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A-STATISTICAL KOROVKIN-TYPE APPROXIMATION
THEOREM FOR FUNCTIONS OF TWO VARIABLES

ON AN INFINITE INTERVAL

K. DEMIRCI and S. KARAKUŞ

Abstract. In this paper, using the concept of A-statistical convergence for double
sequences, we provide a Korovkin-type approximation theorem for positive linear

operators on the space of all real-valued uniform continuous functions on [0,∞) ×
[0,∞) with the property that have a finite limit at the infinity. Then, we display an
application which shows that our new result is stronger than its classical version.

1. Introduction

For a sequence (Ln) of positive linear operators on C (X), the space of real val-
ued continuous functions on a compact subset X of real numbers, Korovkin [15]
established first the sufficient conditions for the uniform convergence of Ln (f) to
a function f by using the test function 1, x, x2 (see, for instance, [5]). Later
many researchers have investigated these conditions for various operators defined
on different spaces (see, for instance, [1], [10]). Using the concept of statisti-
cal convergence in approximation theory provides us with many advantages. In
particular, the matrix summability methods of Cesáro type are strong enough to
correct the lack of convergence of various sequences of linear operators such as the
interpolation operator of Hermite-Fejér [3], because these types of operators do
not converge at points of simple discontinuity. Furthermore, in recent years, with
the help of the concept of uniform statistical convergence, which is a regular (non-
matrix) summability transformation, various statistical approximation results were
proved [2], [7], [8], [9], [14]. Then, it was demonstrated that those results are more
powerful than the classical Korovkin theorem. In this paper, using the concept of
A-statistical convergence for double sequences and test functions 1, e−x, e−y and
e−2x + e−2y, we provide a Korovkin-type approximation for positive linear opera-
tors on the space UC∗ (D), the Banach space of all real-valued uniform continuous
functions on D := [0,∞) × [0,∞) with the property that lim(x,y)→(∞,∞) f(x, y)
exists and is finite, endowed with the supremum norm ‖f‖ = sup(x,y)∈D |f (x, y)|
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for f ∈ UC∗ (D). Then, we display an application which shows that our new result
is stronger than its classical version.

We now recall some basic definitions and notations used in the paper.
A double sequence x = {xm,n}, m, n ∈ N, is convergent in Pringsheim’s sense

if for every ε > 0, there exists N = N(ε) ∈ N such that |xm,n − L| < ε whenever
m,n > N . Then, L is called the Pringsheim limit of x and is denoted by P −
limx = L (see [18]). In this case, we say that x = {xm,n} is “P -convergent
to L”. Also, if there exists a positive number M such that |xm,n| ≤ M for all
(m,n) ∈ N2 = N × N, then x = {xm,n} is said to be bounded. Recall that if
a single sequence is convergent, then it is also bounded. But, this case does not
hold for a double sequence, i.e., the convergence in Pringsheim’s sense of a double
sequence does not imply the boundedness of the double sequence.

Now let A = [aj,k,m,n], j, k,m, n ∈ N, be a four-dimensional summability
matrix. For a given double sequence x = {xm,n}, the A-transform of x, denoted
by Ax := {(Ax)j,k}, is given by

(Ax)j,k =
∑

(m,n)∈N2

aj,k,m,nxm,n, j, k ∈ N,

provided the double series converges in Pringsheim’s sense for every (j, k) ∈ N2. In
summability theory, a two-dimensional matrix transformation is said to be regular
if it maps every convergent sequence into a convergent sequence with the same
limit. The well-known characterization of regularity for two dimensional matrix
transformations is known as Silverman-Toeplitz conditions (see, for instance, [13]).
In 1926, Robison [19] presented a four dimensional analog of the regularity by
considering an additional assumption of boundedness. This assumption can be
made because a double P -convergent sequence is not necessarily bounded. The
definition and the characterization of regularity for four dimensional matrices is
known as Robison-Hamilton conditions, or briefly, RH-regularity (see, [12], [19]).

