dunford-Pettis set in E′ is relatively weakly compact.

Proof. Let K be a Dunford-Pettis set in E′. By the definition of Dunford-Pettis
set, K is an (L) set in E′. Theorem 3.1 concludes the proof. �

A Banach lattice E is said to be a KB-space whenever every increasing norm
bounded sequence of E+ is norm convergent. As an example, each reflexive Banach
lattice is a KB-space. It is clear that each KB-space has an order continuous norm,
but a Banach lattice with an order continuous norm is not necessary a KB-space. In
fact, the Banach lattice c0 has an order continuous norm, but it is not a KB-space.
However, for each Banach lattice E, its topological dual E′ is a KB-space if and
only if its norm is order continuous.

Let us recal that a Banach lattice E is called a dual Banach lattice if E = G′

for some Banach lattice G. A Banach lattice E is called a dual KB-space if E is
a dual Banach lattice and E is a KB-space.

As a consequence of Theorem 3.1, we obtain the following corollaries.

Corollary 3.3. Let E be a dual Banach lattice. The following statements are
equivalent:

1. E is a KB-space.
2. Any (L) set in E is L-weakly compact.
3. Any (L) set in E is relatively weakly compact.
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Corollary 3.4. Let E be a dual KB-space. Then any Dunford-Pettis set in E
is relatively weakly compact.

Proof. Follows from Corollary 3.2. �

In [3] we introduced and used the class of Banach lattices which satisfy the AM-
compactness property. A Banach lattice E is said to have the AM-compactness
property if E satisfies the four equivalent assertions of Corollary 2.10. For example,
the Banach lattice L2 [0, 1] does not have the AM-compactness property, but l1

has the AM-compactness property.

Theorem 3.5. Let E be a Banach lattice with the AM-compactness property
such that the norm of E′ is order continuous. Then for each Banach space X
every Dunford-Pettis operator T : E → X is compact.

Proof. Let T : E → X be a Dunford-Pettis operator. Since the norm of E′ is
order continuous, it follows from [8, Theorem 3.7.10] that T is M-weakly compact
(and then T is weakly compact). As E has the AM-compactness property, T is
AM-compact. The rest of the proof follows from [8, Theorem 3.7.4]. �

Corollary 3.6. Let E be a Banach lattice with the AM-compactness property
such that the norm of E′ is order continuous. Then any Dunford-Pettis set in E′ is
relatively compact (and then the class of Dunford-Pettis sets and that of relatively
compact sets in E′ coincide).

Proof. By Theorem 3.5, any Dunford-Pettis operator from E to any Banach
space X is compact. We conclude from [5, Theorem 1 and Corollary 1] that any
Dunford-Pettis set in E′ is relatively compact. �

Next, recall from [3] the following sufficient conditions guaranteeing that a
Banach lattice has the AM-compactness property.

Theorem 3.7 ([3]). Let E be a Banach lattice. ThenE has the AM-compactness
property if one of the following assertions is valid:

1. The norm of E is order continuous and E has the Dunford-Pettis property.
2. The topological dual E′ is discrete.
3. The lattice operations in E′ are weakly sequentially continuous.
4. The lattice operations in E′ are weak ∗ sequentially continuous.

Let us recall from [8] that an operator T : E → X from a Banach lattice to
a Banach space is said to be M-weakly compact if ‖T (xn)‖ → 0 for every norm
bounded disjoint sequence (xn) in E.

Let us, the lattice operations in E′ are called weak∗ sequentially continuous if
the sequence (|fn|) converges to 0 in the weak∗ topology σ(E′, E) whenever the
sequence (fn) converges to 0 in σ(E′, E).

A nonzero element x of a vector lattice E is discrete if the order ideal generated
by x equals the subspace generated by x. The vector lattice E is discrete if it
admits a complete disjoint system of discrete elements.

As a consequence of Theorem 3.5 and Theorem 3.7 we obtain a generalization
and another proof of [4, Theorem 2.2].
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Theorem 3.8. Let E be a Banach lattice. Then each Dunford-Pettis operator
from E to any Banach space X is compact if one of the following assertions is
valid:

1. The topological dual E′ is discrete and its norm is order continuous.
2. The norm of E′ is order continuous and the lattice operations in E′ are

weak∗ sequentially continuous.
3. The norms of E and of E′ are order continuous.

Proof. 1. If E′ is discrete, then it follows from Theorem 3.7 that the Banach
lattice E has the AM-compactness property. Since the norm of E′ is order con-
tinuous, the result follows from Theorem 3.5.

2. If the lattice operations in E′ are weak∗ sequentially continuous, then it
follows from Theorem 3.7 that the Banach lattice E has the AM-compactness
property. Since the norm of E′ is order continuous, the result follows from Theo-
rem 3.5.

3. is exactly [8, Theorem 3.7.11(3)]. �

Corollary 3.9. Let E be a Banach lattice. Then any Dunford-Pettis set in E′

is relatively compact if one of the following assertions is valid:
1. The topological dual E′ is discrete and its norm is order continuous.
2. The norm of E′ is order continuous and the lattice operations in E′ are

weak∗ sequentially continuous.
3. The norms of E and of E′ are order continuous.

Corollary 3.10. Let E be a discrete KB-space. Then any Dunford-Pettis set
in E is relatively compact (and then the class of Dunford-Pettis sets and that of
relatively compact sets in E coincide).

Proof. Since each discrete KB-space is a dual (see [8, Exercise 5.4.E2]), it is
sufficient to use 1. of Corollary 3.9. �

Corollary 3.11. For an operator T from a Banach space X into a discrete
KB-space F , the following statements are equivalent:

1. T : X → F is compact.
2. The adjoint T ′ : F ′ → X ′ is Dunford-Pettis.

Proof. Since F is discrete KB-space, then T : X → F is compact if and only
if T (BX) is relatively compact if and only if T (BX) is a Dunford-Pettis set in F
(Theorem 3.10) if and only if T ′ is a Dunford-Pettis operator (Remark 4). �
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