Recall that a four dimensional matrix A = [aj,k,m,n] is said to be RH-regular if
it maps every bounded P -convergent sequence into a P -convergent sequence with
the same P -limit. The Robison-Hamilton conditions state that a four dimensional
matrix A = [aj,k,m,n] is RH-regular if and only if

(i) P − lim
j,k

aj,k,m,n = 0 for each (m,n) ∈ N2,

(ii) P − lim
j,k

∑
(m,n)∈N2 aj,k,m,n = 1,

(iii) P − lim
j,k

∑
m∈N |aj,k,m,n| = 0 for each n ∈ N,

(iv) P − lim
j,k

∑
n∈N |aj,k,m,n| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2 |aj,k,m,n| is P -convergent for each (j, k) ∈ N2,
(vi) there exist finite positive integers A and B such that

∑
m,n>B |aj,k,m,n| < A

holds for every (j, k) ∈ N2.

Now let A = [aj,k,m,n] be a nonnegative RH-regular summability matrix and
let K ⊂ N2. Then, a real double sequence x = {xm,n} is said to be A-statistically
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convergent to a number L if for every ε > 0,

P − lim
j,k

∑
(m,n)∈K(ε)

aj,k,m,n = 0,

where
K(ε) := {(m,n) ∈ N2 : |xm,n − L| ≥ ε}.

In this case we write st2(A)− limm,n xm,n = L. Observe that a P -convergent double
sequence is A-statistically convergent to the same value, but the converse is not
always true.

We should note that if we take A = C(1, 1) which is the double Cesáro ma-
trix, then C(1, 1)-statistical convergence coincides with the notion of statistical
convergence for double sequence which was introduced in [16], [17]. Finally, if we
replace the matrix A by the identity matrix for four-dimensional matrices, then
A-statistical convergence reduces to the Pringsheim convergence.

2. A Korovkin-Type Theorem

Let L be a linear operator from UC∗ (D) into itself. Then, as usual, we say that
L is a positive linear operator provided that f ≥ 0 implies L (f) ≥ 0. Also, we
denote the value of L (f) at a point (x, y) ∈ D by L (f ;x, y) .

For single sequence Boyanov and Veselinov [4] proved the Korovkin theorem
on C∗ [0,∞) which is the Banach space of all real-valued continuous functions
on [0,∞) with the property that limx→∞ f (x) exists and finite, endowed with
the supremum norm ‖f‖ = supx∈[0,∞) |f(x)| for f ∈ C∗ [0,∞) , by using the test
function 1, e−x, e−2x . Then, using the concept of A-statistical convergence for
single sequences, Duman, Demirci and Karakuş [6] have obtained the following
theorem on UC∗ [0,∞) which is the Banach space of all real-valued uniform con-
tinuous functions on [0,∞) with the property that limx→∞ f (x) exists and finite,
endowed with the supremum norm ‖f‖∗ = supx∈[0,∞) |f(x)| for f ∈ UC∗ [0,∞).

Theorem 2.1 ([6]). Let A = (ajn) be a nonnegative regular summability matrix
and let {Ln} be a sequence of positive linear operators mapping from UC∗ [0,∞)
into itself. Then, for all f ∈ UC∗ [0,∞),

stA− lim
n→∞

‖Ln (f)− f‖∗ = 0

if and only if the following statements hold

stA− lim
n→∞

∥∥Ln (e−kt)− e−kx
∥∥
∗ = 0, k = 0, 1, 2.

We note that Boyanov and Veselinov [4] considered the usual continuity instead
of uniform continuity. In this case, δ may depend on the points x, t, the uniform
approximation in [4, Theorem 2] may be invalid.

Now we have the following main result.

Theorem 2.2. Let A = [aj,k,m,n] be a nonnegative RH-regular summability
matrix. Let {Lm,n} be a double sequence of positive linear operators acting from



154 K. DEMIRCI and S. KARAKUŞ

UC∗ (D) into itself. Then, for all f ∈ UC∗ (D)

st2(A)−lim
m,n
‖Lm,n (f)− f‖ = 0

if and only if the following statements hold

a) st2(A)−lim
m,n
‖Lm,n (1)− 1‖ = 0,

b) st2(A)−lim
m,n
‖Lm,n (e−u)− e−x‖ = 0,

c) st2(A)−lim
m,n
‖Lm,n (e−v)− e−y‖ = 0,

d) st2(A)−lim
m,n

∥∥Lm,n (e−2u + e−2v
)
−
(
e−2x + e−2y

)∥∥ = 0.

Proof. Since the necessity is clear, then it is enough to prove sufficiency. Assume
that the conditions (a) , (b) , (c) and (d) are satisfied. Let f ∈ UC∗ (D). There
exists a constant M such that |f (x, y)| ≤ M for each (x, y) ∈ D. Let ε be
an arbitrary positive number. By hypothesis we may find δ := δ (ε) > 0 such
that if |e−u− e−x| < δ and |e−v − e−y| < δ for every (x, y) , (u, v) ∈ D, then
|f (u, v)− f (x, y)| < ε (Here, we should remark that the number δ just depends
on ε due to uniform continuity). Then the following inequality holds

|f (u, v)− f (x, y)| < ε+
2M
δ2

[(
e−u− e−x

)2 +
(
e−v − e−y

)2]
for all (x, y), (u, v) ∈ D. Using the linearity and the positivity of the operators
Lm,n, we get for any (m,n) ∈ N2 that

|Lm,n (f ;x, y)− f (x, y) |
≤ Lm,n (|f (u, v)− f (x, y)| ;x, y) + |f (x, y)| |Lm,n (1;x, y)− 1|

≤ Lm,n

(
ε+

2M
δ2

[(
e−u− e−x

)2 +
(
e−v − e−y

)2] ;x, y
)

+ |f (x, y)| |Lm,n (1;x, y)− 1|
≤ ε+ (ε+M) |Lm,n (1;x; y)− 1|

+
2M
δ2

Lm,n

([(
e−u− e−x

)2 +
(
e−v − e−y

)2] ;x; y
)

≤ ε+ (ε+M) |Lm,n (1;x, y)− 1|+ 2M
δ2
∣∣e−2x + e−2y

∣∣ |Lm,n (1;x, y)− 1|

+
2M
δ2
∣∣Lm,n (e−2u + e−2v;x, y

)
−
(
e−2x + e−2y

)∣∣
+

4M
δ2
∣∣e−x∣∣ ∣∣Lm,n (e−u;x, y

)
− e−x

∣∣+
4M
δ2
∣∣e−y∣∣ ∣∣Lm,n (e−v;x, y)− e−y

∣∣
≤ ε+

(
ε+M +

4M
δ2

)
|Lm,n (1;x, y)− 1|

+
4M
δ2
∣∣Lm,n (e−u;x, y

)
− e−x

∣∣+
4M
δ2
∣∣Lm,n (e−v;x, y)− e−y

∣∣
+

2M
δ2
∣∣Lm,n (e−2u + e−2v;x, y

)
−
(
e−2x + e−2y

)∣∣
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where
∣∣e−kt∣∣ ≤ 1 for all t ∈ [0,∞) and k ∈ N. Then taking the supremum over

(x, y) ∈ D, we have

‖Lm,n (f)− f‖ ≤ ε+K {‖Lm,n (1)− 1‖
+
∥∥Lm,n (e−u)− e−x

∥∥+
∥∥Lm,n (e−v)− e−y

∥∥
+
∥∥Lm,n (e−2u + e−2v

)
−
(
e−2x + e−2y

)∥∥}(2.1)

where K := max
{
ε+M + 4M

δ2 ,
4M
δ2 ,

2M
δ2

}
. For a given r > 0 choose ε > 0 such

that ε < r. Define the following sets:

D :=
{

(m,n) ∈ N2 : ‖Lm,n (f)− f‖ ≥ r
}
,

D1 :=
{

(m,n) ∈ N2 : ‖Lm,n (1)− 1‖ ≥ r − ε
4K

}
,

D2 :=
{

(m,n) ∈ N2 :
∥∥Lm,n (e−u)− e−x

∥∥ ≥ r − ε
4K

}
,

D3 :=
{

(m,n) ∈ N2 :
∥∥Lm,n (e−v)− e−y

∥∥ ≥ r − ε
4K

}
,

D4 :=
{

(m,n) ∈ N2 :
∥∥Lm,n (e−2u + e−2v

)
−
(
e−2x + e−2y

)∥∥ ≥ r − ε
4K

}
.

It follows from (2.1) that D ⊂ D1∪D2∪D3∪D4. Therefore, for each (m,n) ∈ N2,
we may write∑

(m,n)∈D

aj,k,m,n ≤
∑

(m,n)∈D1

aj,k,m,n +
∑

(m,n)∈D2

aj,k,m,n

+
∑

(m,n)∈D3

aj,k,m,n +
∑

(m,n)∈D4

aj,k,m,n.(2.2)

From (2.2), using (a) , (b) , (c) and (d), we conclude that

P − lim
j,k

∑
(m,n)∈D

aj,k,m,n = 0

whence the result. �

If we replace the matrix A in Theorem 2.2 by identity double matrix, then we
immediately get the following classical result:

Theorem 2.3. Let {Lm,n} be a double sequence of positive linear operators
acting from UC∗ (D) into itself. Then, for all f ∈ UC∗ (D),

P − lim
m,n
‖Lm,n (f)− f‖ = 0

if and only if the following statements hold:
a) P − lim

m,n
‖Lm,n (1)− 1‖ = 0,

b) P − lim
m,n
‖Lm,n (e−u)− e−x‖ = 0,

c) P − lim
m,n
‖Lm,n (e−v)− e−y‖ = 0,
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d) P − lim
m,n

∥∥Lm,n (e−2u + e−2v
)
−
(
e−2x + e−2y

)∥∥ = 0.

Remark 2.1. Now, we exhibit an example of a double sequence of positive
linear operators of two variables satisfying the conditions of Theorem 2.2, but
that does not satisfy the conditions of Theorem 2.3. We consider the following
Baskakov operators (see [11])

Bm,n (f ;x, y) =
∞∑
j=0

∞∑
k=0

f

(
j

m
,
k

n

)(
m− 1 + j

j

)(
n− 1 + k

k

)
· (1 + x)−m−j (1 + y)−n−k xjyk,

(2.3)

where (x, y) ∈ D, f ∈ UC∗ (D). Also, observe that

Bm,n (1;x, y) = 1,

Bm,n
(
e−u;x, y

)
=
(

1 + x− x e−
1
m

)−m
,

Bm,n
(
e−v;x, y

)
=
(

1 + y − y e−
1
n

)−n
,

Bm,n
(
e−2u + e−2v;x, y

)
=
(

1 + x− x e−
1
m

)−m
+
(

1 + y − y e−
1
n

)−n
.

Then, by Theorem 2.3, we get that for any f ∈ UC∗ (D),

P − lim
m,n
‖Lm,n (f)− f‖ = 0.

Now we take A = C (1, 1) and define a double sequence (αm,n) by

αm,n =

{
1, if m and n are squares,

0, otherwise.
(2.4)

It is clear that

st2(C(1,1))− lim
m,n

αm,n = 0.(2.5)

Now using (2.3) and (2.4), we define the following positive linear operators on
UC∗ (D) as follows:

Lm,n (f ;x, y) = (1 + αm,n)Bm,n (f ;x, y) .(2.6)

So, by the Theorem 2.2 and (2.5), we see that

st2(C(1,1))− lim
m,n
‖Lm,n (f)− f‖ = 0.

Also, since (αm,n) is not P−convergent, we say that the Theorem 2.3 does not
work for our operators defined by (2.6).
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